7§ Deutsches Research
Forschungsz entrum

) F J fir Kinstlic he Report

Intellig enz GmbH RR-02-03

Proceedings of the
2" International Workshop on
Security in Mobile Multia gent Systems

associated to AAMAS-2002
Bologna, Italy

Klaus Fischer and Dieter Hutter (Eds.)

16. July 2002

Deutsc hes Forschungsz entrum fir Kinstlic he Intellig enz

GmbH
Posthch2080 Stuhlsatzenhauswe
67608KaiserslauternFRG 66123Saarbiicken,FRG
Tel.: + 49(631)205-3211 Tel.: + 49(681)302-5252
Fax: +49(631)205-3210 Fax: +49(681)302-5341
E-Mail: info@dfki.uni-kl.de E-Mail: info@dfki.de

WWW: http://www.dfki.de

Deutsc hes Forschungsz entrum fur Kiinstlic he Intellig enz

DFKI GmbH

German Research Center for Artificial Intellig ence

Founded in 1988, DFKI today is one of the largest nonprofit contract research institutes in
the field of innovative software technology based on Artificial Intelligence (Al) methods. DFKI
is focusing on the complete cycle of innovation — from world-class basic research and tech-
nology development through leading-edge demonstrators and prototypes to product functions
and commercialization.

Based in Kaiserslautern and Saarbriicken, the German Research Center for Artificial Intelli-
gence ranks among the important “Centers of Excellence” worldwide.

An important element of DFKI's mission is to move innovations as quickly as possible from the
lab into the marketplace. Only by maintaining research projects at the forefront of science can
DFKI have the strength to meet its technology transfer goals.

DFKI has about 165 full-time employees, including 141 research scientists with advanced de-
grees. There are also around 95 part-time research assistants.

Revenues for DFKI were about 30 million DM in 2000, half from government contract work and
half from commercial clients. The annual increase in contracts from commercial clients was
greater than 20% during the last three years.

At DFKI, all work is organized in the form of clearly focused research or development projects
with planned deliverables, various milestones, and a duration from several months up to three
years.

DFKI benefits from interaction with the faculty of the Universities of Saarbriicken and Kaisers-
lautern and in turn provides opportunities for research and Ph.D. thesis supervision to students
from these universities, which have an outstanding reputation in Computer Science.

The key directors of DFKI are Prof. Wolfgang Wahlster (CEO) and Dr. Walter Olthoff (CFO).

DFKI's five research departments are directed by internationally recognized research scien-
tists:

[Knowledge Management (Director: Prof. A. Dengel)

[Intelligent Visualization and Simulation Systems (Director: Prof. H. Hagen)
[Deduction and Multiagent Systems (Director: Prof. J. Siekmann)

[Language Technology (Director: Prof. H. Uszkoreit)

[Intelligent User Interfaces (Director: Prof. W. Wahlster)

In this series, DFKI publishes research reports, technical memos, documents (eg. workshop
proceedings), and final project reports. The aim is to make new results, ideas, and software
available as quickly as possible.

Prof. Wolfgang Wabhlster
Director

Proceedings of the
27 | nternational Wor kshop on
Security in Mobile Multiagent Systems

Klaus Fischer and Dieter Hutter (Eds.)

DFKI-RR-02-03

This work has been supported by a grant from The Federal Ministry of Educa-
tion, Science, Research, and Technology (FKZ ITW-5064).

© Deutsches Forschungszentrum fiir Kiinstliche Intelligenz 2002

This work may not be copied or reproduced in whole or part for any commercial purpose. Permission to
copy in whole or part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by per-
mission of the Deutsche Forschungszentrum fur Kiinstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fiir Kuinstliche Intelligenz.

ISSN 0946-008X

Proceedings of the
274 Tnternational Workshop on
Security in Mobile Multiagent Systems

Klaus Fischer and Dieter Hutter (Eds.)
June 27, 2002

Preface

This report contains the Proceedings of the Second Workshop on Security of Mobile Multiagent
Systems (SEMAS’2002). The Workshop was held in Bologna, Italy on July 16, 2002, as a satel-
lite event to the 1st International Conference on Autonomous Agents and Multiagent Systems
2002. The First Workshop on Security of Mobile Multiagent Systems (SEMAS’2001) was held
in Montreal, Canada as a satellite event to the 5th International Conference on Autonomous
Agents in 2001.

The far reaching influence of the Internet has resulted in an increased interest in agent tech-
nologies, which are poised to play a key role in the implementation of successful Internet and
WWW-based applications in the future. While there is still considerable hype concerning
agent technologies, there is also an increasing awareness of the problems involved. In par-
ticular, that these applications will not be successful unless security issues can be adequately
handled. Although there is a large body of work on cryptographic techniques that provide basic
building-blocks to solve specific security problems, relatively little work has been done in inves-
tigating security in the multiagent system context. Related problems are secure communication
between agents, implementation of trust models/authentication procedures or even reflections
of agents on security mechanisms. The introduction of mobile software agents significantly in-
creases the risks involved in Internet and WWW-based applications. For example, if we allow
agents to enter our hosts or private networks, we must offer the agents a platform so that they
can execute correctly but at the same time ensure that they will not have deleterious effects
on our hosts or any other agents / processes in our network. If we send out mobile agents, we
should also be able to provide guarantees about specific aspects of their behaviour, i.e., we are
not only interested in whether the agents carry-out their intended task correctly. They must
defend themselves against attacks initiated by other agents, and survive in potentially malicious
environments.

Agent technologies can also be used to support network security. For example in the context
of intrusion detection, intelligent guardian agents may be used to implement active protection
strategies on a firewall or intelligent monitoring agents can be used to analyse the behaviour
of agents migrating through a network. Part of the inspiration for such multi-agent systems
comes from primitive animal behaviour, such as that of guardian ants protecting their hill or
from biological immune systems.

Progam Committee

The papers in this report were reviewed by the program committee consisting, besides the
workshop chairs, of

e Sahin Albayrak, TU Berlin, Germany

e David Basin, University of Freiburg, Germany

e Hans-Juergen Buerckert, DFKI GmbH Saarbruecken, Germany
e Ciaran Bryce, University of Geneve, Switzerland

e Giuseppe Castagna, Ecole Normale Superieure, France

e Luc Moreau, University of Southampton, UK

e Stefan Poslad, Queen Mary University of London, UK

e Volker Roth, Fraunhofer IGD, Germany

e Helmut Schwigon, BSI Bonn, Germany

e Vipin Swarup, The MITRE Corp, USA

o Christian Tschudin, Uppsala University, Sweden

The Workshop Chairs

Klaus Fischer and Dieter Hutter

ii

Contents

1 Long Papers 1

1.1 R. Accorsi, David Basin, and Luca Vigano: Modal Specifications of Trace-Based
Security Properties 1

1.2 K. Cartrysse and J. C. A. van der Lubbe: An agent digital signature in an
untrusted environment L. oL L oL Lo 12

1.3 N. Foukia, S. Hassas, and S. Fenet: An Intrusion Response Scheme: Tracking
the alert source using stigmergy paradigm 18

1.4 L. Kagal, T. Finin, and A. Joshi: Developing Secure Agent Systems Using Del-
egation Based Trust Management L. 27

1.5 G. Navarro, S. Robles, and J. Borrell: Adapted Role-based Access Control for
MARISM-A using SPKI Certificates 35

1.6 G. van’t Noordende, F. M. T. Brazier, and A. S. Tanenbaum: A Security Frame-
work for a Mobile Agent System o oL 43
1.7 H. K. Tan and L. Moreau: Extending execution tracing for mobile code security 51
2 Short Papers 60

2.1 J. J. Tan, L. Titkov, and C. Neophytou: Securing Multi-Agent Platform Com-
munication L oL e e e e e e e 60

2.2 E. C. Vijil and S. Iyer: Identifying collusions: Co-operating malicious hosts in
mobile agent itinaries L oL Lo 66

2.3 K. Yang, A. Galis, T. Mota, and A. Michalas: Mobile Agent Security Facility for
Safe Configuration of IP Networks 72
3 Extended Abstracts 78

3.1 R. Bharadwaj: SINS: A Middleware for Autonomous Agents and Secure Code
Mobility o e e e 78

3.2 N. Mitrovi¢ and U. A. Arribalzaga: Mobile Agent security using Proxy-agents
and Trusted domains 81

3.3 S.Robles, J. Mir, and J. Borrell: MARISM-A: An Architecture for Mobile Agents
with Recursive Itinary and Secure Migration 84

3.4 Y. Ye, X.Yi, and S. Kumaran: Coalition Signature Scheme in Multi-agent Systems 87

ii

Modal Specifications of Trace-Based Security Properties

Rafael Accorsi

David Basin

Luca Vigano

Institut fur Informatik, Albert-Ludwigs-Universitat Freiburg
Georges-Kohler-Allee 52, D-79110 Freiburg, Germany

{accorsi,basin,luca}@informatik.uni-freiburg.de

ABSTRACT

We introduce a multi-modal logic that combines comple-
mentary features of authentication logics and trace-based
approaches. Our logic contains two kinds of modalities: im-
plicit belief, which formalizes the view of an external agent
reasoning about interleaved protocol executions, and explicit
belief, which uses awareness to model the resource-bounded
reasoning of the agents involved in the executions. We em-
ploy these modalities to formalize extensional and inten-
sional specifications of protocols and their properties, and
use these formalizations to characterize and reason about at-
tacks. As an example, we consider the Needham-Schroeder
Public Key protocol and use our logic to demonstrate the
existence of the well-known man-in-the-middle attack, and
also show the equivalence of our modal specification to one
based on an interleaved trace semantics.

1. INTRODUCTION

Security protocols describe how agents should exchange mes-
sages to achieve security goals such as confidentiality and
integrity of data, or authentication of the identity of agents
in a network. A number of approaches have been proposed
for rigorously analyzing security protocols. Some of these
are based on specialized security logics, such as the foun-
dational BAN logic for authentication protocols [6] and its
extensions, e.g. [1, 4, 7, 13, 20, 21]. These logics work by
formalizing the doxastic or epistemic reasoning of agents
executing a protocol, and security properties are formalized
and reasoned about in terms of the way the beliefs or the
knowledge of the agents evolve as messages are exchanged.
Although effective for finding some kinds of flaws, the logics’
semantics are often lacking or restrictive (e.g. the logics are
designed to reason about a single protocol execution).

An alternative way of reasoning about security protocols is
to consider protocols as sets of possibly interleaved commu-
nication traces. For example, given a protocol and an at-
tacker model, Paulson [18] turns these into an inductive def-
inition (of the trace set) in higher-order logic. The resulting
set can be used to inductively establish security properties
by showing that they hold for all traces. Similar inductive
definitions are used by Basin in [3] to provide a basis for
finding attacks (traces violating security properties) using
infinite-state model-checking. The strengths and weaknesses
of trace-based methods are in some sense complementary to
security logics. Although trace-based methods provide a
simple and expressive theory for formalizing the semantics
of protocols and security properties in terms of interleaved

executions, characterizing attacks as properties of traces can
be tricky, whereas BAN-like specifications are generally sim-
pler and more abstract.

In this paper, we introduce a multi-modal logic that com-
bines complementary features of authentication logics and
trace-based approaches. Our account is semantic: traces are
used to build a Kripke structure upon which a modal logic
is defined to reason about actions occurring in interleaved
protocol executions. The modalities are used to formalize
the implicit and explicit beliefs of agents, allowing modal
specifications of security properties while being based on
an underlying interleaved trace semantics. The two belief
modalities give us considerable flexibility in our specifica-
tions. Roughly speaking, using the implicit belief modality
we can model what agents would believe had they seen all
messages exchanged by all agents, and using explicit be-
lief we can model what agents believe based on what they
have actually seen. We define implicit belief as the standard
modality of belief logics [14]. To formalize explicit belief and
express the local reasoning of an agent based on the actions
he has participated in, we adapt the notion of awareness
(introduced in logics for artificial intelligence [10, 11, 22] to
address the problem of agents having unbounded reasoning
power and thus being logically omniscient, which is a char-
acteristic of most doxastic/epistemic logics).

We present two applications of our logic. First, we apply it
to formally characterize different kinds of specifications of
security properties. It has been observed that specifications
are generally either intensional, i.e. based on details of the
protocol steps, or extensional, i.e. formulated independently
of message exchanges. We use the explicit belief modality
to characterize intensional specifications, and the implicit
belief modality to characterize extensional specifications.

Second, we show how to use these modalities to character-
ize and reason about attacks in interleaved protocol exe-
cutions. Our specifications of security properties combine
intensional and extensional specifications: the intensional
part is used to represent the completion (or commitment)
of agents in protocol executions, and the extensional part
formalizes properties such as message secrecy. We illustrate
this using the Needham-Schroeder Public Key protocol as a
running example and show how the semantics can be used to
demonstrate the existence of attacks. Afterwards we show
the equivalence of our modal specification to those based on
interleaved trace semantics.

We proceed following the structure given above. §2 gives
the semantic foundations of our logic, and §3 and §4 discuss
the two applications. We compare with related work in §5
(as explained there, this work supersedes our previous work
on awareness-based security logics [2]), and conclude in §6.

2. AMULTI-MOD AL SECURITY LOGIC

2.1 Syntax

We start by defining the set of messages, which are built
from primitive terms by pairing and encryption. Based on
this, we define a multi-modal language extended with oper-
ators expressing, e.g., possession and secrecy of messages.

Definition 1 Let the set 7 of primitive terms consist of
three disjoint subsets: Tr of agent identifiers, Tk of crypto-
graphic keys', and T of nonces. The set M of messages is
the smallest set closed under the following rules: (i) M € M
if M eT; (i) MoM € M if M,M' € M; and (iii)
{M}x e Mif M € M and K € Tk.

The set F of formulas is the smallest set closed under the
following rules: (i) L € F; (ii) ¢ = ¢ € F if ¢ € F and
Y € F; (iii) says, (B, M), seesa(M), hasa(M), secg(M),
comml (B, M),commRs(B,M) € Fif A)B€ Tr, G C T1,
and M € M; (iv) Xap, Bape Fif Ac Trandpe F. R

The formulas express properties of message exchanges be-
tween the agents engaged in a protocol execution (also called
run). Intuitively, the formula says 4 (B, M) denotes agent A
saying M to B, seess(M) denotes A seeing M, hasa (M)
denotes A possessing M, and secg(M) denotes that M is
a secret possessed only by the agents in the group G. The
formula comml (B, M) (respectively, commR4 (B, M)) ex-
presses that agent A uses message M to commit as the ini-
tiator (respectively, responder) in a protocol execution with
agent B.2 The modalities X4 and Ba denote the explicit be-
lief and the implicit belief of an agent A. Other connectives
and modalities are defined in the usual manner, e.g. negation
- = ¢ — L and conjunction (¢ A ¥) = =(p —).

To distinguish between the variables appearing in a pro-
tocol description and the actual values with which these
variables are instantiated in a protocol execution, variables
ranging over agent identifiers are denoted by capital let-
ters A, B,C, ..., and the concrete values by lowercase let-
ters a,b,c,..., where the special constant spy denotes the
attacker. We use the same convention also for keys and
nonces, and write K and k, and N and n. We write G to
denote a group of agents, a to denote an awareness set, and
¢ and 9 to denote formulas.

'We assume an underlying algebra where (K~')™! = K for
all keys K € Tx, and the function -7! : Tx — Tx maps
a key K to its inverse key K~'. For protocols employing
(symmetric) shared keys we also have K ! = K.

®The two predicates are used to express commitment of
agents executing protocols with two roles, initiator and
responder. It is straightforward to generalize the syntax
and subsequent semantics with families of predicates like
commf(Al,...,Ak,M), which formalizes commitment for
the agent in the j-th role for a protocol with & roles.

2.2 Model of computation

Our model of computation combines ideas from trace-based
methods for protocol verification [3, 18] with ideas from au-
thentication logics [1, 6] and from approaches to reasoning
about knowledge in multi-agent systems [10, 11, 22].

Trace-basedoundations

An event e is a message exchange of the foom A — B :
M and a trace is a sequence e1,...,e; of events (where ()
denotes the empty trace). A protocol is modeled as a set of
traces; namely, the smallest set of traces closed under rules
that formalize the effects of protocol steps and the possible
actions by an attacker.

In Fig. 1 we show the NSPK protocol and its definition as an
inductively defined set P of traces. The rules nspk,, nspk,,
and nspk; formalize the three protocol steps. For example,
nspk, models the second step of the protocol and says that
a trace t € P can be extended with B — A : {Na o Np|}k,
whenever Np has not been used in ¢ (i.e. it is a fresh nonce)
and ¢ contains an event A’ — B : {Ao N4 |}k,. The attacker
rule formalizes the attacker model of Dolev and Yao [9]:
the spy can say anything that he can synthesize from the
analyzable parts of the messages he spies, where spies(t) is
the set consisting of all messages that have been sent in a
trace t (which formalizes the assumption that the attacker
has control over the network). The attacker rule uses the
auxiliary functions synth and analz, which we now define
(along with parts) as they will be needed in our model.

Definition 2 Let M be a set of messages. Using the corre-
sponding rules in Fig. 2, we build the following three sets:
the set parts(M) is the smallest extension of M obtained
by adding the components of compound messages and the
bodies of encrypted messages; the set analz(M) is the small-
est extension of M closed under projection and decryption
by keys in analz(M); and the set synth(M) is the smallest
extension of M closed under pairing and encryption.]

Modal foundations

The local state of an agent A € 77 is a pair consisting of
the set of actions that A has performed and the set of mes-
sages in A’s possession. A global state w is an n-tuple of
local states, where n is the number of agents in the system,
including the attacker. In our model, the actions that an
agent A can perform are sending a message M to another
agent B, in symbols send4 (B, M), and receiving a message
M, in symbols recs (M), where the identity of the sending
agent is not known a priori.

‘We combine the notions of trace and state by defining func-
tions that, given a trace, compute the local state of each
agent participating in the (possibly partial, interleaved) pro-
tocol executions in the trace.

Definition 3 Given t € P, the sets of actions and posses-
sions of an agent A are defined by the functions Aca(t) and

teEP Ny ¢ used t

——— empty

nspk;

(e P t,A—)B:{‘AONA‘}KBEP

teP Npdusedt A — B:{{AoNyllg, €t evy

a— spy : {{aonal,,

NSPK 1. A — B : {Ao Nallk,

t,BHA:ﬂNAONB[}KAEP
NsPK 2. B+ A:{NaoNgllk, teP A—B:{AoNalg, €t B — A:{NaoNglk, €t

nspks evy = spy = b: {la o naltx,

eva =b— a:{ngomnplts,

NSPK 3. A — B : {Np[tk,

taA_>B:{]NB|}KB eEP

spky evs =a — spy: {‘nb‘}kspy
evs = spy = b: {{nplx,

t € P X € synth(analz(spies(t)))

attacker

t,spy > B: X €P

Figure 1: The NSPK protocol (L), the rules defining it inductively (C), and the MITM attack on it (R)

MeM M o M2 € parts(M)

{M} k € parts(M)

———————— parts-inj arts-2 (¢ € {1,2 arts-bod,
M € parts(M) P ! M; € parts(M) P (e {2} M € parts(M) P Y
MeM analz-inj Mji o M5 € analz(M) analzi (i € {1,2)) {M[}x € analz(M) K~ € analz(M) Araladec
M € analz(M) M; € analz(M) ’ M € analz(M)
MeM . M; € synth(M) M € synth(M) . M € synth(M) K € synth(M)
synth-inj synth-pair synth-enc

M € synth(M) M1 o My € synth(M)

{M[tk € synth(M)

Figure 2: The rules defining the sets parts, analz and synth

Po4(t) as follows: Aca({)) =0 and Aca(B — C: M, ts) is

{sendp(C, M)} U Aca(ts) if A=B
{recc (M)} U Aca (ts) ifA=C
{sendp(C, M),recc(M)} U Acy(ts) if A = spy
Aca(ts) otherwise

and Poy ({)) = nitState(A) and Posa (B — C : M,ts)
is {M} U Poa(ts) if A € {B,C,spy} and Poax (ts) other-
wise, where ts ranges over event sequences and initState is
a protocol-dependent function returning the message items
that an agent initially possesses (e.g. his private and public
keys, and the public keys and identifiers of other agents).

Thus, given a trace t € P, the local state sa(t) of an agent
A is simply (Aca(t), Poa(t)), and the global state w is the
n-tuple of the local states sa (t) for all n agents. Given a
global state w, we will (overloading notation) write s4 (w)
to denote the local state of an agent A at w, and Aca (w)
and Poa (w) to denote the two components of s4 (w). W

Hence, the spy’s local state contains the actions performed
by all the agents, as well as the messages they exchange,
while the local state sa (w) of an agent A different from
the spy is built only from the events that A participated in.
Since the spy possesses all the messages sent in the network,
Po,,,(w) captures the same information as the set spies used
in Fig. 1 to formalize the attacker’s control over the network.

Let t be a trace and ts be the sequence of all prefixes of ¢.
The set W* of global states (or worlds) relative to t is ob-
tained by computing, for each prefix of ¢, the corresponding
sets of actions and possessions for all agents A. Formally,
Wt = wrl(ts), where

wrl(ts) = {{(ACA (t"), Poa(t'))} Uwrl(ts’) ifts=1t,ts'
{(Aca(()), Poa(()} if ts =)

Modelingresouce-boundedgents

In the artificial intelligence literature, resource-bounded a-
gents have limited computational resources, such as memory
or time. In our approach, we model resource-bounded agents
where the limitations are both in (1) the propositions an
agent may reason about (his language) and (2) his deductive
ability (what he can conclude). As an example of (1), if a
nonce N is a secret between A and B, then another agent
C should not even be able to formulate propositions about
it. As an example of (2), when C learns the nonce N, he
can then conclude that he possesses it, but not necessarily
that some other agent D possesses it (even when this is the
case).

Our first step in limiting resources is to restrict an agent’s
language by making the messages he can construct a func-
tion of the information he possesses at a state.

Definition 4 The set M 4(w) of messages that an agent A
can construct at a global state w is defined as Ma(w) =
{M | M € synth(analz(Poa(w)))}. The set Fa(w) of for-
mulas of an agent A at a global state w is the smallest set
of formulas closed under the following rules: (i) L € Fa(w);
(i) ¢ = ¥ € Fa(w) if ¢, € Fa(w); (iii) saysg(C, M),
seesp(M), hasp(M), secg(M), commlg(C, M), commRg(C,
M) € Fa(w) if B,C € Mu(w) N T, M € Ma(w), and
G C Ma(w)NTr;and (iv) Xap € Fa(w) if ¢ € Fa(w). B

Clause (iii) expresses that each agent has its own language
for the predicates says, sees, has, sec, comml;, and commR,
which depends on the messages that an agent possesses at
some state w. In comparison with rule (iii) in Def. 1, here we
simply require that the message items belong to the set of
messages of the agent. For example, says (B, M) € Fa(w)
if A and B are agent identifiers in M4(w) (denoted by

A,B € Ma(w)N7T;) and M is a message in the set of
messages of A (in symbols M € M 4(w)).

With respect to (iv), note that since the agents’ languages
do not include the modality B for implicit belief, an agent
can reason about neither his own nor other agents’ implicit
beliefs, nor can he have explicit beliefs about the explicit be-
liefs of other agents (as is standard in belief logics, e.g. [15]).

2.3 Semantics

We begin by fixing a set 7 ; of agent names, where, for nota-
tional simplicity, we identify its elements with the previously
defined set 77 of agent identifiers; thus, from now on we will
simply talk of agents. Similarly, for keys and nonces.

Given a trace t € P, we obtain the corresponding model
Mt = (W ~,a), where W' is a non-empty set of worlds, ~
is an agent-indexed family of equivalence relations on W?¢,
and « is an agent-indexed family of awareness sets, where
the set a4 (w) consists of the formulas that agent A is aware
of at world w. The family of equivalence relations ~ captures
indistinguishability: two global states are indistinguishable
to an agent A iff the local state of A is the same at these
two global states. Formally, w ~4 w' iff s4(w) = sa(w'),
i.e. Aca(w) = Aca(w') and Poa(w) = Poa(w'). Note that
our model does not contain a valuation function as we do
not have propositional symbols.

A protocol execution results from agents taking actions and
corresponds to a multi-agent system. We can view this sys-
tem from two perspectives: that of an external agent who
observes the system from the outside and does not interact
with the agents executing the protocol, and that of the in-
ternal agents engaged in the execution. The former view is
formalized using a global truth relation, denoted by }=. The
latter is formalized by a local truth relation, which is a family
of truth relations =4, indexed by agents A.

2.3.1 Globaltruth

The global truth relation formalizes what an external ob-
server can conclude from the system. By design, this agent
is not resource-bounded and has access to all communication
and can reason about the local states of individual agents.
In particular, he ascribes implicit belief to the agents, i.e. he
can compute whether an agent A would implicitly believe in
some formula ¢, had A enough information about the overall
communication that is taking place.

In order to formalize these ideas, and to define the semantics
for predicates such as says and sees, we need to express spe-
cific relationships between agents and messages at a global
state. For example, an agent should only be entitled to say
the messages he is able to compose from the information he
possesses. Similarly, he should be entitled to see the sub-
messages that he can obtain from a message he receives. To
this end, we introduce the operators comp and submsg to
define two abbreviations that will be useful in the semantic
definitions in §2.3; assuming that M is a message at w, the
set comp 4 (w, M) contains all the sub-messages that A used
to construct the message M at w, i.e. comp,(w, M) =

Poa(w)Nparts({M}) if M € Ma(w)
] otherwise

and the set submsg 4 (w, M) consists of all sub-messages that
A can obtain from M given the keys he possesses at w, i.e.

submsg 4 (w, M) = analz(Poa(w)) N parts({M}) .

We use commit sets C to define the semantics of the comml
and commR formulas. During one execution of a protocol
Prot, an agent A can take either the initiator role or the
responder role. Intuitively, within an execution, each role
is identified by some message M, where M is, or contains,
a nonce. The set CF™! (A, B, M) contains the actions that
A performed in order to commit as initiator to a responder
B using message M. Similarly, CA™*(A, B, M) contains the
actions that B performed in order to commit as responder
to an initiator A using message M. Both sets are obtained
directly from the description of the protocol. We illustrate
this by means of our running example.

Example 5 In an execution of the NSPK protocol (Fig. 1),
the initiator A commits to the responder B using N4 after
performing the actions corresponding to the steps encoded
by the rules nspk,, nspk, and nspk;. Hence, the commit
set C1°"(A, B, Na) = {senda(B,{{AoNal}x,),reca({Nao
Npltk,), senda(B,{NBltk;)}. Similarly, the responder’s
“view” is formalized by the set Ci3 (A, B, Ng) = {recp({ Ao
Nalip),sends (4, {Na o Nolx,), recs ({Noltxy)}. W

We are now ready to define the global truth relation.

Definition 6 The truth of a formula ¢ at a global state w
in a model M = (W, ~,), in symbols M, w | ¢, is the
smallest relation satisfying:
M, w = says, (B, M) if sends(B,M') € Acy(w) and
M € comp 4 (w, M’) for some M’
M, w |=seespg(M) if recs(M') € Aca(w) and
M € submsg 4 (w, M’) for some M’
M, w |=hasg (M) if M € analz(Poy(w))
M,w =secg(M) if 9M,w = hasy(M) for all A € G and
M, w j hasg(M) for all B ¢ G
M, w |= commly (B, M) if CPt(A,B, M) C Acy(w)
M, w = commRa(B, M) if CE™Y(B,A,M)C Aca(w)
MwEe—yY if MwpEporMwEY
MwpEBap if M w = forall w
such that w ~4 w’
maw':XAﬁo if W‘aw):AﬁﬂandWEfA(w)

We write M = ¢ iff M, w |= ¢ for all w € W. |

In other words, at a global state w an agent A says M to
an agent B iff he sent an M’ to B such that he used M in
composing M’, A sees M iff he received an M’ such that M
is a readable sub-message of M’ and A has M iff M is an
analyzable message in A’s set of possessions. A message M
is a secret shared among the agents in a group G at w iff at w
all the agents in G possess M and no agent outside the group
possesses M. Moreover, A commits to an agent B as an ini-
tiator (respectively, responder) using M iff A has performed
the actions in the initiator’s (respectively, responder’s) com-
mit set. Furthermore, an agent A implicitly believes in ¢ at

w iff ¢ holds in all the worlds indistinguishable to A from w,
which is the standard interpretation of the belief of logically
omniscient agents. We employ the explicit belief modality
(and awareness) to formalize the formulas in which a non-
omniscient, resource-bounded agent believes: We start by
restricting the formulas ¢ that an agent might explicitly be-
lieve in at a global state w to those in his language, which
is expressed by ¢ € Fa(w) (see Def. 4), and then further
restrict these formulas to those he can prove using the infor-
mation he currently possesses, which is captured using the
local truth relation j=4.

2.3.2 Localtruth

M, w [=a ¢ captures the truth of a formula ¢ relative to an
agent A at a global state w. Since there are situations in
which ¢ expresses properties of A himself, and situations in
which ¢ expresses properties of other agents, we will distin-
guish between these two forms of reasoning in our definition
below. In particular, different forms of reasoning require
different kinds of information. For example, if A has to
check whether he possesses M, he will check whether his
possession set contains M. But, to check whether an agent
B has M, A cannot just access the set of B’s possessions.
In our formalization, A uses his awareness set to determine
whether B used M to compose a message B has sent, or
that B received M in some message M’ that B can analyze.

Modeling an agent reasoning about his own local state is
straightforward: we use the sets comp, submsg and analz to
define the semantics for the says, sees and has predicates,
respectively, as in Def. 6.

Modeling an agent reasoning about other agents is more
complicated. Here we employ the agent’s awareness set to
define the semantics of the formulas. To accomplish this,
we define “meta-versions” of the sets comp and submsg,
expressing the messages that some other agent may have
used to compose a message he has sent, as well as the sub-
messages he might be able to obtain from a message he
has received. These capabilities are formalized by means
of the sets m-comp and m-submsg, respectively. The set
m-comp 4, (B, C,w, M) consists of the messages that, at global
state w, A expects B to have used to send the message M
to some agent C. The set m-submsg , (B, w, M) consists of
the sub-messages of M that, according to A’s awareness set
at w, agent B might be able to possess. The rules defining
these sets are given in Fig. 3.

We explain the intuition behind some these rules. Rule
mc-inj formalizes that if an agent A is aware that an agent
B sent a message M, then M is among the messages that A
expects B to have sent. In ms-pk, if A observed that B re-
ceived a message M’ such that M encrypted with B’s public
key Kp is part of M’', then A concludes that B has M. Note
that, although an agent reasons about messages that he may
be unable to analyze, there will not be any secrecy violation
following from these rules: reasoning about the existence of
a message does not correspond to possessing it.

The awareness set of an agent encodes the actions that he
expects other agents to have performed. To reason about
commitment, we have to check whether a set of actions, i.e. a
commit set, is a subset of the awareness set of an agent. To

this end, we introduce a function that maps actions ac in a
set C to the corresponding set form(C) = {a2f(ac) | ac € C}
of formulas, where a2 f(ac) = says 4 (B, M) if ac = send4 (B,
M) and a2f(ac) = seesa(M) if ac = reca(M).

We now turn to the formal definition of =4.

Definition 7 The truth of a formula ¢ relative to an agent
A at a global state w in a model M = (W, ~,), in symbols
M, w =4 ¢, is the smallest relation satisfying:

Mw=ap—¢ if Mwpapor MwiEa
For an agent reasoning about himself:®

M, w =4 says, (B, M) if sends(B,M') € Aca(w)
and M € comp 4(w, M’) for some M’
M, w =4 seesg(M) if reca(M') € Aca(w)
and M € submsg 4(w, M") for some M’
M, w =4 hasg (M) if M € analz(Poy (w))
M, w =4 commla(B, M) if CP™(A,B,M)C Aca(w)
M, w =4 commRA(B, M) if CE™YB,A,M)C Aca(w)

For an agent A reasoning about an agent B # A:

M, w =4 saysg(C, M) if saysg(C,M') € as(w)
and M’ such that M € m-comp 4 (B, C,w, M")
M, w =4 seesg(M) if seesg(M’') € as(w)
and M’ such that M € m-submsg 4 (B, w, M’)
M,w =4 hasg(M) if 9, w =4 saysg(C, M) for
some C or M, w |=4 seesg(M)
M, w =a commlp(C, M) if form(CE™YB,C, M)) C aa(w)
for some C
M, w =4 commRp(C, M) if form(CE™*(C, B, M)) C as(w)
for some C

The semantics for secrecy (where the agent identifiers range
over the identifiers in A’s possession set Poa (w)) is:

M, w =4 secg(M) if M w =4 hasg(M) for all B € G and
M, w £ hasg(M) forallC g¢G. A

Let us give the intuition behind the definitions for an agent
A reasoning about another agent B. We define that, for an
agent A at global state w, B says M to an agent C iff A
is aware that B has sent an M’ to C such that M was (ex-
pected to be) used by B to compose M'. Similarly, agent
B sees a message M iff A is aware that B has received a
message M’ such that M is a sub-message that B is (ex-
pected to be) able to see from M’. Agent B has M iff either
B says or sees M. From the point of view of A, an agent
B has committed to an agent C as an initiator of an exe-
cution identified by M iff A is aware that B has performed
the actions in the initiator’s commit set. Similarly, for the
commR formula. As we observed above, there is no clause
for explicit belief since an agent cannot reason about what
another agent may explicitly believe.

Note that an agent reasoning about his own state (local
truth) coincides with an external agent reasoning about this

3We do not define the =4 relation in the case of the Xa
since this reduces trivially to |=4.

saysg(C, M) € as(w)

{]M‘}Kgl € m—compA(B, C, waM’)

M o My € m-comp4(B,C,w, M)

mc-inj
M € m-comp 4 (B, C,w, M)

seesg(M) € as(w)

M € m-comp 4 (B, C,w, M")

{ M}k, € m-submsg (B, w, M')

mc-si mc-¢ (2 € {1,2
& M; € m-comp 4(B, C,w, M) (te {12}

M o My € m-submsg 4 (B, w, M)

ms-inj
M € m-submsg 4 (B, w, M)

M € m-submsg 4 (B, w, M')

ms-pk ms-¢ (2 € {1,2
P M; € m-submsg 4 (B, w, M) (e {12}

Figure 3: The rules defining the sets m-comp and m-submsg

agent (global truth). Hence, as shown in the appendix, it
follows straightforwardly from Def. 6 and Def. 7 that:

Lemma 8 For all agents A and B, global states w, and
formulas ¢ € Fa(w) such that ¢ € {says (B, M), seesa (M),
has4 (M)}, we have that M, w = Bap if Mw = Xap. N

To summarize, our formalization expresses that there are
two sources of information (local states and awareness sets),
which provide different levels of reliability (certainties and
expectations) and are employed differently (for reasoning
about oneself or about other agents).

2.4 Defining awareness

We use awareness to represent the expectations of an agent
with respect to the actions of the agents with whom he is
communicating. Each step of a protocol gives rise to (i) a
rule capturing the expectations of the sender with respect to
the send action he has performed, and (ii) a rule capturing
the expectations of the receiver regarding the correspond-
ing rec action. Note that an agent’s expectations may not
correspond to reality, as he might be aware of, and thus
explicitly believe in, false statements (as is the case in the
man-in-the-middle attack on the NSPK protocol, which we
consider below).

The rules representing the sender perspective are obtained
from the protocol steps in a straightforward manner. Given
the n-th step A — B : M of a protocol Prot, the sender A,
who has the send4 (B, M) action recorded in his local state,
expects the receiver B to get the message M thus, the rule
Prot_s, adds the formula seesp(M) to A’s awareness set:

send 4 (B, M) € Aca(w)
seesg(M) € as(w)

Prot_s,, .

The rules capturing the expectations of the receiver depend
on the protocol the agents are executing, and thus cannot
be given in a general form like the sender rule. Instead, we
consider a concrete example and give the receiver rules for
the NSPK protocol in Fig. 4.

The intuition behind the rule nspk_r; is that, upon the re-
ceipt of the first message, agent B expects that it has been
sent by agent A. The rule nspk_ro formalizes that when A
receives his nonce N4 back, he may conclude that B sent it.
The intuition behind nspk_rg is similar.

Note that the expectations of the agents do not always cor-
respond to what is actually happening. In fact, attacks run

counter to the expectations of the agents (as these are based
on incomplete information).

Although illustrated only for the NSPK protocol, the ideas
presented here are general. We have used our logic to rea-
son about a number of other protocols, e.g. the full NSPK
protocol and the Otway-Rees protocol with shared keys.

3. MODALITIES AND SPECIFICATIONS

In this section, we use our modalities to formally charac-
terize different kinds of specifications of security properties.
Furthermore, we show how to use them to reason semanti-
cally about attacks in interleaved protocol executions.

3.1 Extensionaland intensional specifications
A number of researchers, e.g. [5, 12, 19], have observed that
there are two different kinds of security specifications: exten-
sional specifications, which are, in some sense, independent
of the details of a particular protocol, and intensional spec-
ifications, where statements of properties are based on the
protocol itself. For example, consider the definitions given
by Roscoe [19, pages 31 and 34]:

We classify a specification as eztensional when
it is independent of the details of the protocol
and would apply to any other protocol designed
to achieve the same effect. Thus, inevitably, it
cannot mention the actual messages passing be-
tween nodes during a protocol since these vary
from one to another. Instead, it will test the
states of mind (knowledge, belief, etc.) of the
various participants including the spy.

A specification is classified as intensional when
its primary purpose is to assert a property of
the way, in terms of communications within a
protocol, a particular state is reached.

Until now, these definitions have lacked a formal status. One
of the contributions of our work is to characterize these no-
tions in terms of our modalities.

We begin by observing that the implicit belief modality
has an extensional character as the properties it formalizes
are independent of the particular message exchanges. Intu-
itively, this is because implicit belief captures the view of an
external, resource-unbounded observer following the proto-
col execution. In order to check whether a property denoted
by a formula ¢ holds, such an observer need not be aware
of the particular message exchanges of the protocol execu-
tion; rather, he simply checks whether the local states of the
agents satisfy .

send4(B,{{Ac Naltk,) € Aca(w)
reco({Na o NBl}k,) € Aca(w)

recp({{Ao Naltky) € Acg(w)

sendB(A, {INA o NB|}KA) S ACB(’(U)
recg({{NB}kp) € Acg(w)

nspk_ri
says4(B,{|Ao Nallkp) € ap(w)

saysp(A,{Na o Npltx,) € aa(w)

nspk_ra nspk_r3

sayss (B, {{Nsltkg) € ap(w)

Figure 4: Receiver rules for the NsPK protocol

Extensional
specifications

L Protocol
’—> Implicit belief

Modalities Properties
> . . Intensional Protocol 4‘
Explicit belief specifications

Figure 5: Relation between modalities, kinds of
specification and security properties

In contrast, the explicit belief modality has an intensional
character. This modality is based on the agents’ aware-
ness sets, which model the agents’ local, resource-bounded
views of the expected results of their actions. The aware-
ness sets are in turn determined by the protocol rules, and
hence statements about explicit belief are statements about
the results of particular protocol steps. Fig. 5 summarizes
these relationships.

This logical characterization of the two definitions has the
status of a thesis: since the definitions are informal (natural
language), our thesis cannot be formally proven. However,
we can support it by showing that it holds for different com-
monly considered kinds of specifications. In what follows, we
will consider two examples: secrecy of a message (which can
be specified extensionally) and an agent’s completion of a
protocol execution (which is inherently intensional).

To illustrate how these properties can be modally specified,
we return to the NSPK protocol, our running example. We
will start from an informal specification of a correctness re-
quirement for a responder of the protocol, expressed in terms
of secrecy and completion. We then show how a progressive
refinement of the informal specifications of these properties
leads to their formal specifications in terms of implicit and
explicit belief, supporting our thesis. Moreover, in §3.3 and
84, we will use the resulting specification to show how we
can reason about modal specifications, and in what sense
this specification is equivalent to one stated directly in terms
of properties of interleaved traces.

3.2 Formalizing secrecyand completion

A message is a secret between a group of agents at some
state of a protocol execution when, at that state, all the
agents in the group have the message, and all the remaining
agents do not have it. The way in which the state is reached
is irrelevant to the secrecy of a message. Only the possession
of the agents at that particular state matters! On the other
hand, the completion of a protocol execution by an agent
refers to a sequence of actions performed by the agent, not
to the properties of an individual state. Thus, a specifica-
tion of completion involves the details of the protocol and is
therefore intensional.

Consider again the NSPK protocol. Agent B uses his nonce

Np as a challenge to authenticate agent A. One way of
expressing the correctness requirement for a responder B
executing an instance of the NSPK protocol with an initiator
A is by means of the following two properties that must hold
in a trace t:

P1. Completion: B completes an execution with A using
the nonce Np.

P2. Secrecy: The responder’s nonce Np is a secret between
B and the initiator A.

Note that secrecy is necessary, but not sufficient, for correct-
ness; we should check whether the responder’s nonce Np is
a secret only when the corresponding protocol execution is
completed. That is, property 1 should imply property 2.

‘We refine these informal specifications and formalize them
within our logic. We start with the completion property,
which we state in a more refined but still informal way.

P1’. There exists a state in the trace such that B completes
an execution as a responder with an initiator A using
a nonce Np.

Formalizing the meaning of “B completes an execution with
an initiator A using a nonce Np”, we obtain:

P1”. There exists a state w of M’ such that ' w = Xp
commRB(A, NB).

More specifically, the predicate commR formalizes that B
has completed the execution as a responder, and the in-
tensionality is represented by the use of the explicit belief
modality.

We now turn to the secrecy property, which (bringing out
its inherent extensionality) we can state in a more refined
but still informal way as:

P2’. There exists a state in the trace such that Ng is a
secret between agents B and A.

The formalization of this extensional specification is based
on the fact that, in order to specify what a secret is, we do
not need to refer to the protocol: Np is a secret between B
and A iff B and A are the only agents who possess Ng. We
can directly formalize this using the sec predicate and the
implicit belief modality to obtain:

P2”. There exists a state w of 9’ such that M, w = Bs
sec(a,}(VB).

The correctness requirement for the responder of an execu-
tion of the NSPK protocol combines completion and secrecy
by requiring that if, for some trace ¢, B completes an exe-
cution identified by Np as a responder of A, then Np must
be a secret between B and A. Formally, the responder’s
requirement for the protocol is: for all ¢ € P, models 9tt,
agents A and B, and nonces Np,

M’ = XpcommRp (A, Ng) — Besecia,py(Ng). (1)

3.3 Reasoningabout the NSPK protocol

We now show how to use our semantics to reason about
specifications. There are two possibilities, depending on the
relationship of the specification to the set of intended mod-
els (i.e. traces). The first possibility is verification, which is
establishing the correctness of a protocol by showing that
it holds for all “protocol conform” models. For instance,
we could show that all models 9t!, resulting from all possi-
ble NSPK protocol traces t, satisfy the agents’ requirements,
such as that for B in (1). In a manner similar to Paulson’s
inductive method, such verification could be carried out by
induction over the set of all models 9, corresponding to
those ¢ in the inductively defined set of traces.

A second possibility is falsification. We will illustrate this
here by giving a model where B’s requirement (1) fails to
hold. That is, to falsify (1), we give a particular model
M that models an execution trace corresponding to the
man-in-the-middle (MITM) attack.

Theorem 9 There exist an NSPK execution trace t, a model
M, agents A and B, and a nonce Np such that O }&
XBcommRB(A,NB) —)BBsec{A,B}(NB). |]

The MITM attack on the NSPK protocol [16] consists of the
sequence of events shown in Fig. 1. Thus, consider the
model MY, = (W' ~,a) obtained from the trace t =
{ev1, eva, evs, evs, evs), which represents the smallest sequence
of events containing this attack. The components of Y.,
that are relevant for our analysis are:

o Wt = {wo,w:,ws, ws,ws, ws},

o ~a= {(wo,wo), (w1,w1), (w1, w2), (w2, w1), (w2, w2),
(UI3,’U)3), (T.U4, 'LU4), (UJ4,’IU5), (W5,1U4), (UI5,1U5)},

o ~p= {(wo,wo), (wo,w1), (w1, wo), (w1, w1), (w2, w2),
(w3aw3)a (w37w4)’ (w4,w3), (’UJ4,’UI4), (w5,w5)},

o aq(ws) = {seesspy({a © naltr,,)ssays,yy (a, {na oy iy,)
seesspy ({nb [}k,)}

o ap(ws) = {says, (b, {a o nalts,), seesa({na o np s,),

says, (b7 {]nb |}kb)}

We focus on ws since it is the global state obtained after the
last event in ¢. The local states of the agents a and b and

the possessions of the spy at ws are:

POG(w5) = {CL, kaaka_laspyakspyanaanb}y

sa(ws) = Ac, (ws) = {senda(spy, {la o nals,,,),)
reca({na o mpltr,), senda(spy; {ns }r,,,) }
POb(’UJ5) = {bﬂ kbikb_lyaa kaynaanb}
su(ws) = § Acy (ws) = {recy({ao Na bk,),)

sendy (a, {na o mpbx,)s recs({{ns}a,)}

Pospy (’1115) = {Spy7 ksm;a ks_p;tuaa ka,b, ky,na, nb}a
where initState(a) = {a,ka, ki', spy, kspy }, initState(b) =
{ka, b, ks, kb_l} and initState(spy) = {spy, kspy, ks;,;,a, ka,
b,k }. We can then use the semantics to demonstrate the
existence of the attack (as shown in the proof of Theorem 9
in the appendix).

4. MODAL VERSUSTRACE-BASED SPEC-
IFICATIONS

‘We now show that our modal specification for B’s correct-
ness requirement for the NSPK protocol is equivalent to a
trace-based specification of the same protocol requirement.
We establish this by showing the logical equivalence of both
specifications with respect to our semantics.

As noted above, a trace-based interleaved semantics can be
used both for interactive verification [18] and for falsifica-
tion based on infinite-state model-checking [3]. The specifi-
cations in both approaches are intensional and specify what
must (or cannot) hold after certain occurrences of events.
For example, for verification, in the case of NSPK one might
specify B’s requirement by formalizing that Np is a secret
after the last two steps of the protocol have occurred:

(seesp({NB k) Asaysp(A,{Na o Ngltk,))
— —hasgy (N). (2)

For falsification, one formalizes the negation of (2), i.e.

(seesp({ N xp) Asaysp(A,{Na o Nglix,))
Ahassy (NB), (3)

and searches for a trace with this property.

The specification (3) is a direct translation of the Haskell
program used in [3] to specify an attack.” This can be di-
rectly expressed as a formula in our logic and proved for
some A, B, and Np, at some world w of some model M’
resulting from some execution trace t.

Showing that this is equivalent to the statement of Theo-
rem 9 establishes that the attack in the trace-based specifi-
cation is equivalent to the attack in our modal specification
with respect to our semantics. The equivalence between
the two specifications can be shown alternatively (in terms
of “verification” rather than “falsification”) by showing the

*Paulson’s verification specification is similar to (2). He
formalizes an intensional specification of secrecy for the
nonce Np by stating that if there is an event B — A :
{{N4 o N[}k, in the set of traces modeling the NSPK proto-
col, then the spy does not possess the nonce Np.

equivalence of (1) and of a formula representing the cor-
rectness of B’s requirement. As shown in the appendix, for
non-compromised agents we have:

Theorem 10 For all traces t of the NSPK protocol, mod-
els M, agents A, B such that A # spy, B # spy, M |=
—hassy (K5 ') and M’ |= —has,y(K5'), and nonces N,

ot |= XB commRB(A,NB) — Bp SeC{A,B}(NB)
iff

M’ = (seesp (| Nalty) Asaysp(A, {Na o Niltx,))
— —has.y (NB) .

5. RELATED WORK

We now compare our work with related approaches to spec-
ifying and classifying security properties. Abadi and Tut-
tle [1] define a possible-worlds semantics for an extension
of BAN that models interleaved protocol executions. How-
ever, details and examples are lacking so that a thorough
comparison is difficult. Although their logic lacks an ex-
plicit notion of awareness, their hide operator conceals the
contents of unreadable messages, and thus provides a basis
for modeling “belief as a form of resource-bounded, defeasi-
ble knowledge” [1, p. 202]. It thereby captures some of the
notions that our explicit belief modality formalizes.

In [2], we initially investigated how to use awareness to
model resource-bounded reasoning in interleaved protocol
executions. The multi-modal logic that we have given here
differs considerably from [2]: while both are based on the ex-
plicit and implicit beliefs of the agents, here we modified and
systematized the semantics for the modalities, the method
how the awareness sets are computed, and how the logic is
employed to specify properties and reason about attacks.

Interleaved trace-based semantics is a standard approach to
modeling distributed computation. Paulson [18] has cham-
pioned its use for inductive verification of security protocols,
and the same semantic model can directly be used for model
checking as well, e.g., as in [3]. Specifications in this setting
(whether for verification or model checking) tend to be in-
tensional as they are formalized in terms of sequences of
protocol specific events. Our results in §4 illustrate how
we can employ our modal specification to provide more ab-
stract, high-level specifications of security properties with
similar expressive power based on this semantic model.

Our definitions of intensional and extensional specifications
come from Roscoe [19]. He also introduces the notion of
canonical intensional specification, which “simply asserts that
the protocol runs as expected” [19, p. 34], i.e. no agent can
believe a protocol execution has completed unless the cor-
rect series of messages has occurred (consistent with all the
various parameters) up to and including the last message
the agent communicates. In our approach, this intensional
character is directly formalized by the commit sets C, and
specified with the explicit belief modality. Note, however,
that since we model action sets instead of action sequences,
we cannot formalize the order in which the actions occur.
However, it is straightforward to modify our framework to
capture this idea.

A number of other authors, e.g. [5, 12, 17, 21], have looked
at classifying and relating specifications. Notable in this re-
gard is the work of Lowe [17], who uses CSP to formalize
a hierarchy of authentication specifications, in which each
level of the hierarchy expresses one possible meaning of “en-
tity authentication”. These specifications are all intensional;
abstract notions such as secrecy are not accounted for. Us-
ing explicit belief it should be possible to formalize similar
hierarchies in our setting. Moreover, using implicit belief it
should be possible to extend these hierarchies, for example
combining the intensional notion of “injective agreement”
with the extensional requirement that some of the messages
exchanged should remain secret.

6. CONCLUSIONS AND OUTLOOK

We have defined a multi-modal security logic with a trace-
based semantics. Our logic combines the simple expressive
semantics of trace-based approaches with the use of modal-
ities to support high-level, trace-independent specifications
of security properties based on different notions of belief.
The logic also sheds light on, and allows us to give a logi-
cal characterization of, extensional and intensional specifi-
cations of security properties.

There is considerable work ahead and many interesting prob-
lems are still open. First, the account we have given is se-
mantic. Via a semantic embedding, for example in higher-
order logic, we could mechanize deductions in Isabelle (we
have already carried out some initial work in this direction).
More interesting though is to derive, from the semantics,
higher-level proof rules for reasoning about the modalities.

Second, we have illustrated the logical equivalence between
trace-based specifications (translated into our setting) and
modal specifications. What is missing is a general statement
about such equivalences. Such a statement is difficult as it
requires the definition of a general class of trace-based speci-
fications, and circumscribing such a class is problematic due
to their intensional nature. One possible solution, which we
would like to investigate, is to show equivalence for partic-
ular classes of specifications. For example, the semantics of
the commit formulas captures an idea that is very close to
the one of matching histories [8], except that, since we use
sets of actions instead of sequences, we cannot talk about
their ordering.

Finally, in our example in reasoning about attacks (i.e. the
man-in-the-middle attack on the NsSPK protocol) we knew of
its existence in advance. One of the advantages of logics like
BAN is that, in some cases, they allow for a kind of abduc-
tive reasoning as they provide a way of finding attacks by
identifying missing assumptions required for proofs. When
a deductive system for our logic is in place, we will also have
the chance to explore these possibilities.

7. REFERENCES
[1] M. Abadi and M. R. Tuttle. A semantics for a logic of
authentication. In Proceedings of the 10th Annual
ACM Symposium on Principles of Distributed
Computing, pages 201-216. ACM Press, 1991.

[2] R. Accorsi, D. Basin, and L. Vigano. Towards an
awareness-based semantics for security protocol

3]

[4]

[5]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

analysis. In J. Goubault-Larrecq, editor, Proceedings
of the Post-CAV Workshop on Logical Aspects of
Cryptographic Protocol Verification, ENTCS 55(1).
Elsevier, 2001.

D. Basin. Lazy infinite-state analysis of security
protocols. In R. Baumgart, editor, Secure Networking:
CQRE’99, LNCS 1740, pages 30-42. Springer-Verlag,
1999.

A. Bleeker and L. Meertens. A semantics for BAN
logic. In Proceeding of DIMACS Workshop on Design
and Formal Verification of Crypto Protocols. 1997.

C. Boyd. Extensional goals in authentication
protocols. In Proceedings of DIMACS Workshop on
Design and Formal Verification of Crypto Protocols.
1997.

M. Burrows, M. Abadi, and R. Needham. A logic of
authentication. ACM Transactions on Computer
Systems, 8(1):18-36, 1990.

I. Cervesato and P. F. Syverson. The logic of
authentication protocols. In R. Focardi and

R. Gorrieri, editors, Foundations of Security Analysis
and Design, LNCS 2171, pages 63-136.
Springer-Verlag, 2001.

W. Diffie, P. C. van Oorschot, and M. J. Wiener.
Authentication and authenticated key exchanges.
Designs, Codes and Cryptography, 2:107-125, 1992.

D. Dolev and A. C. Yao. On the security of public key
protocols. IEEE Transactions on Information Theory,
2(29):198-208, March 1983.

R. Fagin and J. Y. Halpern. Belief, awareness and
limited reasoning. Artificial Intelligence, 34(1):39-76,
1987.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning about knowledge. MIT Press, 1995.

D. Gollmann. Authentication — myths and
misconceptions. In Progress in Computer Science and
Applied Logic. Birkh&user Verlag, 2001.

L. Gong, R. Needham, and R. Yahalom. Reasoning
about belief in cryptographic protocols. In Proceedings
of the 1990 IEEE Symposium on Security and Privacy,
pages 234-248. IEEE Computer Society Press, 1990.

G. E. Hughes and M. J. Cresswell. A new introduction
to modal logic. Routledge, 1996.

H. J. Levesque. A logic of implicit and explicit belief.
In Proceedings of AAAI’84, pages 198-202. 1984.

G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. In Proceedings of
TACAS’96, LNCS 1055, pages 147-166.
Springer-Verlag, 1996.

G. Lowe. A hierarchy of authentication specifications.
In Proceedings of the 10th IEEE Computer Security
Foundations Workshop: CSFW’97, pages 31-43. IEEE
Computer Society Press, 1997.

10

18]

[19]

20]

21]

[22]

L. C. Paulson. The inductive approach to verifying
cryptographic protocols. Journal of Computer
Security, 6:85-128, 1998.

A. W. Roscoe. Intensional specifications of security
protocols. In Proceedings of the 9th IEEE Computer
Security Foundations Workshop: CSFW’96, pages
28-38. IEEE Computer Society Press, 1996.

P. F. Syverson. Knowledge, belief, and semantics in
the analysis of cryptographic protocols. Journal of
Computer Security, 1:317-334, 1992.

P. F. Syverson and P. C. van Oorschot. On unifying
some cryptographic protocol logics. In Proceedings of
the 1994 IEEE Computer Society Symposium on
Research in Security and Privacy. IEEE Computer
Society Press, 1994.

E. Thijsse. On total awareness logics. In M. de Rijke,
editor, Defaults and Diamonds, pages 309-347. Kluwer
Academic Publishers, 1993.

APPENDIX

ProOF OF LEMMA 8. We begin by observing that, for a
formula ¢ € Fa(w) such that ¢ € {says, (B, M), seesa(M),
has4 (M)}, we trivially have that

MuwEpiff MwlEap (4)

since the definitions of 9 = ¢ and M =4 ¢ are in this case
identical. The proof then proceeds as follows.

(Left-to-right) Assume that 9t = Ba4 ¢. By definition,
M, w' |= ¢ for all w’ such that w ~4 w’, and thus M, w |= ¢
as w ~4 w by definition. From (4), we then have that
M, w =4 ¢, and thus, by definition, MM, w = X4 ¢.

(Right-to-left) Assume that 9, w |= Xa ¢. By definition,
M, w =4 ¢ and thus from (4) we have that 9, w |= ¢. Since
¢ characterizes a property of A’s local state, if M, w = ¢
then 9, w’ | ¢ for all worlds w' in the equivalence class
induced by A’s indistinguishability relation ~4. Thus, by
definition, M, w = Bap. O

PRrOOF OF THEOREM 9. We first show that 9., ws =
X, commRy(a,np) and My, ws = By seC{q,b}(n6). By def-
inition of explicit belief, M 1, ws | X commRy(a,ny) iff
ML o, ws |=p commRy(a, 1) and commRy(a, np) € Fp(ws).
From Poy(ws) it follows that commRy(a, ny) € Fp(ws) holds.
By definition, 9., ws |E» commRy(a,np) holds iff CE*™
(a,b,mp) C Acy (ws), which holds because Cx"*(a,b,np) =
{recy({aonal}r,), sendy(a, {na omsf}s,), recs({ns}tr,)}. We
can thus conclude that 9y, ws = Xy commRy(a, np).

To show that b does not implicitly believe in secy, 51 (1) at
ws, observe that by definition Miyr, ws [~ By secqq 5} (15)
iff D1y, w' B seCqq) () for some w’ such that ws ~p w'.
Since w’ can only be ws by the definition of ~p in 9.,
we check whether 9., ws |= seC{aq,5} (), which holds iff
ML, ws = hasc(ny) for all agents C' € {a, b}, and MEyry,
ws W~ hasp(np) for all agents D ¢ {a,b}. Po, (ws) and
Poy (ws) tell us that both a and b possess np. Since we are
only considering agents a, b and the spy, D can only be
the spy. Since My, ws | haseyy(ny), we conclude that
m:{I’IM) ws bé S€C{a,b} (nb) O

PROOF OF THEOREM 10. (Left-to-right) We assume 90’
E Xp commRp(A4,Np) — Bp secia,5)(Npg) and M, w |
seesp({{NB[}kz) Asaysg(A,{{Na o Ng[}k,) for an arbitrary
w, and show that M, w = —has,, (NB).

M, w = seesg({NB[k,) implies that there exists a mes-
sage M such that recg(M) € Acp (w) and {{NB[}x, €
submsg g (w, M). By the inductive definition of the protocol,
M can only be {Np [}k, which implies that recp({Ns[}x;)
€ Acp (w).

M w | saysg(A,{{Na o Ng[lx,) implies that there ex-
ists an M such that sendp(A, M) € Acp(w) and {{Na o
Nsltx, € comp,(w, M). By the inductive definition of the
protocol, M can only be {{Na o Ng[}k,, which implies that
sendp (A, {{Na o Np[}k,) € Acg(w).

From sendp(A,{{Na o Ngl}x,) € Acp(w) and from recp
({NB}ky) € Acg(w) it follows, again by the inductive def-

11

inition of the protocol, that recg({{4 o Naltx,) € Acg(w).
Thus, C¥™ (A, B, Ng) C Acg (w). This implies that 9, w
=B commRp(A, Ng). Since it is straightforward to show
that commRp(A, Ng) € Fp(w), we have that M’ w E
XpcommRg (A4, NB).

The assumption and M, w | Xs commRg (A, Ng) imply
M’ w |= Brsecia,py(NB), i.e. M, w' |= secia 5y (NB) for
all w’ such that w ~p w’. By the reflexivity of ~p we have
M’ w = seca,3(NB), and by the definition of secrecy we
have M, w £ hasc(Np) for all C ¢ {A, B}, so we can
conclude that MM, w |= —has.,y (NB).

(Right-to-left) We assume 9 |= (seess({{Ve[}x;) A saysp
(A, {{NaoNg[}x,)) — —hass, (Ng) and M, w = X commr
(B,A,Ng) for an arbitrary w, and show that 9", w £
Bp secqa,5}(NB), ie. M, w' | secpa,py(Np) for all w' €
M* such that w ~p w'.

M* w | Xp commRp(A, Ng) implies, by definition, that
M, w =p commRgp(A, Ng). From the definition of com-
mitment, it follows that CF"™ (A, B, Ng) C Acg(w). Since
w ~p w', we have that Acp (w) = Acp (w') and thus
C¥™ (A, B,Ng) C Acg(w'). This implies both (i) 9, w'
saysg(A,{{Na o NBl}k,), since sendp(A, {{Na o Nr[}k,) €
Acg (w') and {{N4 o Ng[}k, € compg(w',{Na o Ngl}x,),
and (ii) M, w' |= seesp({{NB[} x5), since recs({Nrllx;) €
Acp(w') such that {Ng [}k, € submsgg(w', {Ns[}k;).- The
assumption, together with (i) and (ii), implies MM’ w' =
—has,,, (NB). Since B sent a message in the form of step two
to A, we also have that {N4 o Ng[}x, € Poa(w') and Ng €
analz(Po4 (w')), which implies that 9", w’ |= hasa(Ng).
Moreover, {{Ng[}x, € Pog(w') and Ng € analz(Pog (w")),
imply that 9, w' |= hasg(Ng). It thus follows that D', w'
= secqa, 5y (NB) for an arbitrary w’ such that w ~p w’, and
hence M, w = Besecya,py(Np). O

An agent digital signature in an untrusted environment -

K. Cartrysse
Delft University of Technology
P.O Box 5031
2600 GA Delft
The Netherlands

K.Cartrysse@ITS.TUDelft.nl

ABSTRACT

As agent technology is evolving, security becomes more im-
portant. This paper addresses the problem of computing
with secret data, in particular the application of a digital
signature. In case an agent must sign a document at a for-
eign host, it is not desirable to give the agent’s private key
to this host. The private key can be seen as the only infor-
mation that can proof the identity of the agent, hence this
information should not be revealed to anyone. This paper
gives several solutions how an agent can sign a document
without giving its private key to the host. Double signing
is a problem here, and also for this some solutions are given
that makes it less attractive for the host to sign documents
under the agent’s name without having permission for it.
The solutions can be seen as a new privacy enhancing tech-
nology for agent applications.

General Terms
Digital signatures, blind signatures, hidden private key, pri-
vacy enhancing technologies, agent security

1. INTRODUCTION

Agent technology is nowadays seen as one of the technologies
that will play a key role for future IT-applications. As this
technology evolves, awareness about security of this kind of
technology is increasing. When looking from the user’s point
of view, an agent is sent out to be executed at some foreign
host. Sometimes, information with respect to security about
this host is known and appropriate measures can be taken.
However, in many cases the user does not know anything
about the foreign host and therefore wants it to be protected
against this host and against other agents present at that
host.

Providing security solutions for agents is even more complex
than in conventional systems for the simple reason that the
agent uses resources from a host it does not know whether
it can be trusted. Even in the case that a good working
trust model is present, there is still some data that an agent
should not provide to any entity in the system, including
the host. Such kind of data is the agent’s private key. The
agent’s private key is the information that enables the agent
to proof its identity to other parties. It is clear that no other
entity than the user of the agent should have access to it.

*This research has been performed within the framework
of PISA, an interdisciplinary project related to privacy en-
hancing technologies in intelligent agent systems supported
by the IST-programme of the European Commission.

12

J.C.A. van der Lubbe
Delft University of Technology
P.O Box 5031
2600 GA Delft
The Netherlands

J.C.A.vdlubbe@ITS.TUDelft.nl

One of the security mechanisms an agent should have access
to is the digital signature.During its life cycle it will need
to be able to sign documents or authenticate itself by using
digital signatures. The problem is that signing a document
involves the agent’s (or user’s) private key and as said before
this is the most privacy-critical information of the agent,
hence in case the agent platform cannot be trusted how can
an agent sign a document without the platform being able to
use its private key for other purposes. This paper proposes
several solutions to this specific problem of how an agent
can sign some document without anybody (except the user)
can have access to the agent’s private key. It can be seen as
a special case of computing with secret data.

This paper is organized as follows. In the following section
a solution outline is proposed in combination with related
research. Section 3 describes several solutions and finally
conclusions are written in section 4.

2. SOLUTION OUTLINE

In [14] several problems are stated that should be solved
in order to provide security to mobile agents. One of these
problems is how computing with secrets in public is possible.
An example of computing with secrets in public is the ques-
tion of how an agent can remotely sign a document without
disclosing the private key. Sander proposes an outline how
these signatures should be constructed. In [10] a solution is
proposed based on RSA, where not only the private key is
hidden but the complete signature procedure. Several other
solutions are proposed in [6] and [9].

The approach taken in this paper is different in a way that
not the entire function is hidden, but only the data (private
key), while maintaining the property that a signature can
only be set once. The advantage is that the signature and
verification formulas can be used with a hidden key, but also
like a conventional signature with a normal private key. The
idea for the solution is that a transformation on the private
key is needed, which results in a hidden private key. The
original private key is stored at the user’s trusted computer
and the agent only has access to the hidden private key. It
is clear, that it must not be possible to calculate the private
key directly from the hidden private key.

In several applications, such as electronic voting [13] and
anonymous electronic cash [1] [12], the idea of computing
with secret data is already well established, but is not al-
ways seen as such. These applications are based on blind

signatures, first introduced by Chaum [3]. A blind signa-
ture allows a person to let somebody else digitally sign a
message, without this signer knowing the content. The se-
cret in this signature function is the original message. In
order to make this possible, the message is blinded and this
is used by the signer to perform the signature operation [4].

In agent technology this idea of blinding data can be used.
Instead of blinding the message, the private key should be
blinded. This signature will then exist out of the following
steps:

1. Key generation
Blinding operation on private key
Signature operation

Activation of signature

oLk N

Verification

Steps 1, 3 and 5 are necessary in any conventional digital
signature algorithm. Step 2 is the transformation from pri-
vate key into a blinded version and in step 4, the signature
is activated. This step is necessary because in step 3 a sig-
nature is set using a blinded private key. This signature
cannot yet be verified by using the agent’s public key, be-
cause the blinded private key and the agent’s public key are
not related as such. Hence an activation procedure must be
added.

Steps 1 and 2 must be performed in a trusted environment,
e.g. the user’s computer. Step 3 and 4 are done at the
foreign host . Finally the verification can be done anywhere
in the system.

3. AGENT DIGITAL SIGNATURE

3.1 Introduction

The various digital signatures as presented in this paper are
based on the elliptic curve digital signature algorithm [8]. A
small modification, similar to the one in [2] is done in order
to be able to transform the digital signature function into
one where a parameter is private.

The security in elliptic curve cryptographic systems is based
on the hardness of the discrete logarithm problem for elliptic
curves. This problem can be informally described as follows
[15]: Given two points P and @ on an elliptic curve such
that @ = dP, find the integer d. This problem is gener-
ally believed to be infeasible in case the space in which d is
chosen, is large enough. Certain curves are believed not so
secure, such as supersingular curves [11]. To provide clarity
in notation, for a point on the curve a capital letter is used
and integers are shown in lowercase letters.

In a conventional system, the digital signature exists out
of three steps: key generation, signature operation and sig-
nature verification (steps 1,3 and 5 in paragraph 2). The
signer owns two kinds of keys; the private and public key.
The private key, which is only known to the signer is used
to sign a digital message and the public key is used to ver-
ify the validity of the signature [15]. In practice, the public

13

key is certified by a Trusted Third Party (TTP), such that
the public key is connected to an identity. Hence, the veri-
fication of the signature using the public key can proof who
signed the document and this entity can not deny its signa-
ture afterwards. This property provides non-repudiation.

1. Key generation
The key generation starts with the signer choosing an
elliptic curve E defined over Z,. The number of points
on E(Z,) should be divisible by a large prime n. The
signer selects a point P on E(Z,) of order n and selects
arandom integer d in the interval [1, n —1]. Parameter
d is the private key of the signer and must be kept
secret. Using the private key, the signer can compute
its public key:
Q = dP over E(Z,). (1)
The public key is formed by the parameters (E, n, P, Q)
2. Signature generation

In order to sign a message m, the signer selects a ran-
dom secret integer k € [1,n — 1] and computes:

R = kP = (zo,y0), (2)
r = o modn,
s = km+ rd mod n. (3)

The signature exists out of the parameters (r,s) and
this is sent to the verifier in combination with the mes-
sage m. Parameter k£ must be different for each signa-
ture based on one private key d. In case k is equal for
two different messages, d can easily be computed [5].

3. Verification
By obtaining the right signature parameters, public
key and digital signature, the verifier can check the
validity of the signature by computing:

(sP —rQ)m™" = (z1,11)
r1 mod n

T =
t =

(4)

The signature is valid if and only if:

t=r

3.2 Agent digital signature

In case a software agent needs to sign a document, the agent
cannot follow the above procedure, because there are some
fundamental differences:

o The agent is the signer of the document, but does not
own the resources to be able to compute the signature.

e The signer does not know whether it is located in a
trusted environment.

In case the agent lets the host compute a signature for it,
using the algorithm described in 3.1, the host would have
access to the agent’s private key d and that gives it the
possibility to sign other messages out of the agent’s name
or it could pretend to be the agent (during authentication).
In this case the property of non-repudiation would not be
present anymore, because multiple entities have now access

to the agent’s private key, hence there is no guarantee that
the agent signed the document.

As is described in the solution outline, the idea is to sign a
document using the hosts resources by using an agent’s hid-
den private key. After the signature is computed, the host
activates the signature.The user generates several blinding
factors, which hide the private key. These factors are then
needed to activate the signature. This can be accomplished
by storing a part of the blinding factors in the agent and
a part securely at the user’s computer. How this can be
achieved such that the activation can take place at the host
and the private key cannot be computed by the host, is
shown in the description of the algorithm.

1. Key generation
An elliptic curve is defined over Z,, of which the num-
ber of points on E(Zp) is divisible by a large prime
n. The user selects a random integer d in the interval
[1,n — 1]. Parameter d is the agent’s private key and
is securely stored at the user’s computer. The user
computes the agent’s public key:

Q = dP over E(Zp). (5)

The public key is formed by (E,P,n,Q) and this is
stored in the agent and at the user’s computer. Besides
calculating a regular public key, the user computes a
“temporary” public key:

6 = dymodn, (6)
I' = 4P, over E(Z,). (7)

and here v is a blinding factor and é can be seen as
a temporary private key. The parameters v and d are
stored securely at the user and not given to any other
element in the system. Parameter I' is also stored in
the agent for verification purposes.

Two extra parameters, & and A, are chosen at random
in the interval [1,n—1] and the following is computed:

¢ = aymodn, (8)
A = AcP over E(Z,). (9)

In the next steps it will become clear why these pa-
rameters are necessary. The parameters A and c are
stored in the agent, while o, v and A are kept secret
at the user’s computer.

2. Blinding operation on private key
This step, the hiding of the private key, is completed
at the user’s computer. In order to obtain a blinded
private key, the user selects one other blinding factor
B at random in the interval [1,n—1]. As in the digital
signature algorithm, the user also selects a parameter
k at random in [1,n — 1] and computes:

R = kP= (zo,yo), (10)
7 = 1z mod n,
R = cR+BP = (z1,y1,) (11)
r = =z mod n,
d a 'd+ A mod n, (12)

in which d is the blinded private key. The blinding
factors a, A and -y must be kept secret at the user’s

14

computer, just like the agent’s private key. Parame-
ters d, k, r, B and c are stored in the agent and therefore
known to the host. These parameters in combination
with the system parameters give the agent the oppor-
tunity to sign a document m while located at a foreign
host and using its computational resources without let-
ting this host having access to its private key. Also,
knowing these parameters, d cannot be computed by
the host.

. Signature generation

During the signature generation, the agent is located
at the host. The signature on message m is then com-
puted by:

§=km+rdmodn (13)

It can be seen in equation (13) that the signature oper-
ation that the host must execute for the agent is equal
to the signature operation in equation (3). It only dif-
fers in the fact that in (13) the hidden private key is
used instead of the original private key.

In paragraph 3.1 it is said that parameter £ must be
kept secret in order to prevent the revealing of the
private key. Here, that would mean that the host must
either not have access to it or the user must trust the
host not to abuse this knowledge. Fortunately, this
does not matter here, because the private key is not
used. By using the same k twice, the host would not
gain any more knowledge about the private key.

. Activation of signature

Because some of the blinding factors are stored in the
agent, the host is able to transform the signature to-
wards a valid signature. With valid, it is meant that
the signature must be verified using the agent’s public
key as is registered at a Trusted Third Party (in case
a PKI is used). The activation of the signature can be
performed by computing:

s =¢85+ fm mod n. (14)

Parameters ¢ and 8 are known by the host, but this
is not sufficient to compute d or . Substitution of
parameters gives the following signature:

s = (ayk + B)m + yrd + aryrA mod n. (15)

From (15), it can be seen that this signature is of the
same form as (3). Out of (15) it is seen that it is not
important whether k£ is kept secret or not. In case
k is known and kept at the same value for multiple
signatures, it depends still on the factor v whether d
can be calculated. Because the factor A is unknown
by the host, it is impossible for the agent platform to
calculated d or §. Hence, neither the private key or
the temporary private key can be computed.

However, it is possible for the host to compute € =
vd + ¢, but during the verification process it will be
shown that this does not make it less secure. In case
parameter A would not be used, e.g. no A would occur
in (15), it would be possible for the host to calculate
the temporary private key 4.

. Verification of signature

The verification formulas are the same as in a con-
ventional digital signature algorithm based on elliptic

curves, only now the temporary public key must be
used in combination with parameter A:

T (sP—r(A+T)m™" = (z1,51) (16)
t x1 mod n

The signature is valid if and only if:
t=r.

For the verification process it is important that I" and
A are given to the verifier as two distinct parameters
instead of (A + I), because for the host it is possible
to calculate € = yd + ¢\ and hence eP = A + T, but
the host cannot calculate yd and cA separately and
therefore cannot pretend to be the agent.

By introducing this temporary public and private key, some-
thing extra is also achieved besides making it possible to
activate the signature at the host. This temporary key pair
can be seen as a pseudo-identity of the agent. Parame-
ter I' must then be registered at the Trusted Third Party
(TTP), just as I'. Giving the agent multiple temporary key
pairs is actually giving the agent more identities. Hence,
this algorithm can be seen as a privacy enhancing technol-
ogy [7] for agent specific applications. Using these types
of pseudonyms is an advantage over the simple solution of
registering a temporary public key with the TTP and using
the corresponding private key without blinding it, because
the host cannot compute the temporary private key in the
above proposed solution, hence the host or another agent
cannot pretend to be an agent it is not. Depending on the
amount of pseudonyms an agent wishes, extra overhead is
added to the TTP for key distribution and revocation.

Out of the parameters known by the host, it is impossi-
ble to calculate the private key, because of the hardness of
the discrete logarithm problem for elliptic curves. There-
fore, the identity of the agent, d, is protected. However,
this algorithm does not give control to the user about what
the agent signs or how many times the host executes this
algorithm. For the host it is possible to repeat the algo-
rithm with different messages and all the signatures will be
valid. This drawback makes this algorithm only suitable in
a trusted environment. It does not mean it is useless. On
the contrary, it is preferred to the conventional digital signa-
ture in trusted environments, because the private key is not
revealed at any time. That means the host can sign out of
the agent’s name, but cannot pretend to be the agent. The
problem of multiple signing can be compared to the double
spending problem in applications as digital anonymous cash
[1]. Several solutions can be found to this problem, of which
two are presented in the next paragraph.

3.3 Agent digital signature and solutions to

double signing problem
An idea to prevent hosts from performing an agent signa-
ture multiple times, is to include the host’s identity in the
verification of the signature. Each time a signature is veri-
fied, the verifier can see at what location the document has
been signed. This solution does not make the double signing
operation impossible, but it will be an extra threshold to do
so. Two algorithms are proposed in this paper to accom-
plish the idea. The first is one without a signature from the

host, only its identity is added to the verification formula.
The second algorithm gives two signatures on the message.

3.3.1 Agent signature combined with host’s identity
The host’s identity must be added in the verification for-
mula. In order to obtain this, the public key is added to
this formula. This means that the public key or the pri-
vate key must also be added in the signature. This solution
does not include a host’s signature and therefore the host’s
public key, which represents its identity, is added during the
blinding operation on the agent’s private key. Adding the
host’s identity must occur at the user’s, because this will
make it impossible for the host to change its identity on the
signature at a later stage.

1. Key generation

As in the previous algorithms, the key generation starts
with selecting an elliptic curve E over Zj, of which the
number of points on E(Z,) is divisible by a large prime
n. The user selects a random integer d, in the interval
[1,n — 1]. Parameter d, is the agent’s private key and
is securely stored at the user’s computer. The user
computes the agent’s public key:

Qo = do P over E(Zy). (17)

Besides calculating a regular public key, the user also
selects the first blinding factor oz and computes a “tem-
porary” public key and as in the previous paragraph
parameter A:

d = ~d, mod n, (18)
Iy, = 6P over E(Z,), (19)
¢ = aymodn, (20)
A = XcP over E(Z,). (21)

and here v is a blinding factor and the combination
~vd, can be seen as a temporary private key. The pa-
rameters «, v, A and d, are stored securely at the user
and not given to any other element in the system.

In this algorithm, also the host generates a key pair:
Qn = dpP over E(Zp), (22)

where dj, is the host’s private key and @}, is its corre-
sponding public key.

2. Blinding operation on private key
This step is equal to the blinding operation in the pre-
vious paragraph. Only to the parameter R, the host’s
identity is added in the form of its public key Qp:

R = kP= (mo,yo), (23)
Ff = xo mod n,

R = ayR+fBP (24)
R = R +Qn=(x1,4) (25)
r = x; modn,

d, = o 'dy+ A modn. (26)

The parameters that are stored in the agent and there-
fore known to the host are r,d,,k,c and 8 and for
verification purpose I'.

3. Signature generation
Again the signature operation is equal to (3), with the
exception that d is replaced by dg:

§ = km + rd, mod n. (27)

4. Activation of signature The activation does not in-
volve the host’s identity, and therefore is equal to the
activation in the previous algorithm:

s = ¢5 + fm mod n. (28)

Again parameters ¢ and 8 are known by the host, but
this is not sufficient to compute d, or y. Substitution
of parameters gives the following signature:

s = (avk + B)m + yrda + aryrA mod n. (29)
Again the signature is of an equal form as (3).

5. Verification
The idea was to add the host’s identity in the verifi-
cation formula, such that it is always possible to know
where the signature operation was executed. Adding
the host’s identity is possible, because the public key
of the host is already used in the blinding operation:

T = (sP—r(A+Ta)m ' +Qn = (x1,%1)(30)

t = x1modn

The signature is valid if and only if:

t=nr.

This algorithm has the advantage that the host’s identity
is attached to the agent’s signature, which makes it for the
host less attractive to sign documents in the agent’s name
without having permission for it.

A disadvantage, however, is that the agent must know the
identities of the hosts it is planning to visit. An easy mea-
sure to overcome this is by storing several R’ parameters in
the agent and before roaming to another platform, it lets
the current host add the next host’s identity to form pa-
rameter R. The signature as proposed here is only from the
agent and not the host, because the host’s private key is
not used.In the next paragraph it is shown how this can be
achieved.

3.3.2 Combined agent and host signature

This signature is similar to the previous one. In various
stages extra information is added about the host, such that
also the host signs the document.

1. Key generation

Asin the previous algorithms, the key generation starts
with selecting an elliptic curve E over Z,, of which the
number of points on E(Z,) is divisible by a large prime
n. The user selects a random integer d, in the interval
[1,n — 1]. Parameter d, is the agent’s private key and
is securely stored at the user’s computer. The user
computes the agent’s public key:

Qo = do P over E(Z,). (31)

16

Besides calculating a regular public key, the user also
computes the “temporary” public key for the agent
and the parameter A:

d = ~ds mod n, (32)
T, = 6P over E(Z,), (33)
¢ = aymodn, (34)
A = AcP over E(Z,). (35)

and here y € [1,n—1] is a blinding factor and ¢ can be
seen as a temporary private key for the agent. Again,
the parametersa, 7y, d,and A are stored securely at the
user and not given to any other element in the system.

In this algorithm, also the host generates a key pair:
Qr = dp P over E(Z,), (36)

where dj, is the host’s private key and @}, is its corre-
sponding public key.

. Blinding operation on private key

This step is equal to the blinding operation in the pre-
vious paragraph. Only to the parameter R, the host’s
identity is added:

R = kP= (730’ yo): (37)
f = o mod n,

R = ayR+pP (38)
R = R +Qn=(z1,1) (39)
r = 1 mod n,

d, = a ‘d,+)\ mod n, (40)
¢ = avymodn. (41)

The user also computes a temporary public key for the
host:

Tn = cQn over E(Z,). (42)

The host can check whether the right public key is
used, by performing the same operation as in (42).
The parameters that are stored in the agent and there-
fore known to the host are r,d,, k,c, 'y, and 8 and for
verification purpose I',.

. Signature generation

In this step the signature operation is executed at the
host and the signature should involve the private keys
of the agent and the host. This can be accomplished
by the following operation:

§ = km + rdy + rds mod n. (43)

. Activation of signature

The activation does not involve the host’s identity, and
therefore is equal to the activation in the previous al-
gorithm:

s = c¢§ + fm mod n. (44)
Parameters ¢ and 8 are known by the host, but this

is not sufficient to compute d, or y. Substitution of
parameters gives the following signature:

s = (ayk + B)m +yrd, + ayrdy, + ayrA mod n. (45)

Again the signature is of the same form as (3), only
now signed by two parties.

5. Verification The verification formula is here a little
different, because also the private key of the host is
used to sign the message:

T o sP—r(Ta+A+T4)
N m

+ Qr = (z1,91)(46)

t = zymodn

The signature is valid if and only if:

t=nr.

This algorithm, like the previous one, makes it less attractive
for a host to sign messages in the agent’s name without
having its permission. Here it is accomplished that both the
agent and the host signed the document and the host cannot
deny afterwards that it signed this document.

4. CONCLUSIONSAND DISCUSSION

In this paper, several solutions are presented for a special
case of computing with secret data in public, namely the
digital signature for agents. The secret data in agent digital
signatures is the private key, as is this the information that
proofs the agent’s identity. The agent should not reveal this
information to anyone, not even a trusted host.

Several agent digital signatures are described in this paper,
all based on one principle; the private key is transformed
to a blinded private key. The blinded private key is stored
in the agent and the original private key is stored securely
at the user’s computer. The first described digital signature
for mobile agents has the problem that the host is capable of
signing multiple messages in the agent’s name without hav-
ing its permission. This agent signature can also be seen as a
new privacy enhancing technology, as pseudo-identities can
easily be introduced here, without adding extra complexity
of the scheme.

Two solutions are proposed to prevent the problem of double
signing, such that the problem is not solved, but it makes
it less attractive to the host to sign in the agent’s name
without having its permission. The first of these solutions
use the host’s identity at time of signature verification, such
that the verifier can locate where the signature operation has
been executed. The second solution let not only the agent
sign the message, but also the host. This method makes it
impossible for the host to deny the signature afterwards.

The advantage of all the proposed algorithms is that they
can be used specific for agents (where the private key is hid-
den), but also for non-agent systems, where the computation
is done in a trusted environment. In the latter case, the pri-
vate key is simply not hidden and the rest of the algorithms
is the same.

Some solutions for a digital signature in agent technology are
proposed in this paper, but this is only a first step towards
securing intelligent software agents. The next step in these
digital signatures would be to provide non-repudiation not
only for the host but also for the agent. Non-repudiation for
the agent is not provided yet, because in case a malicious
host has the purpose to sell products, it can double sign
an order and the agent is not capable of proving whether it
gave permission for this order, or it cannot be proven that

17

the agent gave its permission, because in this case it’s in
the host’s advantage to have its name on the signature. A
solution must be found to this problem in order to provide
full functionality of a digital signature.

5. REFERENCES
[1] S. Brands. Untraceable off-line cash in wallet with
observers. Advances in cryptology - Crypto’93.
Springer-Verlag. pp. 302-318.

J.L. Camenisch, J-M. Piveteau, M.A. Stadler. Blind
signatures based on the discrete logarithm problem.
Advances in Cryptology - Eurocrypt’94,
Springer-Verlag, pp 428-32.

2]

[3] D. Chaum. Blind signatures for untraceable payments.
Advances in Cryptology - Crypto’82, Springer-Verlag,

pp 428-432.

D. Chaum. Achieving electronic privacy. Scientific
American. August 1992. pp 96-101.

T. ElGamal. A public key cryptosystem and a
signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory. Vol. IT-31, No.
4. July 1985. pp. 469-72.

U. Feige, J. Kilian, M. Naor. A minimal model for
secure computation. STOC 94 Montreal, Canada.
ACM. pp.554-563.

R. Hes, J. Borking. Privacy-Enhancing Technologies,
The path to anonymity. Achtergrondstudies en
Verkenningen 11, Registratiekamer, The Hague, 2000.

D.B. Johnson, A.J. Menezes. Elliptic curve DSA
(ECDSA): An enhanced DSA.
http://www.certicom.com /research.html

(8]

[9] S. Loureiro, R. Mova. Privacy for mobile
code.Proceedings of the Distributed Object Security

Workshop, OOPSLA’99, Denver, US, November 1999.

[10] P. Kotzanikolaou, M. Burmester, V. Chrissikopoulos.
Secure transactionswith mobile agents in hostile
environments. Information security and privacy.
Proceedings of the 5th Australasian conference.
ACISP2000. Springer-Verlag, 2000. Volume 1841. pp.

289-297.

[11] A.J. Menezes. Elliptic curve public key cryptosystems.

Kluwer Academic Publishers, 1993.

[12] S. Miyazaki, K. Sakurai. A more efficient untraceable
e-cash system with partially blind signatures based on
the discrete logarithm problem. Financial

cryptography’98. Springer-Verlag. pp. 296-308.

[13] A. Riera, J. Rifa, J. Borrell. Efficient construction of
vote-tags to allow open objection to the tally in
electronic elections. Information Processing Letters 75.

Elsevier, 2000. pp. 211-215

T. Sander, C. F. Tschudin. Towards mobile
cryptography. IEEE symposium on Security and
privacy. 1998. pp. 215-224.

[14]

[15] B. Schneier. Applied cryptography, second edition.

John Wiley & Sons, Inc. 1996.

An Intrusion Response Scheme:
Tracking the alert source using a stigmergy paradigm

Noria Foukia
Centre Universitaire
d’'Informatique
University of Geneva
24, rue du Général Dufour,
Switzerland
CH-1211 Geneve 4

noria.foukia@cui.unige.ch

ABSTRACT

Today, the security community is in search of novel solutions
to achieve efficient responses to intrusions. This is partic-
ularly needed because attackers intervene in an automated
way, at computer speed. There also is a need to respond
according to the nature of the detected attack. That is why
Intrusion Detection Systems (ID Systems) and Intrusion Re-
sponse Systems (IR Systems) have to cooperate and work
in parallel. To this end, it is more efficient to design the IR
System in function of the ID System. This paper describes
an IR System based on Mobile Agents (MAs) distributed
throughout the network. This IR System is strongly ad-
justable to its partner ID System, also based on MAs. Both
the ID System and the IR System are designed in quite simi-
lar ways, since both are mappings of the behavior of natural
systems. We present our approach to building these two
systems based on natural life. 'We particularly stress the
design of our IR System and present some simulations to
demonstrate its efficiency.

Keywords

Intrusion Detection and Response Systems, Mobile Agents,
Natural Systems.

1. INTRODUCTION

As attacks against information systems are growing and
becoming more and more sophisticated, there is a need to in-
tensify research on responding to intrusions. This statement
is in line with a report issued by the Computer Emergency
Response Team (CERT), which announces each year an in-
crease of computer security incidents and, in many cases,
a complete lack of measures to counter them [1]. This is
principally due to the fact that people in charge of security
focus their attention essentially on the deployment of Intru-
sion Detection Systems (ID Systems) and control systems,
without dealing with the preparation of intrusion responses.
Formerly, this approach was justified as long as the number
of elements to supervise (devices, connections) throughout
the networks was not too large. It was quite sufficient to
let a system administrator intervene manually to stop an
attack in a small scale network without harming too much
the global integrity of the system. However, today, the size
of information networks has grown considerably and, even

Salima Hassas
L.I.S.I.

Nautibus, 8 Bd Niels Bohr
Campus de la Doua, 43 Bd du
11 Novembre
69622 Villeurbanne, France

hassas@bat710.univ-
lyonl.fr

18

Serge Fenet
L.I.S.I.

Nautibus, 8 Bd Niels Bohr
Campus de la Doua, 43 Bd du
11 Novembre
69622 Villeurbanne, France

sfenet@bat710.univ-
lyonl.fr

if a given ID System is quite effective, it is not reasonable
to let a human administrator proceed manually to stop an
attack, to evaluate the extent of damage and to regenerate
a safe state in accordance with the security policy in force.
The more reasonable solution is to have corrective or defen-
sive actions generated automatically as soon as a suspicious
activity is detected, and not to be delayed by the reaction
time of a human operator.

Our research work encompasses both Intrusion Detection
(ID) and Intrusion Response (IR) and follows in its princi-
ples the behavior of natural systems:

e For the detection, the human natural immune system
provides a source of inspiration for today’s computer
security when building ID Systems, because the im-
mune systems evolves many interesting mechanisms to
defend our body against external attacks and aggres-
sions.

e For the response, we also took our inspiration from a
social insects paradigm, namely the collective behavior
of foraging ants. This behavior expresses the way ants
gather food collectively: they use an indirect commu-
nication mechanism where each ant‘s motion is influ-
enced by a chemical information (called pheromone)
deposited by the other ants in the environment. Our
Intrusion Response System (IR System) maps the col-
lective behavior of a population of foraging ants, using
mobile agent (MA) technology and an electronic ver-
sion of pheromone.

In this paper we describe an Intrusion Detection and Re-
sponse System (IDR System), combining both of these mech-
anisms and we focus on the response scheme to intrusion in
local networks using MA technology. This IDR System is
based on a social insects paradigm to trace the source back
to where the intrusion alert was generated. We specially
study and describe the tuning of such a mechanism, to al-
low an effective scheme for intrusion response. Section 2
provides an overview of the different kinds of IR Systems
and related work. Section 3 presents our approach for in-
trusion response based on MA technology as well as the
social insects paradigm. We show in this section how sys-
tems inspired by nature provide a suitable paradigm for IDR,
Systems. Section 4 describes the simulation performed with
Starlogo [2] to validate our algorithm for tracing the route

back to the source of an alert and to evaluate the effective-
ness of established parameters; the results are also summa-
rized in this section. Section 5 investigates future work and
draws a conclusion.

2. RELATED WORK IN INTRUSION RE-
SPONSE

Fortunately, today the security community seems to real-
ize the lack of efficient intrusion response schemes and some
of its members are starting to investigate possible solutions.
These research activities are based on the use of either static
or mobile components, the latter offering the widest possi-
bilities.

2.1 Static Systems

Static systems were initially built in the frame of central-
ized ID Systems. Only the emergence of distributed archi-
tectures gave way to mobile components. However, some
distributed systems implement a response scheme based on
static software components. This is for instance the case
in [3] where a technique for adapting responses to intrusions
is proposed. Such a system has one or more intrusion detec-
tion systems that identify intrusions. Separate modules clas-
sify the nature of the intrusion and determine appropriate
responses based on an intrusion response taxonomy. This
taxonomy refers to a previous work described in [4], which
provides a categorization of possible offensive and defensive
responses. As also reported in [3], a number of systems have
been developed for responding to intrusive actions. They are
classified as notification systems, manual response systems
or automatic response systems. Table 1 borrowed from [3]
summarizes this classification of static response systems.

Intrusion Response Classification | Number of Systems
Notification 31
Manual Response 8
Automatic Response 17
Total 56

Table 1: Classification of Static Response Systems

Notification systems only generate a report or an alarm
and wait for the system administrator to provide the answer.
The manual response systems give the administrator the
capability to launch a manual response from a limited pre-
programmed set of responses. Automatic response systems
immediately answer to an attack with pre-programmed re-
sponses. In this case, a taxonomy such as the one mentioned
in [4] will lead to an indication of generic response categories
and is useful to launch automated responses. As far as we
are concerned, we are targeting automated response schemes
where Intrusion Response Agents (IR Agents) identify the
kind of alert reported in the pheromone and execute an auto-
mated process to undertake corrective actions. Meanwhile,
our architecture is based on a population of MAs interacting
in the network environment. As we will see now, the use of
mobility brings a lot of advantages from a security point of
view.

2.2 Systems Based on Mobile Components

In traditional static systems, the ID System is easier to
locate and can itself be subject to a successful attack that

19

could leave the entire network vulnerable. A thorny problem
is hence to ensure above all the security and the robustness
of the ID System itself. By enabling stealth operation and
dynamic reconfiguration, MAs can be a good solution to
this problem. A MA is a piece of code that can run on
one host, perform a transparent migration to another host,
and resume its running state. While visiting the network in
an autonomous manner, MAs can interact with each other.
In order to accomplish their task, MAs can also gather data
and use services present on visited hosts. To date, only a few
investigations have been undertaken to develop MA-based
response schemes to intrusions [5] [6], even if MA technology
seems to exhibit good properties to accomplish this task.
As in [5], we advocate the recourse to MA technology for
supporting the answer to intrusions rather than exclusively
for detecting intrusions.

Uesful MA characteristics that could be retained for the
answer are:

e the rapidity of execution due to the small quantity of
code the MA represents when implemented efficiently.
This rapidity is particularly desirable to answer to the
attack as soon as possible.

e the ability to adjust their execution code depending
on the characteristics of the machine they visit. This
factor is also quite important since it enables MAs to
adjust the defence parameters to better protect the
system.

e the mobility, which is their main property. Because
MAs can travel across the network they can filter rel-
evant information from the different machines. They
have the ability to correlate all this information and
adapt their answer. It could be helpful e.g. if an at-
tack comes from several sources or if an attack reaches
several destinations. They can also take advantage
of their migratory ability in order to limit potentially
risky interactions with entities suspected for being of-
fensive.

We can notice that these characteristics are similar to
those we retained for the use of MAs to deal with intrusion
detection, as already mentioned in [7].

The following section gives a classification of the different
types of responses to an intrusion.

2.3 Different Degrees of Responses

Two main degrees can be distinguished in the response
process, namely passive and active responses.

2.3.1 Passive Responses

A response can happen before an attack really begins be-
cause there are already some indications that the system
is becoming vulnerable. It is an anticipated way of setting
the system on the defensive without disturbing too much
its operation. For instance, a user can still access his ac-
count, but some file accesses are limited because the system
is checking the integrity of these files. Responses can also
be implemented after the attack has occurred. One can for
example attempt to repair the damage due to the attack,
gather related informations from heterogeneous sources, or
try to avoid the repetition of the same attack in the future.
These patterns are easier to implement, since the time as
well as the speed of the answer are not essential; the attack

has either not yet occurred, or is already finished (with all
the following consequences, of course).

2.3.2 Active Responses

This type of response encompasses all actions that can
limit the damage due to a running attack or stop it. Many
measures can be implemented, like automatically generating
firewall rules to block an incoming data flow, closing open
ports, updating internal routing tables, etc. This kind of
”real-time” response is not hard to implement when deal-
ing with a human attacker using interactive tools. However,
modern attack tools perform automated actions that often
take only some seconds to penetrate a system. Moreover,
actual response mechanisms lose their effectiveness against
multiple distributed attacks originating from many forged IP
addresses. As it is suggested in [8], infrastructures that sup-
port development of automated response systems are criti-
cally needed. Again, MAs could bring some solutions. As
mentioned by [5], they offer the ability to intervene on all
network components, and not only on the machines involved
in the security policy.

3. OUR APPROACH AND MODEL

This section focuses on the design goals we retained for
the intrusion detection and response model. The model has
been designed to allow:

e intrusion detection based on Intrusion Detection Agents
(ID Agents), which map the functionalities of the natu-
ral immune system to distinguish between normal and
abnormal events (respectively ”self” and ”non self” in
the immune system) as explained in [9].

e intrusion response based on IR Agents, which map the
collective behavior of an ants population by triggering
throughout the network the release of a synthesized
information specific to the collected events. This kind
of collective paradigm is very interesting because it
consists in having each ant execute a rather light task
(MAs play the role of ants in the IR System) to in-
duce collectively a more complex behavior; this will
be explained in further details in section 3.2.

Our approach also is very powerful because the ID Sys-
tem as well as the IR System are completely distributed
in the network, without any centralized control: both sys-
tems are essentially constituted by MAs which travel across
the network, dynamically adjusting their routes according to
collected events, without any simple way to trace them. Be-
sides, our M As are quite polyvalent because they can detect
and/or respond to intrusion. This enhances the difficulty
for an attacker to distinguish between ID Agents and IR
Agents.

We are principally dealing with responding after the at-
tack is detected. Our ID System looks for behavioral devi-
ations in running applications. A strong deviation is a safe
sign that an attack is occurring and will trigger the response
mechanism. In addition, our ID System is able to check the
vulnerability of applications. By adjusting the level of ac-
ceptable deviations, we can also choose to detect processes
with a low deviation. For instance, the presence of too many
processes running with a low deviation is an indication that

20

the system is not stable and potentially attackable. In re-
sponse, some anticipated actions could be executed to avoid
future attacks.

Let us now concentrate on a target host (device, user ac-
count,...) that is suffering an attack. In our IR System, the
response consists in intervening where the source of the alert
is located by diffusing the alert in the neighborhood of the
target. We also partially look for the origin of the attack
insofar as the intruders are inside the network, because it
is easier to isolate them. For intruders coming from out-
side, we take the point of view that it is not necessary to
directly react against them as long as we are able to block
their access point to the inside of the network.

3.1 Background Concerning our ID System
Model

As we already mentioned, our IDR System combines two
mechanisms inspired from natural systems, namely the im-
mune system for the intrusion detection step and the social
insects paradigm for the intrusion response one. Indeed,
we were really struck by the fact that natural systems ex-
hibit many interesting characteristics which could be trans-
posed to distributed networks in general, and to face secu-
rity problems in particular. Natural systems are complex
systems, endowed with mechanisms allowing them to react
efficiently to any perturbation coming from their environ-
ment, by adapting themselves to these changes.

3.1.1 Thelmmune System Paradigm

To defend the body against undesired organisms, the im-
mune system distinguishes between molecules and cells of
the body called ”self” from foreign ones called ”nonself”.
The body’s immune defences normally coexist peacefully
with cells that carry distinctive ”self” markers. But when
immune defenders encounter ”nonselfs” they have to elimi-
nate them quickly, to ensure some kind of body integrity.

3.1.2 The Social Insects Paradigm

In the same way, social insects organize themselves to en-
sure the survival of the colony by means of a reactive indi-
vidual behavior and a cooperative collective one. Such be-
haviors can be observed from different activities: foraging,
building nests, sorting larvas,...etc. Cooperation in these
systems is mediated by an efficient communication mecha-
nism relying on the inscription of task evolution in the en-
vironment. This paradigm, introduced for the first time by
P. P. Grassé in [10], described the way social insects com-
munities (ants, termites, bees, ...) interact through their
environment. Schematically, each entity has a local view
of its neighborhood but uses a chemical volatile substance
(the pheromone) to mark its environment when achieving
a collective task. The pheromone thus deposited is propa-
gated in the environment and evaporates with time. The
deposit of pheromone creates a gradient field in the envi-
ronment which tends to attract other insects, and to enroll
them in a self-catalytic behavior; it follows that the task
is completed, and moreover that other insects are recruited
long as the pheromone is present in the environment. When
the task is finished, no more pheromone is deposited, lead-
ing to the disappearance of this information after a period of
time through an evaporation mechanism. Each time an ant
deposits a pheromone along the path, it reinforces the prob-
ability that other ants will choose the same path to reach

the food. The amount of deposited pheromone is called the
pheromonal gradient, and every ant scanning its neighbor-
hood will walk up the gradient. This indirect communica-
tion between the different members of the colony through
the environment is called stigmergy. This paradigm has
inspired many computer scientists across various research
domains such as robotics [11], network routing [12] and op-
timization algorithms [13]. In all these cases the global and
complex collective behavior emerging from interactions be-
tween simple entities is dominating. That is the reason why
we think that we can map this mechanism to model a col-
lective response to an intrusion.

3.2 Mapping these Paradigms into our Model

3.21 The Detection Step

Like the human body, computers systems have to protect
themselves because they are often placed in an unsafe and
uncontrolled environment such as the open Internet. In a
first step, the immune system attempts to prevent or stop
the entry of external organisms before they penetrate the
body. This is the same role as played by firewalls in the
computer world; firewalls attempt to limit access of unde-
sired users and processes coming from outside the network
they are protecting. In a second step, the immune system
seeks the presence of undesired organisms in the body in
order to destroy them.

The idea in our work was to map the ”self”—"non self’
detection in the immune system with intrusion detection.
Our approach is targeted at corporate intranets, which cor-
responds to logical security domains. We subdivide an in-
tranet into several smaller local domains constituted by a
set of hosts or machines. We want to avoid a monolithic ID
System on every host because of its cost; instead, we pro-
pose to dispatch MAs, dynamically visiting and randomly
monitoring different local domains. To detect local attacks,
these ID Agents, responsible for a local domain, have to be
able to discriminate between normal and abnormal activ-
ity. In the immune system, this is done by distinguishing
7self” from ”nonself” entities. For the sake of simplicity,
we choose to examine the correct execution of different pro-
grams and their deviation compared to a normal activity.
For that, ID Agents dispatched throughout the network col-
lect application-specific system calls and compute the devi-
ation between these system calls and other safe system calls
stored in a database, as done by Forrest and al. [9]. If the
deviation is too high, an alert is launched, waiting for the
response mechanism to come into play.

3.3 IR System Deploymentand Tuning: Source

Tracing

The network is a distributed environment, subject to per-
turbation and dynamic evolution. When an attack is de-
tected on the network, it is not trivial to locate efficiently
and rapidly its source. The behaviour of foraging ants seems
to provide an interesting solution to this problem. In nature,
they release in their proximity a chemical information (the
already mentioned pheromone) to trace the way from their
nest to the location of some food; we use this metaphor to
allow MAs (artificial ants) to detect the location of an alert
and to follow up to the source of the attack in order to an-
swer to the attack.

21

3.3.1 Building the Electronic Pheromone

An agent surviving an attack must escape as soon as pos-
sible from the attack location, but should find a way to tell
IR Agents where the source of the attack was located. In
fact, identifying the source is quite fundamental to put to-
gether a response plan adapted both to the nature of the
attack and to the kind of incident reported. For instance, if
the source is a firewall and a service is misused, the response
to the attack could be to change the access rights to the ser-
vice protected by the firewall; if the source is a mail server
and a user is flooding the server with a series of e-mails, the
response could be to disable the user account in this server.
As the quality of the response depends on the rapidity to
trace the source of the alert, we want to take advantage of
being MAs completely distributed in the network to rapidly
intervene. An alert message is initiated at a node as soon as
alocal ID Agent present in the node detects an anomaly. For
this locally detected attack, the ID Agent creates a so-called
pheromonal message which is randomly launched across the
network and will help other IR Agents in the system to trace
the way back to the alert source. The ID Agents dispatched
through the network are able to launch an alert and to build
and disseminate an electronic pheromonal information syn-
thesizing the attack scenario for other IR Agents. The IR
Agents, completely distributed in the network, can track
this pheromone and travel up the pheromonal gradient back
to the source. For the moment, the different fields which
compose the synthesized pheromone are gathered in a list
as follows:

o the identifier of the ID Agent which detects the suspi-
cious activity and builds the pheromone: the IdA;

e the suspicion index of the alert: the SI. The proposed
response scheme depends on a behavior-based ID Sys-
tem scheme depicted in [7]. In [7], ID Agents dis-
patched throughout the network collect application-
specific system calls and compute the deviation be-
tween these system calls and other safe system calls
stored in a database. In other words, SI is the devia-
tion between the ”self” events stored in the database
and the monitored events when the agent enters the
node and detects an attack;

e the number of hops: the Hop. It corresponds to the
distance in terms of the number of links through wihich
the pheromonal information will be propagated from
the initial node;

e the pheromonal gradient: the Gd. Like ants with the
source of food, IR Agents have to find the better way
to locate the source of an alert. For this purpose
an electronic gradient field, Gd, is introduced in the
pheromone. When the pheromone is diffused across
the network, Gd diminishes hop by hop according to a
strictly decreasing function. Gd is used in the opposite
direction by other travelling IR Agents to travel up to
the source of the attack;

e the date t0, which corresponds to the date when the at-
tack is detected on the initial node and the pheromone
is built;

e the date ¢4, which corresponds to the date when the
pheromone is deposited on each intermediate node 3
during the pheromone propagation;

e In the rest of the paper, ¢ is the number of the ith
node reached by the pheromone during its diffusion,
1 varying from 0 to n. The initial node, where the
pheromone is built, is 0 and the last node is n.

The different steps of the response are:
o the setting-off of an alert by an ID Agent;
e the building of the pheromone;
e the diffusion of the pheromone;
e the pheromone detection by an IR Agent;
o the travel of the IR Agent to the source of the alert;
e the response of the IR Agent.

3.3.2 Evaporation of the Electronic Pheromone

In an ants colony the effect of each pheromone is limited in
time until the entire pheromone disappears. This phenom-
ena is called the pheromone evaporation and it limits the
number of ants reaching a particular source of food. The
equivalent phenomena for the electronic pheromone is rep-
resented by two computed dimensions: (a) the general evap-
oration index and (b) the extrapolated evaporation date at
each node i. These two dimensions are defined in the fol-
lowing sub-sections.

(a) Determining the evaporation index at the last node:
A.

As long as the electronic pheromone is present along the
path back to the source, IR Agents can travel up the phero-
monal gradient to the first node. But the pheromone should
not stay eternally in the network for two reasons:

o first, it needlessly overloads the network in the case
where the response has already occurred, and the phero-
mone thus has become obsolete;

e second, even if no IR Agent detects the pheromone
for a long time, and if the suspicion of an attack per-
sists, it is preferrable to relaunch a pheromone from
the same source. This way, it should augment the
probability that other IR Agents located elsewhere in
the network will meet the pheromonal path. In the
worst case where the response is really too slow, we
can imagine that the administrator has already solved
the problem without waiting for the IR Agents to re-
act. Here again, the pheromone has become useless.

Obviously, the evaporation process of the electronic phero-

mone has to begin in the last node attained by the pheromone.

Then it will reach the other nodes of the path in the opposite
way to the diffusion. In this scheme, an IR Agent visiting an
intermediate node can always travel the pheromonal gradi-
ent up to the first node. We define the evaporation index A
as the period of life, allocated to the electronic pheromone
deposited in the last node n, before it shall disappear. In-
deed, this deposit will first disappear at the last node n after
a duration A. Then, it will successively disappear at each
node i after a duration corresponding to the sum of three
parameters:

e the duration of the pheromone diffusion between node
1 and the last node n: Diff;

22

e the evaporation index A;

e the duration of the disappearance of the pheromone
between the last node n and node i: Disp; as we con-
sider that the pheromone disappears along the reverse
path at the same speed as it was diffused, Disp is equal
to Diff.

Figure 1 represents the different evaporation durations at
the last node n and at an intermediate node 3.

initia node i nden

¢ L evaporation's duration: Diff L

evaporation index:

diseppearance’s duration: Disp

Figure 1: Duration of the Evaporation at the Dif-
ferent Nodes

We decide to evaluate A empirically, according to the
computational time an IR Agent needs to execute its tasks.
The IR Agent entering a node has to:

e access a list where it can read the pheromonal infor-
mation, notably the pheromonal gradient;

e probe the nodes in its neighborhood to find the same
pheromone, but with a higher gradient;

e move to the selected node.

To evaluate A empirically, we repeated a series of simu-
lations with a simulation tool called Starlogo. Starlogo is
a programmable modelling environment for exploring the
workings of decentralized systems [2]. We modelled a net-
work with 20 nodes. Each node knows only its neighbors
and has at least 4 of them. Node 0 has the maximum num-
ber of neighbors, which is 10. We diffused the pheromone at
a distance of 14 hops from the initial node and repeated the
diffusion process until each node was reached at least three
times. Then, we placed an IR Agent on a node as soon as
the pheromone was deposited and we saved the IR Agent’s
computational time as showed in Figure 2. On average, the
value of A was equal to 2.44 Starlogo time units.

Delay for finding a neighbour

o 4
I | |
« . . |
B D *
% 25 ;
g 2z
815
o
=
< 05
& o |

0 5 10 15 20

Node number
Third te=t]

Figure 2: Evaluation of the Evaporation Index A

(b) Determining the extrapolated evaporation rate at node
1: Tevap(1).

An IR Agent can respond to an intrusion only if it reaches
a node ¢ before the pheromone’s evaporation date at this
node 7. We attract your attention to the fact that now,
we are speaking in terms of dates and no longer in terms
of durations. We want to evaluate the evaporation date at
node 7 in order to compare it with the arrival date of IR
Agents at the same node. This will be the subject of more
simulations in section 4. When the pheromone is deposited
at node 7 and continues its travel to the last node n, we have
to find a way to compute an extrapolated evaporation date
at the node ¢ because there are two missing parameters:

e node i does not have the means to know the duration
of one hop (average or maximum duration);

e node ¢ does not know the arrival date of the pheromone
at the last node;

This extrapolated evaporation date at node i is Tevap(i).
This evaporation date should be smaller than the evapora-
tion date at node ¢-1, and higher than the evaporation date
at node ¢+1. This is quite logical if we consider that an IR
Agent in node i+1 should have time to travel up to node ¢
(and obviously also to node i-1), before the pheromone at
node % (respectively at node i-1), evaporates.

In order to deal with the missing parameters we proceeded
as follows:

e hop duration: as each node ¢ can only save the date i
when the pheromone reaches it, it is easy to compute
the average duration of a hop from node 0 to node
1 because t0 is carried by the pheromone. Then, the
average hop duration seen from node 7 is equal to:

ti — t0
)

e arrival date at node n: node i has computed the av-
erage duration of a hop and can also compute the n-i
remaining hops until the last node n. Then, viewed
from node i, the pheromone will evaporate at the last
node n at the date:

tig
2

x (ti —t0)

In the same way, the pheromone will evaporate at node n at
the date:

ti4 2t

— X (tt —t0) + A
i

The pheromone will evaporate at node ¢ after a duration
equal to Disp (see sub-section (a)) from the evaporation date
at node n. From node 4, Disp is equal to:

"i_’x(ti—to)

Finally, the pheromone will evaporate at node 7 at the
date:

Tevap(i) = ti + 2 x n—t

x (ti —t0) + A

Figure 3 resumes these different steps.

23

it node acei aden odei
. . 8 Disp
o i] i Tevap)
| t t t }

Figure 3: Extrapolated Evaporation Dates at Node
)

3.3.3 Limiting the Number of Responding IR Agents
with the Inhibition Index at Node i

After an IR Agent has found a pheromone and traced
the route back to the source of an alert, it is not neces-
sary that other IR Agents trace the same source, even if the
pheromone has not totally evaporated. To avoid too many
IR Agents converging to the same source, we inhibit the ef-
fect of the pheromone. For that, we choose to speed up the
pheromone evaporation in each node already visited by an
IR Agent, as explained in the following.

A first IR, Agent entering node 4 should intervene between
date # and Tevap(i) as shown in Figure 3.3.3. We call
tA1(i) the intervention date of the first IR Agent.

i Tevap()

TAL()

remaining time before the pheromane evaporates
Figure 4: Intervention Date at Node i
So this IR Agent has an intervention duration equal to:

n—

Tevap(i) —ti = 2 x b x (ti —t0) + A

i
Thus, after date tA1(3), the time remaining before the
pheromone completely evaporates at node 1 is:

n—1

2 x

x (ts —t0) + A — tAl(7)

Suppose that a second IR Agent reaches node i during this
period. As a first IR Agent has already begun tracing the
source, we want to avoid too many IR Agents converging to
the same source for the same response. To this end, we found
a way to inhibit the pheromonal effect by decreasing the
remaining time for the next IR Agent by a coefficient that
we call the inhibition index. Simply put, this mechanism
functions as follows:

e the first IR Agent intervenes at date tA1(%);

e the second IR Agent should intervene in a period of
time corresponding to 90% (which is the inhibition in-
dex) of the remaining time;

Then the remaining time for the second IR Agent is equal
to:

—1

0.9 x (2 x 2= x (ti — t0) + A — tA1(4))

Thus, the second IR Agent has to reach node i at a date
tA2(i) such that:

—1

tA1(i) < tA2(5) < tA1(i)+0.9% (2 x —

This inhibition process is repeated for every IR Agent de-
tecting the same pheromone at the same node 4, until the
pheromone completely disappears.

4. SIMULATION AND RESULTS

As we already said, currently, the response model is being
investigated with a simulation tool called Starlogo. Starlogo
is a programmable modelling environment for exploring the
workings of decentralized systems [2]. A number of prelim-
inary results are reported in the following paragraphs.

4.1 Simulation Topology

The simulation topology of the chosen response scenario
takes the following points into consideration:

e the 20 hosts are represented by single nodes in the
topology; the nodes are numbered from 0 to 19;

e each host knows only its neighbor nodes;
e different nodes are subject to an attack;

o different ID Agents visiting the nodes can detect a sus-
picious activity and launch an alert;

e a pheromonal information is built by an ID Agent as
soon as the suspicion index is too high. The ID Agent
sends away this pheromonal information, choosing ran-
domly one node in its neighborhood. This operation is
repeated by each node receiving the pheromone until
the last hop;

o different IR Agents visiting the nodes can detect the
pheromone and trace the pheromonal gradient up to
the alert source.

Table 2 represents the neighbors of each of the 20 nodes.

4.2 Simulation Context

4.2.1 Pheromone Evaporation Date

The following simulation parameters are used for the first
set of evaluations:

e we choose node 0 to launch a suspicious activity; we
iterate this suspicious activity five times;

e we diffuse the pheromone at a distance of 5 hops and
we record the nodes reached by the pheromone;

e we collect for each iteration the date of the pheromone
evaporation at the visited nodes;

e the average evaporation gradient is set to A = 2.44
Starlogo time units, as computed in section 3.

Figure 5 shows the date of pheromone evaporation at each
visited node. Each color represents one of the 5 paths bor-
rowed by the pheromone for each iteration.

x (ti — 10) + A — tA1(i))

24

Node Number | Corresponding Neighbors
0 1-2-3-4-6-7-9-10-12-16
1 0-2-4-5-7-11-14-15-19
2 0-1-3-6-8-10-12-15-19
3 0-2-5-9-11-16-17
4 0-1-5-8-11-16-18
5 1-3-4-6-13-14-19
6 0-2-5-8-9-10-15
7 0-1-8-9-12-14
8 2-4-6-7-10-13-17
9 0-3-6-7-11-13-15
10 0-2-6-8-16-17-18-19
11 1-3-4-9-12-18
12 0-2-7-11-14-16
13 5-8-9-14-15-19
14 1-5-7-12-13-15-16
15 1-2-6-9-13-14-19
16 0-3-4-10-12-14
17 3-8-10-18
18 4-10-11-17
19 1-2-5-10-13-15

Table 2: Neighbor of each Node

Date of pheromone’s evaporation

25

20

Date of evaporation (Stariogo time unit

o E] 10 15 20
Mode number

+ Path 1 = Path 2 Path o Fathd =« Paths

Figure 5: Pheromone Evaporation Dates for a 5
Hops Simulation

4.2.2 Agents Response Dates

For the fastest pheromone evaporation of the previous
simulation (path number 3), we dispatched IR, Agents in the
network and we collected the date of arrival of IR, Agents on
all nodes of the network. The following simulation parame-
ters are used for this second set of evaluations:

e we choose node 0 to launch a suspicious activity;

e for path 3, the evaluated evaporation duration is 10.18
Starlogo time units;

e at the end of the pheromone diffusion, we randomly
launch IR Agents for the duration of the pheromone
evaporation;

e there is a random delay between two successive IR
Agent launches;

e on each visited node, we collect the date of each IR
Agent arrival;

e we repeat the simulation 10 times;

Figure 6 shows the date of the IR Agents’ arrivals during
the fastest evaporation duration for one of the 10 simula-
tions.

Simulation n*1

[T ——

Figure 6: Agents Response Dates for the First Sim-
ulation

4.3 Simulation Results

The purpose of this section is to correlate the simulations
represented in Figure 6 with the particular case of the fastest
evaporation duration (path 3 in Figure 5). To this end, we
compare the arrival dates of IR Agents on the different nodes
with the evaporation dates of the pheromone along path 3.
By locating the common nodes, we compute the number of
IR Agents which responded in time. Table 3 summarizes the
results obtained for the entire simulations of section 4.2.2.
Each row of the table shows the frequency of the effective
responses according to the number of IR Agents dispatched
through the network.

We notice that in all simulations there are IR Agents
which answered before the complete evaporation of the phe-
romone. Considering that we did not limit the number of
acting IR Agents during the duration of the evaporation, an
average of 27.5% of dispatched IR Agents responded in time.
Besides, there are in average 5 effective responses. These
first results show the efficiency of the concept of electronic
pheromone to trace the source of an alert and to obtain a sig-
nificant number of responses. This also demonstrates that
the values computed in section 3 are viable, even if some
of them should be adjusted in the future. We are already
investigating how to tune our model by:

e adjusting the inhibition index in order to limit the
number of IR Agent responses;

o adjusting A;

e limiting the number of randomly dispatched IR Agents
in order to find their optimal number. That is, the
minimal number of TR Agents needed to obtain just
one answer.

5. FUTURE WORK AND CONCLUSION

We presented in this paper an approach inspired by nat-
ural systems for intrusion detection and response. Our ap-
proach uses the immune system metaphor for intrusion de-
tection (ID Agents) and social insects stigmergic behaviour

25

Simulation Answers | Agents | Frequency
1 6 24 0.250
2 6 20 0.300
3 3 13 0.231
4 4 17 0.235
5 7 23 0.304
6 9 17 0.529
7 4 14 0.286
8 4 26 0.154
9 5 14 0.357
10 2 19 0.105
Average frequency 0.275

Table 3: Response Frequency According to the

Number of IR Agents

metaphor for intrusion response (IR Agents). The paper
is focused on the study of the intrusion response scheme,
furthering the approach proposed in [6], by tuning the pa-
rameters of electronic pheromone diffusion and evaporation,
and introducing a new mechanism for limiting the number
of responding IR Agents, using an inhibition index. We pre-
sented the first results of a simulation, which show that the
approach is promising. The next steps consist in refining
the approach in order to determine if some parameters can
be omitted or merged and still result in a useful behavior, or
if, on the contrary, additional parameters are needed. This
work is beneficial for the general understanding of the model
and also for the optimization of the implementation. This
model is being implemented using the J-SEAL2 mobile agent
framework [14]. As can be deduced from the previous sec-
tions, there are three kinds of agents involved: ID Agents,
IR Agents and Pheromone agents. This specialization of
roles is designed to make agents as light-weight as possible,
in order to achieve good performance. An IR Agent is, on
the other hand, intentionally very generic; the goal is to be
able to locate the source of an alert using a single ”univer-
sal” mechanism, and once this source is reached, to enable
a threat-specific response by downloading and activating a
dedicated class file designated by a URL contained in the
pheromone.

6. ACKNOWLEDGMENTS

Thanks to Giovanna Di Marzo for many helpful discus-
sions and to David Landecy for his contribution to the sim-
ulations.

7. ADDITIONAL AUTHORS

Additional author: Jarle Hulaas (University of Geneva
email: Jarle.Hulaas@cui.unige.ch).

8. REFERENCES
[1] CERT Coordination Centre. Cert coordination centre.
Technical report, January 2000.
[2] Starlogo.

http://el.www.media.mit.edu/groups/el/projects/starlogo/.

[3] D. Ragsdale, C.A. Carver, J. Humphries, and
U. Pooch. Adaptation techniques for intrusion
detection and intrusion response system. Proceedings
of the IEEE International Conference on Systems,

[4]

[6

—

[7

—

(8]

[9]

[10]

[14]

Man, and Cybernetics at Nashville, Tennessee, pages
2344-2349, October 8-11 2000.

C. A. Carver, Jr., and U. Pooch. An intrusion
response taxonomy and its role in automatic intrusion
response. Proceedings of the IEEE Systems,
Cybernetics Information Assurance and Security at
Workshop West Point, New York, June 6-7 2000.
W. Jansen, P. Mell, T. Karygiannis, and D. Marks.
Applying mobile agents to intrusion detection and
response. Technical report, National Intitut of
Sandard and Technology, Interim Report 6416,
September 1999.

S. Fenet and S. Hassas. A distributed intrusion
detection and response system based on mobile
autonomous agents using social insects communication
paradigm. Proceedings of the 1st International
Workshop on Security of Mobile Multiagent Systems
(SEMAS), 2001.

N. Foukia, D. Billard, and Pr. Juergen Harms.
Computer system immunity using mobile agents.
HPOVUA Workshop, Berlin, June 2001.

D. Schnackenberg, K. Djahandari, and D. Sterne.
Infrastructure for intrusion detection and response.
Boeing Phantom Works, NAI Labs, Network
Associates.

S. Forrest, S. Hofmeyr, and A. Somayaji. Computer
immunology. Communications of the ACM, 1997.
P.P Grassé. La reconstruction du nid et les
interactions inter-individuelles chez les bellicoitermes
natalenis et cubitermes, la thorie de la stigmergie -
essai d’interprtation des termites constructeurs.
Insectes Sociauz, no. 6, pages 41-81, 1959.

C. Ronald Kube and E. Bonabeau. Cooperative
transport by ants and robots. Robotics and
Autonomous Systems, 1998.

M. Dorigo and G. Di Caro. Ants colonies for adaptive
routing in packet-switched communication networks.
Lecture Notes in Computer Science, page 673, 1998.
E.B. Mallon and N.R. Franks. Ants estimate area
using buffon’s needle. Proceedings of the Royal
Society, London, April 2000.

J-Seal2. http://www.coco.co.at/development/.

26

Developing Secure Agent Systems Using Delegation
Based Trust Management -

Lalana Kagal
University of Maryland
Baltimore County
1000 Hilltop Circle
Baltimore, MD 21250

Ikagall@cs.umbc.edu

ABSTRACT

We presentan approachto somesecurityproblemsin multi-agent
systemsbasedon distributed trust and the delegation of permis-
sions,and credibility. We assumean openervironmentin which
agentsmustinteractwith otheragentswith which they arenot fa-
miliar. In particular anagentwill receve requestandassertions
from otheragentsandmustdecidehow to acton therequestand
assesghe credibility of the assertions.In a closedervironment,
agentshave well known and familiar transactionpartnerswhose
rights and credibility are known. The problemthus reducesto
authentication- the reliableidentificationof agents'true identity.
In an openenvironment, however, agentsmust transactbusiness
evenwhenknowing thetrueidentitiesis un-informatve. Decisions
aboutwho to believe andwho to sene mustbebasedn anagents
properties.Thesepropertiesare establishedy proving themfrom
an agents credentials delegation assertionsand the appropriate
securitypolicy. We begin by describingour approachandthe con-
ceptson whichiit is built. Thenwe presenta designthat provides
security functions (authorizationand credibility assessmenijp a
typical agentframevork (FIPA) anddescribenitial work in its re-
alizationusingthe semantioveblanguageDAML+OIL.

1. INTRODUCTION

Thoughtherehasbeensomeresearchn trustbasedsecurityfor
multi-agentsystemsgenerallymulti-agentsystemsave alwaysre-
lied on traditional securityschemedike accesscontrol lists, role
basedaccessontrol and public key infrastructure. Thesephysi-
cal methodsusesystem-basedontrolsto verify theidentity of an
agentor processexplicitly enablingor restrictingtheability to use,
changepr view a computeresource However thesemethodgen-
erally requiresomesortof centralrepositoryor controlto provide
authenticatiorandneedto storeaccessontrolinformationfor in-
dividual agentsor groupsof agents We believe thattheseschemes
will not scaleadequatelyor provide the increasedlexibility re-
quiredfor emeging dynamicmulti-agentsystemsghat consistsof
an extremely large numberof agentsthat are spreadover a large
geographiarea[11] like the agentcitieproject. Hencewe argue
thatit nolongermakessenseo divide authorizatiorinto authenti-
cationandaccesgontrol[16, 14].

We proposea securityframewvork for multi-agentsystemsavhich
isbasedndistributedtrustmanagemenDistributedtrustmanage-
mentinvolvesproving thatanagenthasthe ability to accessome
*This work wassupportedoy NSF AwardslIS 9875433andCCR

0070802andtheDefenseAdvancedRresearchrojectsAgenc un-
dercontractF30602-00-2-G91 A0 K528.

!http://www.agentcities. ay/

Tim Finin
University of Maryland
Baltimore County
1000 Hilltop Circle
Baltimore, MD 21250

finin@cs.umbc.edu

27

Anupam Joshi
University of Maryland
Baltimore County
1000 Hilltop Circle
Baltimore, MD 21250

joshi@cs.umbc.edu

service/resourcsolelyby verifying thatits credential€omplywith
the securitypolicy of therequesteaervice[16, 2]. Thesecreden-
tials include propertiesof the agent,for example, membershign
certainorganizationsageor hostof the agent,recommendations
anddelegationsby otheragents.The procesof verifying the cre-
dentialsis itself underthe security policy of the verifying agent.
Aspectsof trustmanagemerihcludecreatingsecuritypolicies,as-
sociatingcredentialavith certainabilitiesandreasoningverthese
policiesandcredentialgo decidethe rights of anagent. Our trust
managemensgystemincludesa trust ontology for specifyingenti-
ties or principals,policies, credentialsa mechanisnfor verifying
credentialsand a mechanisnfor checkingif the credentialscon-
form to thepolicy. The policy includesa setof rulesthatassociate
arequiredsetof credentialswith a certainability or right; imply-
ing thatonly agentswith the specifiedcredentialscanpossesshe
ability.

Agentscommunicateheir beliefswith eachotherfor trustman-
agement. Beliefs are exchangedn termsof deleyations,creden-
tials, abilitiesof otheragentsandtrustvalues.An agentwill reason
aboutbeliefs(its own andof otheragentsjandpolicieswhile mak-
ing authorizatiordecisions.

Thisframenork, basednFIPA specification$6], addressesiary
of the securitythreatsgenerallyassociateavith Multi-Agent Sys-
tems(MAS) [20]. The challengesusually associatedvith MAS
arecorruptechaming(AgentManagemen$ystemjandmatchmak-
ing (Directory Facilitator) servicesjnsecurecommunicationjnse-
curedelayations,lack of accountability accesscontrol for foreign
agentsandlack of centralcontrol[20].

2. RELATED WORK

Therehasbeena lot of interestingwork in securityfor multi-
agensystemsandin thissectionwe describesomeresearclprojects
thataremostrelevantto ours.

WongandSycaradescribethe designof asecurityinfrastructure
for multi-agentsystemgq20]. Their work is basedon RETSINA,
a resuablemulti-agentinfrastructure. The authorsdescribeser-
eralthreatsassociateavith multi-agentsystemsawith respecto the
RETSINA framevork; corruptedagentnamingsenersor match-
malers, insecurecommunicationchannels,insecuredelgyations,
andlack of accountability To preventthethreatof corruptedANSs
or matchmakrs, the authorsbelieve it is necessaryto use only
trustedANSsandmatchmakrsthatbehae asthey should,by only
servicingvalid requestsinserting/remuing entriesfrom theirdatabase
in awaythatis consistentvith therequestindgiving responsethat
areconsistentvith their databasesAs away of counteractindack
of accountabilityall agentsshouldbe given proofsof identity that

cannotbeforgedanddeplg/ersof agentsshouldbe maderesponsi-
ble for the actionsof theiragents Communicatiorchannelshould
be madesecureandagentsshouldbe madeto prove thatthey are
delggateeof whomthey claimto be. Certificatesareusedto link

agentsto actionsand deplo/ersto agentsfor accountability The

authorsdescribemechanismgor agentkey certificationandrevo-

cation, in which the deplo/er interactswith the ACA. Thenthey

discussprotocolsfor registration, unregistrationand lookup. To

handleinsecurecommunicationchannelsthe authorsplan to add
SSL (securesoclet layer) underneatttheir agentcommunication
layer

In their paper'Distributed Trustin OpenMulti-Agent Systems’,
the authorsbuild on earlierwork by Herzbeg et al [8] to define
aninfrastructurefor distributedtrustin multi-agentsystemq15].
Following Herzbeg's assumptionsthe authorsthink thatidentity
is not requiredfor trustmanagemengndthatthereis no needfor
a centralizedcertificatemechanisnor trustedthird parties. This
work is basedntheuseof certificates Mostrole basediccesgon-
trol mechanismsnapusers’identitiesto role. However this is not
the approactusedin this work; anagentusesits policy to mapan-
otheragento arole,basednthelatter’scertificate48]. Any agent
canbe a certificateissuer andmay not be globally trusted. An is-
sueris trustedwhenit canprovide sufficient certificatesrom other
issuerdo satisfytherequesteg policy. An agentcouldhave several
certificatescertifying its capabilitiesand its performance. These
certificateswill befrom otheragentghathave usedtheagents ser
vices.However thesecertifying agentsnaynotbeglobally trusted.
If anagentX needdo find aparticularservice it sendsaarequesto
theMatchMalerin asystenlike RETSINA [20]. TheMatchMaler
will returnalist of matchingagentsandtheir certificates.There-
questingagentwill reasoraboutthesecertificatego decidewhich
agentanbetrusted.Thepolicy will definerulesfor decidingtrust
levels basedon the certificates.To solve the problemof authoriz-
ing accessin@gentsgvery agenthasaspart of its architecturean
accesgontrolmechanismThis componenhelpsthe agentdecide
which servicesshouldbe accessibléo a certainagent. The access
control componentusescertificatesto map an accessingagentto
arole, andthenusesrole basedaccessontrolto decideits access
rights.

In his paper Hu explainshow to build up anagentorientedPKI
and demonstratesomedelggation mechanismdor it [9]. In this
agentorientedPKI, therearetwo typesof certificatesjdentity cer
tificatesfor humansandtheir agent,andauthorizationcertificates
for humansandagents Authorizationcertificatesareusedto repre-
sentauthorizationdy entities. Theseincludethe public key for the
grantingentity, thepublic key of theentity receving theauthoriza-
tion, the actualauthorization(accesgight), re-del@ationbit, and
the validationperiod. However, the re-del@ationbit alwayssetto
1, becausehe authordoesnot have ary fail-proof methodof pre-
venting re-del@ation. Thoughthereis a differencebetweentrust
betweerhumansand agentsandbetweenagentsthe authormod-
elsthemin thesameway. Hu alsodescribes typesof delegations;
chain-ruled,threshold,and conditional. In chain-ruledthe access
rights are deleggatedin a cascadingnanner Thresholddelegation
allows an entity to delegateto multiple subjects. Thesesubjects
mustco-operatewith eachotherto performthe delegation. When
the subjecthasto satisfy certainconditionsin oderto usethe del-
egation, it is called conditionaldelegation. As authorizationsan
be re-delgated,they form delegation networks. The verification
proceschecksthatevery entity in the delegationnetwork hasthe
authority to re-delgate, that all the authorizationsare within the
validity period,andthatnoneof therequiredcertificateshave been
revoked. However, thisstudydoesnotincludemechanismgor han-

28

dling revocationof certificates.The verificationcaneitherbedone
by a TrustedThird Party or the original issueragent. Usually the
serviceguardianauthorizesotheragentso usethe service,whoin
turn authorizeotheragents.Generallythe original issueragentis
theverifying authorityaswell. Rulesfor verifying anauthorityare
specifiedaspartof the delegationpolicieswithin theoriginalissuer
agentsrule base.If a TrustedThird Party is responsibldor verifi-
cationof authorityvalidity, thenit is alsoresponsibldor all theser
vice accesgontrol. The authorhasincludedseveral performatves
for human/agenidentity certificatemanagemerandhuman/agent
authorizatiorcertificatemanagementiu alsodescribehow these
performatvesareencodedn XML for agentcommunication.
Posladetal. describehesecurityandtrustnotionscurrentlypart
of the FIPA specificationsaand point out someof its strengthsand
weaknessefL7]. The FIPA securityspecificationsvere startedin
1998, but arestill not completeandhave actuallybeenmadeobso-
leteby FIPA. Theauthorsbelieve thatsecurityis domaindependent
andthatit is not possibleto have a generalsecurityarchitecture
whichis suitablefor all applications Theauthorsdescribehetrust
modelsexistingin FIPA. All agentghatwantto useservicesor pro-
vide servicesn a platformmustregisterwith the platform’s Agent
ManagemenBystem(AMS). The AMS is trustedand maintains
the identity of all registeredagents.However asauthenticatioris
notmandatedspoofingis possible AMS is responsibldor thelife
cycle for all agentsin the platform andagentsmustreportall sig-
nificant changedo the AMS andallow the AMS to control their
life cycles.However anagentneednot obey ordersfrom the AMS,
causingthe AMS to take someothercourseof actionlike usingan
external API or de-r@isteringthe agent. Agentsalsoregistertheir
capabilities/servicewith the Directory Facilitator (DF). Thereare
no specificationaboutthis registration,soa maliciousagentcould
causealot of damageby registeringnon-«istentservicesregister
ing wrong servicedescriptionsetc. FIPA doesnot definehow ac-
cessingagentscanspecifytheir preferencesThereexistsatrustre-
lationshipbetweernthe AgentCommunicatiorChannel(ACC) and
registeredagents.The ACC is trustedto transmitthe messagem
atimely fashionandto maintaintheintegrity of themessagesrhe
FIPA securitymodel[7] defineamechanism$or keepingmessages
private,mechanism$o checktheintegrity of messageandauthen-
tication messagesThis model extendsthe functionality of AMS
and DF andintroducesan entity called Agent Platform Security
Manager(APSM),which s responsibléor maintainingsecurityin
theplatform. The AMS usespublic key infrastructuremechanisms
for authenticatingagentswishing to register with it. This raises
issuegelatedto PKI [3]. Theagentglefineadditionalsecuritypa-
rametersas part of their servicedescriptionswhich they register
with the DF. The currentspecificationsalsoinclude somesugges-
tions for secureAgent CommunicatiorLanguagg/ACL) commu-
nications,mainly the envelop construct.Certainkeywordslik e au-
thentication,non-repudiatioretc canbe usedto expressa level of
security Whenanagentrequestaservicejt is theresponsibilityof
the messageransportiayerto encapsulatéhe messagebasedon
theselevels. The semanticof thesekeywordsareprovided by the
platform. The authorsproposecertainrequirementgor addingse-
curity to FIPA systemsincludingauthenticatiorof agentsy mid-
dle agent{ AMS andDF) whenwriting to directoriesaccessedlia
middle agents,useof private channelto sendmessagesand au-
thenticationof middleagentsby agentdor bi-directionaltrust.

3. DESIGN

This modelprovidessecuritybasedon distributedtrustmanage-
mentfor open,dynamicagentplatforms,with methodsfor intra-
platformandinter-platformsecurity

Agentsareauthorizedo access certainserviceif they have the
requiredcredentials Our work is similar to role basedaccesson-
trol in thata users accessights arecomputedrom its properties.
However, we use additionalontologiesthat include not just role
hierarchiesbut ary propertiesand constraintsexpressedn a se-
manticlanguagencluding elementof both descriptionlogicsand
declaratve rules. For example,therecould a rule specifyingthat
if anagentin a meetingroomis usingthe projector it is probably
apresenteandshouldbe allowedto usethe computertoo. In this
way, rights can be assigneddynamicallywithout creatinga new
role. Similarly, rightscanberevokedfrom auserwithout changing
his/herrole, makingthis approactmoreflexible andmaintainable
thanrole basedaccesontrol.

We extendthe functionality of the Agent ManagemenSystem
(AMS) andthe Directory Facilitator (DF) to managesecurityfor
theplatform,asnotall agentshouldbeableto registerona partic-
ular platform or usea certainDF. Similarly, agentsarealsogiven
someaccesgontrol ability. The AMS, DF andagentsollow cer
tain securitypoliciesto decidetheaccessightsof requestingigents.

Oursystemaddressethechallengesssociatedith MAS, namely
corruptedAMS and DF, insecurecommunication insecuredele-
gations,lack of accountability accesscontrol for foreign agents,
andlack of centralcontrol. The modelmanagesorruptednam-
ing andmatchmakingservicesby usinga PKI handshakingroto-
col betweerthe agentandthe AMS to verify validity of both par
ties. All messageare encryptedaccordingto Public Key Infras-
tructure. However we do not usethesecertificatesfor authenticat-
ing agentsbut for exchangingmessagesecurely Our delegation
mechanisms ableto thwart ary invalid or insecuredelegations.
Only agentswith theright to delegatecanactuallymale valid del-
egationsthat changethe accesgights of otheragents.All agents
areheldaccountabldor their actionsbecause¢hey have to signall
servicequeriesandrequestswvith their own private key. As there
is a uniqueprivatekey public key pair, oncean agentsignsa re-
questtheagentcanbe heldaccountableOur infrastructureallows
foreignor unknavn agentsaccessnto the systemusingtrustman-
agementWhenanunknavn agenttriesto registerwith a platform,
the platform checksthe agentscredentials,and decidesits rights
with that platform basedon the securitypolicy. Multiagentsys-
temsareinherentlydecentralizedand it is not possibleto have a
centraldatabasef accessightsor policies. This is nota problem
in our systemasno centralinformationis required. The policy is
enforcedndividually at the entity processingherequestThe pol-
icy is enforcedat two levels; at the platform level, whereaccess
to the AMS andDF is controlledandat the agentlevel, wherean
agentcanspecifywho canaccessts services.

Agentsareableto delegatetheirrightsin acontrolledandsecure
fashion.For example,if agentA delegatessomeserviceto agentB,
andagentB triesto delegatethis serviceto agentC, thenthesecond
delggationwill fail asagentA did not give agentB the ability to
redelgate.

The agentsusea semantidanguagdike DAML+OIL [4] asan
ontologylanguageDAML+OIL is anontologylanguagdor mark-
ing up resourcesandis basicallybeingdevelopedfor the realiza-
tion of the SemanticWel?. The agentsexpresssecurityinforma-
tionincludingcredentialsgelegations,andpoliciesin DAML+OIL
makingit easierfor otheragentdo interpretthemcorrectly

3.1 Security Classification

We classifysecurityinto two levelsdependingon whereit is en-
forced: platform or agent. In platform security the AMS andDF

2W3C's Ontology Wrapper Language (OWL) is based on
DAML+OIL

29

have additionalsecurityfeatures. The AMS candecidewhetheror

not to allow anagentto register searchor useits otherfunctions.
Similarly, the DF canalsodecidewhetherto allow anagentto reg-

ister, modify or searchfor agentsbasedon certainaccessontrol
information. An agentwhile registeringwith a platform,cansend
somesecurityinformationto the AMS specifyingits securitycat-
egory; private secue or open A private agents Agentldentifier
(AID) is not displayedto ary otheragentby the AMS, a secue

agenthasto sendsomeaccesgontrolinformationsothatthe AMS

canfilter request$o theagentandandanopenagents visibleto all

agents Similarly, while registeringits serviceswith aDF, theagent
canchoosea catgory for eachservice. For example,an agentA

canregisterasan openagentwith the AMS andregistertwo ser

viceswith the DF, a GPSservicewhich is openand a navigator
servicewhich is secure.AgentA alsospecifieghatonly agentB,

with certaincredentialscanaccesshe navigatorservice.In agent
security the agentusesa policy to decidehow to further validate
servicerequests.

3.2 Platform Security

In platform securitythe AMS andDF usedistributedtrustman-
agemenprinciplesto authorizerequestgo their services.

3.2.1 SecurityModulefor an AMS

Whenan agentwantsto registerwith the AMS, it signsit’s re-
guestandsendsit to the AMS, alongwith its digital identity cer
tificate. The AMS verifiesthe certificatebasedon therules. The
rulescould be of theform, an entity X of the organizationY with
a certificatefrom trustedCertificateAuthority CA(Y) is valid. Or
therecouldbearule saying for all certificatedrom organizationz,
calculatecertificationpathandverify with the CA. If thecertificate
is valid, the AMS checksthe signature The AMS usesits policies
to decidewhataccessightstheagenthason the platform.

If theagentdoesnot have theright to registerwith the AMS, its
requests denied.If the agentdoeshave theright to registerwith
the AMS, the AMS startsthe handshakingprotocol that is com-
monin PublicKey Systems.t sendshe agenta smallmessagea
nonce.encryptedwith the agentspublic key, andattacheghe plat-
forms certificate,to the addresspecifiedby the requestingagent.
This is not only doneso that both partiescan verify eachother
but alsoin orderto verify theagentdocation,preventspoofingand
securelyexchangeinformation. The agentcannow go aheadand
verify the platformscertificate.It thenrepliesto the AMS with the
samenonceencryptedwith the platformspublic key. On recev-
ing this, the AMS createstrust certificatecontainingthe platform
relatedrights of the agent,the associategbublic key, time validity
andotherrelevant informationand sendsit back. This certificate
is valid only for a shorttime, afterwhich the agenthasto startthe
registrationprocessgain.This periodis directlybasednthelevel
of trustassociateavith theagentor in facttheagents reputationin
the platform. Using a trust certificateenableshe AMS andDF to
skip the recheckingof the agents’credentialsaverytimethe agent
triesto usethe servicef the platform.

After creatingthetrustcertificate the AMS will inform theagent
aboutall the agentsthatare eitherin the opencateyory or the se-
cure category for which the agentfulfills the requiredconditions
for accessDuring the periodof validity of thetrustcertificate the
agentcan make requestdo accesghe AMSs services. Thesere-
guestshave to be signed. The AMS doesnot needto checkall the
credentialof theagentbut only verifiesthattheagenthastheright
to therequestedervice.

3.2.2 SecurityModulefor a DF

After obtaininga trust certificatefrom the AMS of a platform,
theagentcanacceswvariousservicef the AMS andthe DFs. Us-
ing the trust certificate,an agentcanregisterits serviceswith the
DF, if the platformspolicy allows that particularagentto usethe
DF. This serviceregistrationmessagés signedwith theagentspri-
vatekey, andactsasadigital signature This forcesagentgo beac-
countabldor their actions.The DF verifiesthetrustcertificateand
checksthatthe trustcertificateis valid andbelongsto theagent.It
retrievestheagentgublic key from thetrustcertificate andchecks
the signatureof the registrationmessage.If the certificatestates
that the agenthasthe right to register the DF proceedswith the
registration. An agentcanregisterits differentservicesunderdif-
ferentcatgories. This servicedescriptionis alsoin DAML+OIL,
makingthe searchingnore semanticand moreflexible. To query
the DF, theagentsendsa signedquerymessagéo the DF. The DF
verifiesthemessagandthe checkghe cateyory of the servicethat
fulfills thesearchquery the conditionsattachedf asecureservice,
andthe accesgights of the requestebeforesendingbackary re-
sults. Theseresultsareencryptedwith theagentgublickey, which
is associatedvith thetrustcertificate.

Agentscan’delegate’authorizatiorability to theDF if they share
domainontology If anagentcannotusethe DF for makingautho-
rizationdecisionnits behalf,thentheagenthasto containatrust
managemengngineandinterpretits own policies. This malesthe
presencef theenginein anagentoptional,allowing agentgo run
on smaller lightweight, devices. The AMS/DF hasallist of condi-
tionsthatanagentmustsatisfyin orderto contactaparticularagent
or usea particularservice.However the AMS andDF needto un-
derstandheserviceagents® policy or have accesso its knowledge
base.lt is uptothe serviceagentto make surethattheseconditions
areaccurateandconformto its policy. In somecasesthe AMS or
DF cannotunderstandhe associatedonditions. Then, basedon
thepolicy of theplatform,the AMS andDF candecideto rejectall
requestgor the agentor serviceor acceptall requestandforward
themto theappropriateserviceagentfor interpretation.

3.3 Agent Security

The authorizationdecisionscarriedout by individual agentsfor
accesdgo their servicessomprisesigentsecurity

3.3.1 SecurityModulefor Agent

Every serviceagenthastwo modesof operationasan owner of
aserviceandasarequestenf aservice.

Ownerof a service
Securityon the agentsside can be handledin multiple ways. An
agentcandecideto registerits servicesasopenor private on the
DF, sothattheagentitselfis completelyresponsibléor accesgon-
trol. The secondway, is for the agentto catejorizeits servicesas
secue and specifythe accesscontrol conditionsin the DF. If the
agenttruststhe DF completelyit canrely onthe DF to handleac-
cesxontrolandtheagentneednot have a securitymoduleatall. If
the agentdoesnot trustthe DF, it canimplementits own security
modulefor stricteraccessontrol. In this case after the requests
arefilteredby the DF, they canbere-\erified by the serviceagent.

Requesteof a service
After anagentrecevesa matchinglist of servicesasaresultof its
DF query it triesto executeoneof them. Theagentsendsarequest
to the serviceagentand attachests identity certificateand trust
certificate. This messagés encryptedusingthe agentgrivatekey.
Thereceving agentcarriesout similar reasoningasthe AMS, by
goingthroughits certificateverificationrulesto verify theidentity
certificateandtrust certificate. If boththe certificatesarevalid, it

3Theagentcontrollinga serviceis known asserviceagent

30

verifiesthesignaturelt thenusests securitypolicy to decideif the
agentmeetsits requirementdor accessindhat particularservice.
If all thechecksarevalid, thenthereceving agentsendstheresult
backencryptedwith the senderpublic key. Theagentdoesnotgo
throughthe handshakingrocedurebecausehe sendethasa valid
trust certificatefrom the platform. Even after the platform checks
by the AMS and DF, a serviceagentmay decidenot to honora
certainrequestpecaus¢heremaybe certainadditionalconstraints
it requiresthatthe requestingagentfailsto meet.

4. INTER PLATFORM SECURITY

If anagentis alreadyregisteredwith a platform and wantsto
accesshe AMS or DF on anothemplatform,theagentshouldsend
alongwith its identity certificate jts currenttrustcertificate which
containsinformationaboutits accessights. The remoteplatform
decidesthe agentsrights in the normalfashionbasedon its own
securitypolicy, andmay take into consideratiorthe platform that
theagentis currentlyregisteredon.

DF's of differentplatformscanbe accessed they registerwith
eachotherthroughprinciplesof fedeationsof DF [6]. If anagent
is searchingfor a particularservice,andits DF cannotfind ary
matchingservice,the DF will forward the requestwith the trust
certificateto the otherDFsregisteredwith it. TheseDFswill pro-
cesstheagentsequestisnormalandreturntheresults.

5. VERIFICATION OF CREDENTIALS

Credentialsare propertiesof agentsthat are describedn a se-
manticlanguageandsignedby otheragents.Delegationsarespe-
cial credentialandarediscussedn detailin Section6. In orderto
acceptcredentialf otheragents anagentmustbe ableto verify
thesecredentials. Verificationcanbe carriedout in the following
ways

e Simple Verification: In this schemea serviceagentex-
pectsall the credentialsnecessarilyat the time of request.
In orderto useits servicesa requestingagentmustsendall
requiredcredentialsalongwith the requesfor service. The
serviceagentwill checkits knovledge base,and question
otheragentsabouttheir beliefsin orderto verify the creden-
tials. SupposeagentA hasan alarmservicewhich requires
that requesterde AAAI members. The securitypolicy of
agentA alsostatesthatthe agentXYZ shouldbe trustedto
verify AAAI certificates An agentB sendsA arequesto use
theservicealongwith its certificatefrom the AAAI CA. This
certificatestateghatthebearetrof this certificateis amember
of AAAI. AgentA asksagentXYZ to verify the certificate.
If the certificateis valid thenagentB is authorizedo usethe
alarmservice.lf agentB did notsendtherequiredcertificate
or sentaninvalid certificate jts requestvould bedenied.

e Negotiation: Certainserviceagentamayprovide amorein-
teractve requestingnechanismlf therequestedgentdoes
not provide the correctcredentialgo accesghe service the
serviceagentasksthe requesteffor specificadditionalcre-
dentials.For example,aserviceagentA only allowsemploy-
eesof XYZ Pvt. Ltd. to accessts servicesandacceptslele-
gationsfrom theseemplo/ees.AgentB approacheagentA
with a credentialfrom AAAI. AgentA decideghatthe cre-
dentialis notgoodenoughandaskstheagentB to prove that
it is anemploee of XYZ or if B hasa delegationfrom an
emplo/ee. AgentB possessea delggationfrom Bob who is
anemplgeeof XYZ andsendshis delegationto A. A ver

ifies the delegationandthe chainof delegationsanddecides
to authorizeagentB’s request.

e Third Party: Someserviceagentdo nothave theresources
to verify credentialsand so requesttrustedthird partiesto
handlethe verification on their behalf. Supposea trusted
agent,C, did have the resourcesindthe inclination to help
agentA, agentA would sendB’s credentialgo C to beveri-
fied andwould trustC’s responseC could eitherusesimple
verificationor negotiationto verify thesecredentials.

6. DELEGATIONS

An agenthastheability to make ary delegation,but whetherit is
honoreddependon variousfactors,including the securitypolicy,
the agents rights, andthe rights of the agentsaheadt in the del-
egationchain. Agentsarenot preventedfrom makingdelgyations,
but the delegationsby unauthorizedhgentsare considerednvalid.
Only agentswith theability to deleggatecanmalke valid delggations.
Valid delggationschangeaccessightsof otheragents Theright to
delggateis definedmplicitly andexplicitly. Implicitly, anagentcan
delegaterightsto ary serviceit offers. Explicitly, anagentthathas
beengiventheright to delegateby anauthorizecagentcanperform
valid delegations,aslong asthe delegationfulfills the constraints
of the previous delggation. This forms a chainof constraintsthe
agentat theendof the chainmustsatisfyall the constraintsassoci-
atedwith the delegationsin the chain. Our delggationmechanism,
written in logic, verifiesthat the requestingagentsatisfiesall the
constraintof the delegationsbeforeit in the chain.

Our framework allows certainauthorizedagentso delegateac-
cesgights,with restrictionsattachedto otheragents A delegation
usuallyhasconstraintsaattachedsuchasonethatlimits the access
to acertainperiod,or to whomtheright canbere-delgated.A del-
egationconsistof variousinformation;delegator right, constraints
ondelegyatee constrainton execution,constrainton re-delgation
andtime period. By usingconstraintson delegatee the delegator
canspecifywhomto delegateto. For example,a delegationcould
be conferredon all agentswith certificatesfrom a certainCA and
registeredwith a certainplatform. By restrictingwhich of thedele-
gateecanactuallyusetheright, thedelegatorcanpreventwrongful
executionof theright. Constrainton re-delgationallow the dele-
gatorto decidewhethertheright canbere-del@atedandto whom
it canbere-delgated.We have developedrulesthatcapturethisin-
formationandenforcesecurityby checkingtheseconstraintsatthe
right time. We have separatetheconstraint®n executionfrom the
constraintson delggatee to make delegationmoreflexible andits
managemeninorecomplete.

6.1 DelegationManagement

Thoughdelegationis very importantfor the propagatiorof trust,
managingdelegationsin a distributedanddynamicervironmentis
ratherdifficult. Considerthefollowing example,anagent(delega-
tor), who is delggateda certainright, delegatesit to anotheragent
(deleggatee)andgoesdown immediately The delegateeasksto use
the certainresourceand presentdts deleyation certificate. How-
everthisrequestannotbevalidatedbecaus¢he delegators ability
to delggatecannotbechecled.

We suggesthreeschemegor managinglelegations

Delegation Chain The previous examplecanbe solved by mak-
ing the deleggatorattachits own delegationcertificateto the newly
createddelegation beforesendingit to the delegatee. This means
thatevery agentwill have to storea chainof delegationcertificates
leadingto its own delegation, in orderto validateits delegation.
Thisis notfeasiblebecauseachchaincouldbeverylongandthere

couldbeseveraldelegationsfor every agent.To reducethe number
of certificatesn achain,certificatereductioncouldbeused[1], but
the original deleggatormaynotbeaccessible.

CentrlizedDelggation To avoid handlingandprocessinghains
of delggationsall delggationscanbeaddressetb theserviceagent
or the agentplatform responsibldor the serviceagent. However
this scheméhastwo problemsit is rathercentralizecandthedele-
gatormaynotbeableto acces®ithertheserviceagentor theagent
platformatthetime of thedelegation.

Delggationson the Web The last schemeis to continueusing
delggationchains put insteadof storingthechainswithin theagent,
the chainscould be storedon web pages.In orderto prove it has
a certainability, anagentcould point to a certaindelegationon its
delggationpage.This delggationin turnwould referto adelegation
onthepageof theagentwho madethedelggator By traversingthis
delggations the agentplatformand/orserviceagentwould be able
to verify the delegationanddecidewhetheror not to authorizethe
request.

7. TRUSTPERFORMATIVES AND INTER-
ACTION PROTOCOLS

FIPA is basedn speectacts,predicatdogic andpublic ontolo-
gies.Speeclactsarewaysof communicatingr expressingoneself
[18]. A speechactonly succeedsf it is understoody the recip-
ient asintended. However FIPA doesnot includethe speechacts
requiredfor trustmanagementAs part of this securityinitiative,
several speechacts,thatarecommonto distributedtrustdomains,
will bemodeled.In this framevork, agentswill usecertainspeech
actsto explaintheirintent; delegating,requestingtc. For example,
"l delegateto you theability to accessny files for onehour”, or "I
requestyou to delegateto me the useof your workstation”. These
statementgontaina lot of informationthatneedsto be captured.
An ontology groundedin DAML+OIL will be usedto describe
thesespeechacts. This ontologywill enablethe audienceo cor-
rectly interpretthe speechact and understandts purpose. FIPA
Communicatie Acts describea setof "utterances’usedin multi-
agentsystems,and FIPA InteractionProtocolspecifiesthe order
of messagesxchanged. Thoughmostof the communicatiorbe-
tweenthe agentscanbe modeledwith existing FIPA performatve,
we believe certainadditionalperformatvesarerequiredfor agent
securityandtrust.

The performatves that will be addedare RequestPermission,
Delgyate,Requeswerification,andCredentiaRequired.

e RequesPermission
The actionof askinganotheragentfor permissiorto access
acertainservice.

e Delgyate
Theactionof deleggatingto anotheragentor groupof agents
theability to performa certainactionon a certainservice.

e CredentiaRequired
The actionof askingthe recipientto provide additionalcre-
dentials. The contentis the credentialrequiredandthis per
formative is theresponsdo arequestvheretherecipientdid
not provide the correctcredentials.

e RequesWerification
The actionof askingthe recipientto verify credentialssup-
plied by anagentrequestingaccesgo the senders service.

Using existing FIPA communicatre actsandthe performatves
describedbore, we describeheinteractionprotocolsfor trustman-
agementn our system.

Root of trust
ontology

['speech Act D

V—‘—\
[Agent D [obiect D
T

I
Request D

Permission D\ Obligation [Belief D Permission
|

Credentials]‘ Delegate D

CredemtaT
Required

eques!
Verification

Figure 1: Our trust ontology asa classhierarchy

e RequestnteractionProtocol

This interactionprotocol allows the initiator to requestthe
use of anotheragents service. The initiator sendsthe re-
cipientarequesimessageSimilar to FIPA, someresponses
arenot-understoodrefuse,agree failure, inform-done,and
inform-ref [5]. However dependingon the kind of verifica-
tion being performedby the recipient,the responsesould
also include CredentialRequired. The senderwould now
have to resendts requestvith thenew credentialsn orderto
gainaccesdo theservice.

e RequesPermissiorinteractionProtocol
An agentusesthis protocolto requestanotheragentto del-
egatecertainabilities to it. The initiator startsthe protocol
by sendingtherecipienta RequesPermissiormessageThe
responsefrom therecipientincludenot-understoodiefuse,
agreefailure,andDelegate.

e RequesWerificationInteractionProtocol
The initiator usesthis protocolwhenit is unableto verify
somecredentialsandrequiresthe recipientto verify the cre-
dentialsonits behalf. Theinitiator startsthis interactionpro-
tocol by sendinga RequesWerificationmessageThe valid
responseo this messagarenot-understoodiefuse,agree,
failure,inform-done andinform-ref.

8. ONTOLOGIES

Our infrastructureusesontologiesexpressedn DAML+OIL to
represensecurityinformationandpoliciesin amulti-agentsystem.

We have designedanontologyfor trustandsecurityinformation
in this systemwhich is illustratedin Figure One. Theroot of the
ontologyis divided into State,Entity and Action. Statecontains
all informationpertainingto the currentstate. It currentlyhasone
subclassProposition,which is further sub-classifiednto Permis-
sion, Obligation,andBelief. Propositionsare clauseghat have a
truth valuein the system. An Entity could eitherbe an Agentor
anObject. An objectcanbe extendedto definedomainspecificre-
sourcedike credentialsfiles, computersprinters,etc. An Action
is associatedvith a setof Objectsor resources.Speechactslike
RequestandDeleggationsareextensionsof Actions.

The ontology specificto agentsystemsextendsthe main trust
ontology with informationrelatedto FIPA platforms; registeran
agentder@isteranagent,searchcreate agentservice etc. asac-
tions and certificates platform addressnetwork addressnetwork
protocolusedetc. asobjects.Figure Two shavs part of the Agent
ontology

9. POLICY

ThesecuritypoliciesarebasedntheAgentontology Eachplat-
form and agentfollows a securitypolicy. A securitypolicy may

32

containrulesfor verifying certificatesandcredentialsaccesson-
trol, anddelegation. Rulesfor verifying certificatescould specify
which certificateauthoritiesaretrusted,andtheprocedurenvolved
in verifying differentkindsof certificateshasednthe CA, princi-
pal, agentetc. Rulesfor accesontrolwill statethe credentialsan
agentmusthave for a certainaccessight. Thepolicy alsocontains

[rulesthat describethe way delegationsandrevocationspropagate

in thesystemhow re-delgationsarehandledhow prohibitionsaf-
fectaccessontrolanddelegygationsandhow revocationsshouldbe
managed.For example,if a deleggationis revoked, shouldall the
agentghatthe delegateedelegatedto, losethe accessight aswell
or canthey keepit andwhethera prohibitionis given priority over
adelegationwhile decidingaccessights.

Ourdefaultpolicy definescertainrulesaboutthe propagatiorof
delggationsso that all constraintsin the delggation chain are ap-
plied beforeanagentcangainaccesgo a service.If a certainlink
in the delggationchainfails or theright is revoked, the restof the
chainafterthis failed link losesthe accessight aswell. This de-
fault policy alsoincludesrulesfor the mechanism®f credential
verificationandbelief management.

10. PREVIOUS WORK

We have previously developedtwo security systemsbasedon
distributedtrust management an agent-basedupply chainman-
agementapplication[12] and an agent-mediateghenasive com-
putingervironment[13, 19]. During theirimplementatiorwe have
refinedour trustmanagementonceptsanddevelopedseveral pro-
gramsin logic for handlingthe propagatiorof deleggation,andval-
idatingrequests.

10.1 Security for Supply Chain Management
Systems

We successfullyimplementeda trust basedframevork for the
ExtendedEnterpriseCOalitionfor IntegratedCollaboratve Manu-
facturingSystemgEECOMS)project,whichis aimedat providing
a setof technologiedor integratedsupply chain and businessto
businesselectroniccommercg10]. A supply chainmanagement
systemconsistsof groupsof buyersandsellersthat needto open
up their internal systemsto eachotherin a secureway. In other
words,asupplychainmanagemergystemconsistof a network of
heterogeneouagentsthat interactto perform certainactionsthat
may or may not needauthorization.The main problemis guaran-
teeingthe authenticityof requestdetweentheseagents,whether
within acompan or betweeroneor morecompanies.

Our systemsetsup authorizationand delegationrules, so that
the informationin the SCM may be accessednly by authorized
agents. Specialintelligent agentscalled security agents are re-
quiredfor authenticatiorandauthorizatiorwithin a particulardo-
main, and are trustedwithin the compary and by the compans
buyersandsellers.They alsorepresenthecompary in somesense.
Thesecurityagentof acompan enforcethecompary policy. This
policy describegertainrulesfor rights, delegationandfor reason-
ing aboutthem. The policy is not changedrequentlyand usually
involveshumanintervention. Agentswithin a compary possesan
identity certificatethat is signedby a trustedCertificate Author
ity. Agentswithin acompary canbe authenticatedby the security
agentghroughtheir D certificates.

In orderto allow the buyer's emplo/eesto accessertaininfor-
mationwithin its compan, the securityagentof the sellergivesthe
securityagentof the buyer the permissionto accesghatinforma-
tion, andthe ability to delegatethis right. To propagatehis trust
within its own compalry, the seller’s securityagentdelegatesthis
right to someof its emplo/eesbasedon the policy. Dependingon

=?xml version="1.0" encoding="UTF-8" 2>

<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmins:damli="http://www.daml.org/2001/03/daml+oil#"
xmins:dtrust = "http://daml.umbc.edu/ontologies/trust-ont:
>
<daml:Ontology>
<damil:Class rdf:ID="Date">
<daml:equivalentTo>http://daml.umbc.edu/ontologi
calendar#Date</daml:equivalentTo>
</daml:Class>
<daml:Class rdf:ID="String">
<daml:equivalentTo>http://www.daml.org/2001/03,
daml+oil#Literal</daml:equivalentTo>
</daml:Class>
</daml:Ontology=>

<!-- SubClass of Objects; Certificate -->
<rdfs:Class rdf:ID="Certificate">
<rdfs:subClassOf rdf:resource="dtrust:Object"/>
<rdfs:label>Certificate</rdfs:label>
<rdfs:comment>
This subclass contains information about Certifig
</rdfs:comment>
<daml:Restriction>
<daml:onProperty rdf:resource="dtrust:Affiliatio
<daml:toClass rdf:resource="#Organizations"/>
</daml:Restriction>
</rdfs:Class>

<1-- Properties of Certificates -->
<rdf:Property rdf:ID="CA">
<rdfs:domain rdf:resource="dtrust:Agent"/>
</rdf:Property>
<rdf:Property rdf:ID="Principal">
<rdfs:domain rdf:resource="dtrust: Agent"/>
</rdf:Property>
<!-- more properties
<!-- SubClass of Certificates; ID, Trust, Delegation -->
<rdfs:Class rdf:ID="IDCertificate">
<rdfs:subClassOf rdf:resource="#Cerificate"/>
<rdfs:label>IDCertificate</rdfs:label>
<rdfs:comment>
This subclass contains information about ID Certificg
</rdfs:comment>
</rdfs:Class>
<rdfs:Class rdf:ID="TrustCertificate">
<rdfs:subClassOf rdf:resource="#Cerificate"/>
<rdfs:label>TrustCertificate</rdfs:label>
<rdfs:comment>
This subclass contains information about Trust
Certificates
</rdfs:comment>
</rdfs:Class>
<rdfs:Class rdf:ID="DelegationCertificate">
<rdfs:subClassOf rdf:resource="#Cerificate"/>
<rdfs:label>DelegationCertificate</rdfs:label>
<rdfs:comment>
This subclass contains information about Delegation|
Certificates
</rdfs:comment>
</rdfs:Class>

b

/>

tes

<I-- Properties for Trust Certificate -->
<rdf:Property rdf:ID="Roles">
<rdfs:domain rdf:resource="dtrust:Object"/>
</rdf:Property>
<rdf:Property rdf:ID="Publickey">
<rdfs:domain rdf.resource="dtrust:Object"/>
</rdf:Property>
<rdf:Property rdf:ID="StartDateTime">
<rdfs:domain rdf:resource="#Date"/>
</rdf:Property>

eskrdf:Property rdf:ID="EndDateTime">

<rdfs:domain rdf:resource="#Date"/>
</rdf:Property>
<I-- more properties ...-->
<!-- Subclass of Object -->
<rdfs:Class rdf:ID="Organization">
<rdfs:subClassOf rdf:resource="dtrust:Object"/>
<rdfs:label>Organization</rdfs:label>
<rdfs:comment>
This subclass contains information about organizations
</rdfs:comment>
</rdfs:Class>

atesl-- Subclass of Actions; RegisterWithAMS -->

<rdfs:Class rdf:ID="RegisterWithAMS">
<rdfs:subClassOf rdf:resource="dtrust:Action"/>
<rdfs:label>RegisterwWithAMS</rdfs:label>
<daml:Restriction>
<daml:onProperty rdf:resource="dtrust:Actor"/>
<daml:toClass rdf:resource="dtrust: Agent"/>
</daml:Restriction>
</rdfs:Class>

<!-- Properties of RegisterWithAMS -->
<rdf:Property rdf:ID="IDCertificate">
<rdfs:range rdf:resource="#IDCertificate"/>
</rdf:Property>
<rdf:Property rdf:ID="RegisterMessage">
<rdfs:range rdfirresource="#String"/>
</rdf:Property>
<I-- more properties ... -->
<!-- Subclass of Actions; QueryDF -->
<rdfs:Class rdf:ID="QueryDF">
<rdfs:subClassOf rdf:resource="dtrust:Action"/>
<rdfs:label=QueryDF</rdfs:label>
<daml:Restriction>
<daml:onProperty rdf:resource="dtrust:Actor"/>
<daml:toClass rdf:resource="dtrust: Agent"/>
</daml:Restriction>
</rdfs:Class>

<!-- Properties of QueryDF -->
<rdf:Property rdf:ID="TrustCertificate">

<rdfs:range rdf:resource="#TrustCertificate"/>
</rdf:Property>
<rdf:Property rdf:ID="QueryString">

<rdfs:range rdf:resource="#String"/>
</rdf:Property>

<I-- more properties ... -->

</rdf:RDF=>

Figure 2: This imageshows a portion of the Agent SystemOntology. Registration of an agent,deregistration of an agent,querying a
DF, etc. areall subclassesf the Action classin our Trust Ontology. Similarly, certificates,addressesprganizationsetc. are subclasses

of the Object classin our Trust Ontology.

the previous delggations,the emplo/eescan further delegatethis
right to otheremplgyees,forming a chain of delegationfrom the
buyer’s securityagentto the seller’s securityagentto the seller’s
emplo/ees.If atary pointadelggationfailsor is revokedtheaccess
cannotgo through. The sameholdsif the situationis reversedand
thesuppliergivesthebuyeraccess$o someof its resourcesDelega-
tion chainsshouldalwaystracebackto a securityagentto bevalid.
Securityagentsareresponsibldor all accessesriginatingfrom its
compay andact asgatevays. All accesgo information outside
thecompaly mustgo througha securityagent.This agentwill au-
thenticatethe requestercheckthe delegationchainandverify that
therequestehastherightto accessherequestednformation. The
securityagentcreatesanauthorizatiorcertificatefor therequesting
agentthattherequestingagentcanusefor access.

This framework led usto view trustmanagemenasa very ef-
fective methodfor resolving several issuesrelatedto securityin
distributedsystems.

10.2 Security for Pervasive Systems

We have designedcandimplemented/igil, asecurityframework,
which provides securityand accesscontrol in penasive systems
[13]. Vigil hasbeenoptimizedto work in SmartSpacesvhich is
a specificinstanceof penasie ervironments.A SmartSpacervi-
ronmentprovidesservicesandresourcesthatuserscanaccessis-
ing someshortrangewirelesscommunicationsuchasBluetooth,

IEEE 802.11,0r Infrared,via ary hand-helddevice, within a Vigil
canalsobe usedin wired systems put the focal point of our re-
searchs thesecurityin dynamic,mobilesystemsVigil is designed
sothatclientscanmove, attach,detach andre-attachat any point
within the framework.

Our infrastructureis designedo minimize the load on portable
devicesand provide a mediaindependeninfrastructureand com-
municationprotocol for the provision of services. Vigil, in ad-
dition to solving the issueof controlling accesgo servicesin a
SmartSpacelsoaccommodatesserghatareforeignentities,that
is entitiesthat are not known to the systemin advance. In mary
corventionalsystemsaccesgights are static; agentsare not able
to requespermissiorto access Serviceto which they arenot pre-
authorized. To overcometheseissues,we have incorporatedthe
Vigil SecurityAgent This SecurityAgentallows agentgo askfor
accespermissiomndotheragentsto actuallydelggaterights that
they have. This extendsthe securitypolicy in a securemanneras
only agentghathave the permissiorto deleggate,canactuallydele-
gate.

TheVigil systenis dividedinto SmartSpacesandeachSmartSpace

usesoneor more securityagentsto maintainsecurity The Secu-
rity Agentis responsiblefor maintainingdistributed trust in the
Vigil system. It enforcesthe security policy of the organization
or SmartSpacdt interpretsthe policy to provide controlledaccess

33

to Servicesand usesdistributed trust as a more flexible and eas-
ily extensiblepolicy basednechanismThereis generallyaglobal
policy associatedvith the organizationanda local policy associ-
atedwith a SmartSpace.All securityagentsin the organization
will enforcetheglobal policy andwill additionallyenforcea local

policy, which is specificto the Space.A policy includesrulesfor

role assignmentrulesfor accessontrol, andrulesfor delegation
andrevocation.

TheSecurityAgentusesaknownledgebaseandsophisticatedea-
soningtechniquego handlesecurityanddistributedtrust. On ini-
tialization, it readsthe policy andstoresit in a Prologknowledge
base. All requestsare translatednto Prolog, and the knowledge
baseis queried.The policy containspermissionsvhich areaccess
rightsassociatedvith roles,andprohibitionswhich areinterpreted
asnegative accessights. Thepolicy alsocontaingulesfor role as-
signmentsaccessontrolanddelggation. A userhasthe ability to
accessa serviceif theuserhasnot beenprohibitedfrom accessing
theserviceby anauthorizedentity andif it eitherhastherole based
accessight or if someauthorizecdentity hasdelegatedthis right to
it. An entity canonly delegateanaccessight thatit hasthe ability
to delegate.

Whena userneedsto access servicethatit doesnot have the
right to accessijt requestanotheruser who hasthe right, or the
serviceitself, for thepermissiorto accesshe Service.If the entity
requestedioeshave the permissionto delggatethe accesgo the
Service, the entity sendsa delegate messagesignedby its own
privatekey, alongwith its certificate to the SecurityAgentandthe
requester The Security Agent checksthe roles of the delegator
and the delegateeand ensureghat the delegator hasthe right to
delegate andthatthe deleggationfollows the securitypolicy. It then
addsthe permissiorfor the Clientto accesghe Service,but setsa
very shortperiodof validity for the permission.Oncethis period
is over, The SecurityAgenthasto reprocesshedelegation. Thisis
very usefulincaseof revoked certificates delegationsor rights. If
ary oneentity in the delggationchainlosesthe permissionthenit
is propagatediown the chainvery quickly, till everyoneafterthe
entity losesthe ability. Everytimea ServiceBroker asksaboutthe
delegatedrights of the client, the SecurityAgent sendsbackonly
valid permissions.

11. SUMMARY

In this paperwe presenthe designfor a securityframework for
multi-agentsystemsbasedon trustmanagementhe delegation of
permissionsandcredibility. We believe that otherinterestingcon-
ceptslik e reputationsand obligationscanalsobe built in oncethe
basicframevork is developed. This approachs particularly use-
ful in openervironmentin which agentsmustinteractwith other
agentswith which they are not familiar. Researchn securityfor
multi-agentsystemftentendsto focuson a limited subsebf the
securitychallengeof MAS. We believe our modeladdresseser-
eralprominentsecurityissuesassociatedavith theseagenterviron-
mentsandprovidesa comprehense trustbasedsolution.

12. REFERENCES

[1] TuomasAura. DistributedAccess-RightdManagementsiith
DelegationsCertificates Secue InternetProgramming
page211-2351999.

[2] M. Blaze,J.Feigenbaumy.loannidis,andA. Keromytis.
TheRole of TrustManagemenin DistributedSystems.
Secue InternetProgramming LNCSvol. 1603,Springer,
Berlin, 1999,pages185-210 1999.

34

[3] CarlEllisonandBruceSchneierTenRisksof PKI: What
You're Not Being Told About PublicKey Infrastructure.
ComputerSecurityJournal, 16,2000.

lanHorrocksetal. DAML+OIL LanguageSpecifications.

http://www.daml.og/ 2000/12/daml+oil-inde, 2001.

Foundatiorfor IntelligentPhysicalAgents.Interaction

ProtocolSpecifications.

http://www fipa.og/repository/ips.html.

Foundatiorfor IntelligentPhysicalAgents.FIPA

Specificationhttp://wwwfipa.og/spec/2001.

Foundatiorfor PhysicallntelligentAgents.FIPA 98

Specificationg?art 10, Version1.0,AgentSecurity

Management].998.

A. Herzbeg, Y. Mass,J.Mihaeli,D.Naor, andY. Ravid.

AccessControlmeetsPublicKey Infrastructure Or

AssigningRolesto Strangersin Proceeding®f 2000IEEE

Symposiunon Securityand Privacy, Oakland,May 200Q

2000.

Yuh-JongHu. Somethoughtson AgentTrustandDelegation.

In Proceeding®f Autonomou#gents2001, 2001.

IngersollRand(Woodcliff Lake, NJ) andQAD (Carpenteria,

CA) andBerclainGroup(Schaumbrg, IL) andIBM

Corporation(SomersNY). CIIMPLEX Consortium,

Consortiuntor IntegratedintelligentManufacturing

PLanningandEXecution.http://www.ciimplex.org, 2000.

LalanaKagal, Tim Finin, andAnupamJoshi.Trustbased

securityfor penasive computingerviroments.In IEEE

CommunicationdDecembef001, 2001.

[12] LalanaKagal, Tim Finin,andYunPeng A Framavork for

DistributedTrustManagementin Proceeding®f [JCAI-01

Workshopon AutonomyDelegationand Control, 2001.

LalanaKagal,Jefrey Undercofer, Filip Perich,Anupam

Joshi,andTim Finin. A SecurityArchitectureBasedon Trust

Managementor Penasive ComputingSystemsin

Proceeding®f GraceHopperCelebation of Womenin

Computing2002 2001.

NinghuiLi, BenjaminN. Grosof,andJoanFeigenbaumA

PracticallyimplementableandTractableDelegationLogic.

In Proceeding®f IEEE Sympon Securityand Privacy, held

Oakland,CA, USA,May 200Q 2000.

YosiMassandOnn ShehoryDistributedTrustin OpenMulti

AgentSystemsln Workshopon DeceptionFraudand Trust

in AgentSocietiesAutonomou#gents200Q 2000.

[16] M.Blaze,J.FeigenbaunandJ.Lag. Decentralizedrust
Managementn Proceeding®f IEEE Confeenceon
Privacyand Security 1996.

[17] StefanPosladandMoniqueCalisti. TowardsImproved Trust
andSecurityin FIPA AgentPlatforms.In Autonomous
Agents2000Workshopon DeceptionFraudand Trustin
AgentSocietiesSpain,200Q 2000.

[18] J.R. SearleSpeechActs: An essayin the Philosophyof
LanguageCambridgeJniversity Press,1969.

[19] Jeferey Undercofer, Andrej Cedilnik, Filip Perich,Lalana

Kagal,andAnupamJoshi.A Securdnfrastructurefor

ServiceDiscovery andManagemenin Penasive

Computing ACM MONET: TheJournal of Speciallssueson

Mobility of SystemdJsers, Data and Computing 2002.

H.C.WongandK. SycaraAdding SecurityandTrustto

Multi-Agent Systemsin Proceeding®f Autonomou#gents

'99 Workshopon DeceptionFraud,and Trustin Agent

SocietiesMay, 1999,pp.149- 161, 1999.

(4]
(5]

(6]

(7]

(8]

9]

[10]

[11]

[13]

[14]

[15]

[20]

Adapted Role-based Access Control for MARISM-A using
SPKI Certificates

G. Navarro
Dept. of Computer Science
Universitat Autbnoma de

S. Robles
Dept. of Computer Science
Universitat Autbnoma de

J. Borrell
Dept. of Computer Science
Universitat Autobnoma de

Barcelona Barcelona Barcelona
Edifici Q - 08193 Bellaterra, Edifici Q - 08193 Bellaterra, Edifici Q - 08193 Bellaterra,
Spain Spain Spain

gnavarro@ccd.uab.es

ABSTRACT

We present an access control method for mobile agent sys-
tems. It is based in role-based access control and trust man-
agement and provides a flexible and scalable method to con-
trol the access to resources. It uses roles and allows the
delegation of authorizations to mobile agents. The method
uses SPKI to implement the role system and the delegation
of authorizations. It is part of the MARISM-A project, a
secure mobile agent platform for Sea of Data (SoD) appli-
cations. We also show its functionality with an example
application based in the IST project INTERPRET. It is a
medical imaging SoD application, and we provide a suitable
solution to control the access to the data.

Keywords
Mobile Agents Security, Role-based Access Control, SPKI.

1. INTRODUCTION

Mobile agent systems are gaining popularity in the last years,
allowing the development of new services and applications.
Some applications, which are difficult to implement with
more traditional programing paradigms, can now be easily
implemented with mobile agent systems. One of these ap-
plications are known as Sea of Data (SoD), applications that
need to process huge quantities of distributed data.

With mobile agent systems, we do not need to send the data
across a network and centralize all the data processing. In-
stead, the code is executed where the data is located. The
initial launching platform does not need to be always on-line
to access the remote resources, so the user may be discon-
nected during the execution of the application. It is also
possible to parallelize the execution of processes allowing a
high degree of scalability.

One of the most important challenges of mobile agent sys-
tems is the security. An important security service that
needs to be achieved, specially in SoD applications, is the
resource access control. We need a lightweight, flexible and
scalable method to control the access to data and resources
in general. Traditional methods are normally based in the
authentication of global identities (X.509 certificates). They
allow to explicitly limit access to a given resource, through
attribute certificates or ACLs. So they also require a certi-
fication authority and a centralized control.

Sergi.Robles@uab.es

35

Joan.Borrell@uab.es

An alternative to implement the access control are the au-
thorization infrastructures. These infrastructures are based
on trust management and allow to assign authorizations
(permissions or credentials) to entities and delegate trust
from one entity to another. One of these infrastructures is
the Simple Public Key Infrastructure (SPKI) [6], which seem
to be the most accepted. We think that SPKI provides a
good base to implement the access control method. There
are existing security frameworks providing SPKI function-
alities [10], and it is probably the most standard solution to
implement trust management mechanisms such as the dele-
gation of authorizations. There is also some propositions to
use authorization infrastructures to implement access con-
trol methods [2], [11].

We present a resource access control method for mobile
agent systems. It is based in roles and trust management.
It allows to control the access to resources based on role
membership, as in systems such as Role-base Access Con-
trol (RBAC) [14], [18] , which facilitates the management of
the access control. An important feature of our model, not
provided by general role-based access control, is the possi-
bility of delegating trust to manage and control the access.
This way, it does not need a certification authority or other
trusted third parties. It makes the system scalable, and
allows the distribution of some of the main tasks for con-
trolling and managing the access.

The particularities of mobile agent systems introduce some
restrictions and limitations, not found in more classical sys-
tems (distributed or not). Specially when considering the
security involved in a mobile agent. Our model allows to
authorize a mobile agent to access a given resource and con-
trol its access with quite flexibility. The mobile agent does
not need to carry any kind of information with regard to
the resource access. This avoids the inconveniences of stor-
ing sensitive information in the mobile agent.

The model is going to be implemented in the MARISM-A
(An Architecture for Mobile Agents with Recursive Itineraries
and Secure Migration) project [3], a secure mobile agent
platform for SoD applications. To clarify and explain our
proposal, we will explain an example application based in
the IST project INTERPRET (International Network for
Pattern Recognition of Tumors Using Magnetic Resonance)

[1].

In Section 2 of the paper we introduce the environment of
our proposition. Section 3 gives a brief overview of SPKI.
We present our model in Section 4 and the example applica-
tion in Section 5. Section 6 explains the main functionality
of the proposed model and finally, Section 7 contains our
conclusions.

2. MARIMS-A EXTENSION

As said before, the proposed access control model is an ex-
tension of the MARISM-A platform [17]. MARISM-A is a
secure mobile agent platform implemented in Java. It is im-
plemented on top of the FIPA-OS system [7], which follows
the standards proposed by FIPA [8].

The basic element of the MARISM-A platform is the agency,
the environment for the execution of agents. An agency con-
sists of a directory service, an agent manager and a message
transport service. An agent system has several agencies dis-
tributed on a network. Each agency in controlled by an
entity (its owner).

Agents in MARISM-A can be mobile or static, depending
on the need of the agent to visit other agencies to fulfill
its task. There are several types of mobile agents accord-
ing to the characteristics of its architecture: basic or recur-
sive structure, plain or encrypted, itinerary representation
method, etc. Agents can communicate each other through
the agency communication service.

All mobile agent architectures in MARISM-A share some
basic aspects, such as the differentiation of internal parts
and migration mechanisms. A mobile agent consists of code,
data, state, and an explicit itinerary. Code is the set of in-
struction describing the execution of the agent. Data is an
information storage area that can be used by the agent at
any moment for reading and writing and goes with it all the
time. Results of executions are stored in this area, normally
using some convenient protection mechanisms. State is re-
served to store the agent information related with its state.
Explicit itinerary is a structure containing all agencies that
are going to be visited by the agent on its life cycle [13].
Itineraries consist of several basic structures: sequences, sets
and alternatives. These structures can be combined to build
complex itineraries. In a sequence, the agent will migrate to
each agency one after the other. In a set, a group of agencies
will be visited by the agent in no special order. On the other
hand, only one agency of those listed in an alternative will
be visited by an agent, depending on some conditions.

MARISM-A considers a minimal security infrastructure to
protect the communications between agencies. All the agen-
cies are registered in a CA, and we use SSL to provide both
confidentiality and authentication for agency communica-
tions.

It is important to assume that agencies untrust each other.
Therefore, they might try to modify results carried by the
agent, or to gain knowledge about its itinerary, to favor
themselves to the detriment of the rest. It is also reasonable
to assume that agencies are not malicious and they do not
seek to adversely affect the owner of the agent (the client),

36

or the agent itself.

From now on, we will use the following notation:

e E;(m): encryption of m using a symmetric cipher with
i’s secret key.

e P;(m): encryption of m using an asymmetric cipher
with ¢’s public key.

e Si(m): signature of m using 4’s private key.
e hash(m): hash function of m.

e hash;(m):
key.

keyed hash function of m using i’s secret

Subsections 2.1 and 2.2 introduce the architecture of the
static agents and mobile agents with explicit itinerary as an
extension to MARISM-A mobile agents.

2.1 Static Agents
A MARISM-A static agent has the following form:

Agent = ControlCode, State, Code, Data

Because agent control code is in the agent itself, it is indif-
ferent for the platform to deal with mobile or static agents.
There are not many words to say about security in static
agents. Communication and interface with other agents are
provided by secure services of the agency. Data protection
is assured by the agency too, and there is no itinerary to
protect here.

2.2 Mobile Agentswith explicit itinerary
Agent code is split into several pieces in this architecture.
There is a main code that will be executed in all agencies
(Common Code), and as many code fragments as agencies
are in the itinerary, each one to be executed in a particu-
lar agency (Local Code). This feature makes MARISM-A
very useful in some types of application where execution is
context dependent. We consider the following mobile agent
architecture:

Agent; = PubKey,, ControlCode, StateData,
CommonCode, GlobalData, Itinerary
Itinerary = (LocalCodei, LocalDatas, Agenciesi), ... ,

(LocalCode,, LocalData,, Agenciesy)

Agencies; is the agency (or agencies, depending on the type
of itinerary) the agent is going to visit (migrate) next. The
agent that is sent to the next hop of the itinerary (Agent; 1)
has the same structure. CommonCode is executed by all
agencies when the agent immigrates and before the specific
LocalCode. Programming is simplified by using this com-
mon code to include the non agency dependent code only
once. The control code in the agent deals with the functions
of agent management, in this case extracting the relevant
parts of the agent. PubKey, is a public key provided by the
owner.

It might be interesting to protect integrity and secrecy of
data that has been written in some agency. In an e-commerce
application, for instance, where agencies represent shops and
agents act on behalf of buyers, it might be necessary to pro-
tect offers from rival shops. The method to provide the
secrecy and integrity required for this data in this agent ar-
chitecture is based on a hash chain. Some of the data area
is reserved to store results from executions (Results Data).
Results are not stored plain, but they are firstly encrypted
using agent’s owner cryptographic information. Only the
owner of the agent will be able to read these results. Once
the result has been written a hash of the Result and pre-
vious hashed information is calculated, signed and written
also. This hash has information about the identity of next
agency in the itinerary, so that no agency can neither modify
the result area nor remove some result. Each agency verifies
during immigration that all hashes in the Results Data are
correct. The format of the Results Data is:

Results Data = P, (nil, Id1), So(hash(P,(nil, Idy))),

PO(R1, Idz),Sl(hash(Po(Rl,Idz))),

P, (Rz, Ids), Sz(hash(Po(Rz, Idg))), ey
)

P,(Rn,Id,), Sn(hash(Py(Rn, Id,)))

where o is the owner of the mobile agent; R; is the result of
agency ¢ and Id; is the identifier of the agency i.

We also need a way to ensure the agent’s integrity. The
owner, before sending the agent, computes a keyed hash of
the Control Code, the Common Code and the Itinerary of

the agent (hashk, (ControlCode, CommonCode, Itinerary)).

Then, when the agent finishes its execution, the owner can
verify the agent’s keyed hash.

To protect the itinerary we use the following encryption
schema:

Agent;= PubKey,, ControlCode, StateData,
CommonCode, GlobalData, Itinerary,
hashxk, (ControlCode, CommonCode, Itinerary)
LocalStructures= E;(LocalCode;, LocalData;,

Agenciesi, tripmark), ... ,
E,(LocalCode,, LocalData,,
Agencies,,, tripmark)

where tripmark is usually a timestamp or nonce, which
identifies the agent journey and prevents replay attacks. As
we will see, the encryption is performed by the agency itself
before the whole agent is constructed. So the symmetric
key is only used by the agency and it does not need to be
distributed. Note that the keyed hash in the agent is only
useful to the owner, thus it does not need to be included in
the mobile agent. We show it in the agent definition just for
clarity reasons.

A variant of this agent is the mixed one, where the list of
information for agencies is scrambled. This makes it not
possible to know which is the part of the agent that will be
executed on which agency.

37

3. SPKI

The base to our proposal is SPKI (more formally named
SPKI/SDSI). It is an infrastructure which provides an au-
thorization system based in the delegation of authorizations
and a local name model. It provides mainly two kind of
certificates, authorization and name certificates. Any indi-
vidual, software agent or active entity in general is called
a principal. It is a key-oriented system, each principal is
represented and may be globally identified by its public key.
We can say that in SPKI a principal is its public key. Since
it does not need a certification authority, each principal can
generate and manage its keys. A key is a generic crypto-
graphic key pair (public and private). Currently the SPKI
specification supports RSA and DSA keys. The representa-
tion format used by SPKI is S-expressions [16].

An authorization certificate has the following fields:

e Issuer: principal granting the authorization.
e Subject: principal receiving the authorization.

e Authorization tag: specific authorization granted by
the certificate.

e Delegation bit: if it is active, the subject may forward
delegate the authorization received.

o Validity specification: specifies the validity of the cer-
tificate through a time range and on-line tests.

It is signed by the issuer. The on-line tests from the valid-
ity specification field, provide the possibility of checking, at
verification time, the validity or revocation of the certificate.

In a normal situation there will be a principal controlling
a resource, which delegates an authorization. The autho-
rization may be further delegated to other principals. If a
principal wants to access the resource, it needs to provide
an authorization proof. Te proof is a certificate chain, which
binds the principal controlling the resource to the one re-
questing the access. To find this certificate chain there is a
deterministic algorithm, Certificate Chain Discovery Algo-
rithm[5], which finds the authorization proof in polynomial
time.

In SPKI a principal may have a local name space and define
local names to refer to other principals. To define a name, a
principal issues a name certificate. It has an issuer, subject,
validity specification, (just as an authorization certificate)
and a name. The issuer defines the name to be equivalent to
the subject. For example a principal with public key K may
define the name Alice to be equivalent to the the principal
with public key K4. Now K can refer to the principal K4
by the name Alice instead of the public key. Such a name
certificate can be denoted as:

K Alice — Ka

meaning that K defines the name Alice in its local name
space to be equivalent to K4. If a principal wants to refer
to a name defined in another name space, it just has to add

the local name space owner’s public key to the name as a
prefix. When we say K4 Alice, we mean the name Alice
defined in K 4’s local name space.

SPKI also provides the ability of defining compound names.
Names that refer to other names which may also reference
other names and so on. For example, the principal Kp can
define the following name in its local name space:

Kg employee — K Alice

It defines the name employee to be equivalent to the name
Alice defined in K’s local name space. Note that it is refer-
ring to K4 without knowing it.

This is a key concept in our proposal since we will consider
a role as a SPKI local name.

4. OUR ACCESSCONTROL MODEL

One of the first problems we found when planning the au-
thorization model, is if the mobile agents should have a
SPKI key and be considered as principals. A mobile agent
cannot trivially store a private key, so it cannot perform
cryptographic operations such as digital signatures. There
are some propositions to store semsitive information (pri-
vate keys) in mobile agents [15]. But the problem arises
when the mobile agent uses the private key to compute a
cryptographic operation. The agency where the agent is in
execution will be able to see the private key. As a result we
consider that a mobile agent should not have a private key.

Our solution is to delegate authorizations directly to the
agent. This way the mobile agent does not need to carry
any kind of authorization information, making the agent
more simple and lightweight. This issue will be discussed in
Section 6.2.

The main components of the access control method can be
seen as independent modules. Each module is implemented
as a static agent, has a SPKI key, and it is considered as a
SPKI principal. The modules are:

Authorization Manager (AM) it manages the delega-
tion of authorizations, issuing SPKI authorization cer-
tificates. It follows a local authorization policy.

Role Manager (RM) it manages the roles (mainly the
role membership) by issuing name certificates. It fol-
lows a local role policy.

Certificate Repository Manager (CRM) it manages a
certificate repository. Provides services such as certifi-
cate chain discovery.

Resource Manager (DM) it is an authorization manager,
which controls a resource (data), it has to verify re-
source access requests. Normally its authorization pol-
icy will be quite restrictive, delegating to an authoriza-
tion manager the responsibility of performing complex
authorization tasks.

38

Figure 1 shows a simple schema of the model with two
DMs, an AM, a RM and a CRM. The RM defines the roles
and determines its membership. The DMs delegate the au-
thorizations related to the resources to the AM, and the
AM delegates authorizations to the roles. Each static agent
stores the issued SPKI certificates in the certificate reposi-
tory through the CRM (denoted by broken lines).

4.1 Authorization Manager (AM)

The main functionality of the AM is to provide authoriza-
tion certificates under request. To obtain an authorization
certificate, a principal sends a request to the AM with the
specific authorization, it wants to obtain. Then the AM de-
cides whether to issue the certificate or not, and under what
conditions it has to be issued. To do that, it follows its local
authorization policy. Since the policy is local to the AM
agent, it does not need to follow any specification and its
format is implementation dependent.

We propose an authorization policy, described as a SPKI
ACL, where each rule can be expressed as an ACL entry in
S-expression format. A SPKI ACL entry is an authorization
certificate without the issuer and it does not need to be
signed because it is local to the AM and stored in secure
memory. It has the following fields:

e Subject: the principal receiving the authorization. It
may be a role or another AM.

o Authorization tag: determines the specific authoriza-
tion that the subject can obtain. SPKI allows quite
flexibility to specify the authorization tag with S-ex-
pressions.

e Delegation bit: determines whether the subject may
receive the right to delegate the authorization or not.

e Validity specification: allows to limit the authoriza-
tion to a time range, and include some on-line tests to
verify the validity or revocation of the authorization
certificate.

To be more specifics, the AM will receive authorization del-
egation requests from a RM or another AMs. It has to
delegate authorizations to roles or to other AM which will
finally authorize roles.

4.2 Role Manager (RM)

The RM is responsible for assigning and managing roles,
and determines the role membership. The use of roles facili-
tates the access control management and the specification of
policies. The main idea is to exploit the advantages of Role
Based Access Control (RBAC) [14] and trust management.
The RM assigns a role by issuing a SPKI name certificates
following its local role policy. It can also assign a role to a
role defined by another RM, thus allowing the delegation of
role membership management. Section 6.1 details how roles
are assigned and used.

Each RM has a local role policy which determines what roles
does it manage. It also includes rules to determine if a given
principal requesting a role membership has to be granted or

Local

authorization
policy

Local
authorization

i role polic
policy Role-A ied
Define

Delegate role
Delegate authorizations
authorizations Certificat
Delegate Define ertificate
authorizations 47 role RM Repository
Delegate
authorizations N Delegate
authorizations Define

e

Local

role

Local

authorization
policy

Figure 1: Authorization modules

not. If we choose to describe the role policy as a SPKI
ACL, it is quite similar to an authorization policy. Now the
subject of the SPKI ACL entry is a principal or another
role and the authorization tag determines the role that the
subject can have. This local policy also provides rules for
the RM to define role hierarchies an constraints over the
user assignment to roles if needed.

4.3 Certificate Repository Manager (CRM)

A CRM implements a certificate repository. For example,
one agency may have one CRM to collect all the certificates
issued by agents inside the agency. The CRM provides the
repository and all the services needed to query, store or re-
trieve the certificates in the repository. It also provides a
certificate chain discovery service. A principal can make a
query to the CRM to find a specific certificate chain. This
way we solve the problems derived from certificate distribu-
tion and leave the task to perform chain discoveries to the
CRM and not to the other principals. It decreases the com-
munication traffic, certificates do not need to travel from
one principal to another and reduces the task that generic
principals need to perform.

4.4 Resource Manager (DM)

The main task of a DM is to control the access to a re-
source (data). It holds the master SPKI key to access the
resource, delegates authorizations to AMs, and verifies that
an agent requesting access to the resource has the proper
authorization. Another important feature of a DM is to is-
sue Certificate Result Certificates (CRC) to agent hashes,
see 6.2.

As it has to delegate authorizations issuing authorization
certificates it also acts like a AM and follows a local autho-
rization policy. But this policy is much more restricted. A
DM only has to issue authorization certificates to AMs and
a special certificate to mobile agents (see 6.2), which are
quite straightforward operations.

5. EXAMPLE APPLICATION
This example is derived from the project IST-1999-10310
INTERPRET [1]. The example is going to be developed us-

ing the MARISM-A platform. Consider a medical SoD ap-
plication for radiology images. There are several hospitals,
research centers and companies with a radiology department
which produces some kind of sensitive, and possibly expen-
sive, radiology images such a magnetic resonances or high
resolution radiologies. Each center organizes the data in a
database accessed by at least one agency with DMs. The
application may provide the ability for clients to process the
distributed data in a variety of ways, for example testing
a classification algorithm. The owner of the data may also
provide classification services, such as a trained classifica-
tion algorithm, which a client may use to classify a reduced
set of data provided by herself.

The reason for using a mobile agent approach in this appli-
cation, is due to the high quantity of distributed data, which
is difficult to centralize. Also because medical data normally
contains some sensitive information, which the hospitals are
normally not allowed to give it to someone else. That is, a
mobile agent processing the data, may get back to the client
with the obtained results, but not with the data.

‘We will consider each participating entity as a principal. A
principal may be a static agent or an individual (normally
the owner of a mobile agent) with its own SPKI key. We
consider three kinds of principals, data producers, data con-
sumers and process consumers:

e data producer: updates the database, adding new im-
ages or replacing existing ones.

e process consumer: provides a reduced set of data, and
wants to use some processing service provided by the
agency (normally a complex trained algorithm such as
a classification one).

e data consumer: it provides a code to be executed with
the data provided by the agency.

A simple definition of roles for the example application may
be:

e physician: authorized as data and process consumer
for all the resources.

e crternal_physician: authorized as process consumer for
a reduced set of data.

o radiography-technologist: authorized as a data provider.

e cxternal_researcher: authorized as data consumer for
a restricted set of data.

These roles may be hierarchically extended, for example as
radiography_technologist, there may be radiographer, which
provides only radiographies and mr_technologist, which pro-
vides only magnetic resonances. Specially the external_re-
searcher role, which may be seen as a client, may have sev-
eral sub-roles to be able to specify several specific autho-
rizations for different kinds of clients. The definition of role
hierarchies is quite application dependent. Thus, we do not
explicitly specify any role schema. In some specific environ-
ments the role definition will not require the use of hierar-
chies or constraints over the assignment of role membership.

6. ACCESSCONTROL MANAGEMENT

Given the example application we will show the functionality
of the access control method. The main features are the
role system and the delegation of authorizations to mobile
agents. A principal may be authorized to access a resource
as a role member. The AM may give several authorizations
to a specific role. Then a principal belonging to that role,
has all the authorizations of the role. We already said that
we do not consider a mobile agent as a SPKI principal. Thus
we need a way to authorize mobile agents and control its
access to resources.

We also consider the distribution of the access control man-
agement by distributing some of the modules. We can dis-
tribute several modules, or just one, for example. This
makes the model easily adaptable to specific applications.
Since a module is implemented in a static agent, to dis-
tribute a module means to use several static agents, which
may operate independently.

6.1 Roles

An important issue of the RM is that it is the main re-
sponsible to grant access permissions to principals. When a
principal requests a role membership and succeeds, it auto-
matically has all the authorizations of the role. The main
task of the RM is to deal with role management. This in-
volves three main tasks:

e Role definition and membership management.
e Role hierarchies definition.

e Apply constraint to the user assignment to roles.

The constraints determine mutually exclusive roles or sub-
sets of roles. These constraints are what the proposed NIST
standard calls Separation of Duties[14]. The hierarchies are
defined by issuing name certificates. For example, consider
that the role radiography-_technologist inherits all the permis-
sions of the role mr_technologist. If both roles are defined
by RM 4, it will issue the following name certificate:

40

RM s mr_technologist
— RMa radiography_technologist

Another important issue is that the role membership can
be restricted through the validity specification of the name
certificate, which grants the membership. That is, it can
have a not-after and not-before time range and some on-line
tests [6].

6.2 Authorizing mobile agents

A client, as a principal, may be member of a role or roles,
say external_client. It may be authorized to access resource
A with a mobile agent. Since mobile agents cannot have
private keys, we can not delegate authorizations to the mo-
bile agent or make it member of a role. Our approach is
to delegate the authorization to a hash of the agent. The
subject of a SPKI authorization certificate and any SPKI
principal in general can be a public key or a hash of a pub-
lic key. So a hash may be seen as a principal, subject of a
certificate. This idea does not really follow the SPKI speci-
fications. Since the subject is not the hash of a public key,
it is not a principal. Thus we need to extend the SPKI
specifications to introduce this idea.

As we said before the mobile agent is constructed from the
itinerary, separately including the code to be executed in
each agency. Let m; be the local structure of the agent to
be executed in the agency i. That is:

m; = E;(LocalCode;, Local Data;, Agenciesit1,
tripmark)

The client already has an authorization to access resource A,
which is controlled by DM4. Once the client has specified
all the m;s it constructs the itinerary and proceeds to get
the authorization for the agent. The main idea is to request
a Certificate Result Certificate(CRC) to DM 4 having the
hash of m; as the subject of the certificate. The CRC is an
authorization certificate, which resumes a certificate chain,
in this case the authorization proof for the client to access
resource A. The process involves the following steps:

1. The client sends a CRC-request to DM 4. It includes
the specific authorization it wants to obtain, the code
m; and the client’s public key. This request is signed
by the client.

2. The DM,4 requests the CRM to verify if the client is
authorized to access the resource. That is, verifies if
there is an authorization proof which allows the client
to access the resource.

3. If the authorization is correctly verified, the DMy4
computes the hash of the code, and issues an autho-
rization certificate which has DM 4 as the issuer and
the hash of the code as the subject. The specification
tag and the validity specification is the intersection be-
tween the ones from the client’s CRC-request and the
ones returned in the authorization proof request.

4. Finally the DM 4 encrypts the code m; with a sym-
metric cipher. It uses a secret key only known by the

DM 4. The DM 4 is the only one who is able to decrypt
m;.

Once the mobile agent is constructed it will be able to access
the resource. The mobile agent will travel to the agency
and request access to DM 4. The DM 4 just has to compute
the hash of the agent code (m;) and check if there is an
authorization certificate, which directly authorizes the hash
to access. This authorization verification is straightforward,
since it does not require the generation of a full authorization
proof.

This approach allows to delegate authorizations to mobile
agents. Note that the mobile agent does not need to include
any kind of authorization information, it just has to provide
the specific code so the DM 4 can compute the hash.

One thing we have not explicitly talked about is how to
control the proper behavior of the mobile agents. In our
example, how do we know that a mobile agent is not steal-
ing data?. First of all, the process of authorizing a mobile
agent involves the computing of the hash of the piece of code
of the agent, which is going to be executed in the agency.
Therefore, we can easily log this code for auditing purposes.
It is also feasible for an agency to include a local monitoring
system looking for anomalies in the behavior of the agents.

6.3 Distrib ution of Role Management

Due to the local names provided by SPKI, the role manage-
ment can be easily distributed. We can have several RMs
managing its local roles and using compound names to ref-
erence one local role to another. For example, consider we
have two RMs, RM4 and RMpg. Each one has its local roles
definitions, RMa may define:

RM 4 radiography_technologist — K,

RM 4 physician — K>

RM4 physician — K3

RM 4 companyB _client — RMp ext._researcher

That is, it says that the principal K is member of the radiol-
ogy-technologist role; the principals K> and K3 are members
of the role physician. And that the name external_researcher
(which is also a role) defined in the local name space of RMp
is member of the role companyB_client. Then RMp may de-
fine:

RMp external_researcher — Ku
RMpg external_researcher — Ks

So the principals K4 and K5 are members of the role exter-
nal_researcher defined by RMp. And they are also mem-
bers of the role companyB_client defined by RM 4. Note
that each RM defines independent roles, both RMs could
define locally two roles with the same name, and they will
be considered as different roles by the system. Is impor-
tant to notice that all the roles, as SPKI names, are local
to each RM. We can globally identify the role by adding

41

the public key of the RM as a prefix of the role (just as a
SPKI name). This independence of role definitions makes
the system easily scalable and distributed. Note that in the
example we can say that the role management is distributed
over the two RMs since both of them take part in the hole
role management. So independent RMs can interact in the
same model without having to redefine roles.

This can be also seen as trust management, in some way
RM,4 trusts RMp to manage the role RM 4 companyB_cli-
ent. From the RBAC point of view it is considered a role
hierarchy definition. We can say that the role RMBp exter-
nal_researcher inherits all the permissions (authorizations)
of the role RM4 companyB-_client.

6.4 Distrib ution of Authorization Management
The distribution of the authorization management is achieved
by distributing the management over several AMs. This
distribution is straightforward. Each AM manages autho-
rizations following its local policy. It can only delegate the
authorizations that it has received. To be more precise an
AM or any principal may delegate a certificate granting an
authorization it does not have. But any principal receiving
the authorization will not be able to have the proper autho-
rization proof, since the certificate chain will be broken.

There will be no conflict between several AMs. If there is
an authorization proof for one principal to access a resource,
the principal will be able to access no matter which AMs or
principals have interfered.

6.5 Distribution of the Certificate Repository
The distribution of the certificate repository is a complex
task. All the authorization proofs are obtained from the
repository. In fact, it is the CRM which performs the cer-
tificate chain discovery. To distribute the repository will
considerably increase the complexity. We need to use a dis-
tributed certificate chain discovery algorithm, which adds
not only complexity to the implementation but also intro-
duces the need for more communication and process re-
sources.

There is some work done in relation to distributed certificate
repositories and chain discovery, such as dRBAC [9] or [12].
These approaches could be used if an specific application
really needs to distribute the certificate repository.

The application we are going to implement does not im-
pose the distribution of the certificate as a must. In fact,
it can easily be implemented with a centralized repository.
And there is no need to add complexity to the system by
distributing the repository.

7. CONCLUSIONS

‘We have proposed an access control model for mobile agent
systems, specially suitable for SoD application. It provides
a simple, flexible and scalable way of controlling the ac-
cess to resources. It takes the advantages of RBAC and
trust management ideas. The proposed model is part of
the MARISM-A project. A secure mobile agent platform
for SoD applications. We have also introduced an exam-
ple application, a medical SoD imaging application based

in the IST project INTERPRET. Even though, there are
some problems which are still unsolved, like malicious hosts
acting against agents, which are still open problems [4].

We are working on the implementation of the proposed model.

This process involves the study of subtle aspects, which still
are open question. For example considering alternatives to
implement the local policies. By using SPKI ACLs, the
policy is based in SPKI keys. This may be reflected in lim-
itations of the key management. We also want to consider
issues such as anonymity, specially relevant in key-oriented
systems.

8. ACKNOWLEDGMENTS

This work has been partially funded by the Spanish Gov-
ernment Commission CICYT, through its grant TIC2000-
0232-P4-02, and Catalan Government Department DURSI,
with grant 2001SGR. 00219.

9. REFERENCES
[1] INTERPRET Project - IST-1999-10310. International
Network for Patern Recognition of Tumors Using
Magnetic Resonance. 1999
http://carbon.uab.es/INTERPRET.

[2] T. Aura. Distributed access-rights management with
delegation certificates. In J. Vitek and C. Jensen,
editors, Secure Internet Programming: Security Issues
for Distributed and Mobile Objects, LNCS 1603, pages

211-235. Springer Verlag, 1999.

[3] CCD Research Group. MARISM-A, An Architecture
for Mobile Agents with Recursive Itineraries and

Secure Migration. http://www.marism-a.org.

D. Chess. Security issues of mobile agents. In Mobile
Agents, volume 1477 of LNCS, pages 1-12.
Springer-Verlang, 1998.

D. Clarke, J. Elien, C. Ellison, M. Fredette,

A. Morcos, and R. Rivest. Certificate chain discovery
in SPKI/SDSI. Journal of Computer Security,
9(9):285-322, 2001.

[6] C. Ellison, B. Frantz, B. Lampson, R. Rivest,
B. Thomas, and T. Ylonen. RFC 2693: SPKI
certificate theory. The Internet Society, September

1999.

42

[7]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Emorphia. FIPA-OS.
http://fipa-os.sourceforge.net.

Foundation for Intelligent Physical Agents. FIPA
Specifications, 2000. http://wuw.FIPA.org.

E. Freudenthal, T. Pesin, L. Port, E. Keenan, and

V. Karamcheti. dRBAC: Distributed role-based access
control for dynamic coalition environments. New York
University, Technical Report TR2001-819.(to appear
ICDCS 2002), 2001.

Intel Architecture Labs. Intel Common Data Security
Architecture.
http://developer.intel.com/ial/security/.

L. Kagal, T. Finn, and A. Joshi. Trust-Based Security
in Pervasive Computing Environments. IEEE
Computer, pages 154-157, Dec. 2001.

N. Li, W. Winsborough, and J. Mitchell. Distributed
credential chain discovery in trust management.
Accepted for publication in Journal of Computer
Security, Nov. 2001.

J. Mir and J. Borrell. Protecting general flexible
itineraries of mobile agents. In Proceedings of ICISC
2001, LNCS 2288. Springer Verlag, 2002.

D. Rerraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and
R. Chandramouli. Proposed NIST standard for
role-based access control. In ACM Transactions on
Information and System Security, volume 4, pages
224-274, August 2001.

J. Riordan and B. Schneier. Environmental key
generation towards clueless agents. In Mobile Agents
and Security, pages 15-24, 1998.

R. Rivest. S-expressions. Internet-draft: The Internet
Society, 1997.

S. Robles, J. Mir, and J. Borrell. Marism-a: An
architecture for mobile agents with recursive itinerary
and secure migration. In 2nd. IW on Security of
Mobile Multiagent Systems, Bologna, Italy, 2002.

R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-Based Access Control Models. IEEE Computer,
pages 38-47, February 1996.

A Security Framework for a Mobile Agent System

Guido van 't Noordende
Computer Systems Group
Faculty of Sciences
Vrije Universiteit Amsterdam
The Netherlands

guido@cs.vu.nl

*
Frances M.T. Brazier
Interactive Intelligent
Distributed Systems
Faculty of Sciences
Vrije Universiteit Amsterdam
The Netherlands

Andrew S. Tanenbaum
Computer Systems Group
Faculty of Sciences
Vrije Universiteit Amsterdam
The Netherlands

ast@cs.vu.nl

frances@cs.vu.nl

ABSTRACT

The Mansion paradigm provides a logical model for design-
ing distributed multi-agent applications. Mansion is de-
signed to be a scalable, secure and extensible system for
supporting multi-agent applications. This paper presents
the security architecture of Mansion.

An Agent Container (AC) allows for secure transport and
flexible storage of heterogenous agents and data. The AC
uses lists of trusted hosts, fixed rules about how persistent
and transient segments are handled, and possibly policies
that describe the allowed changes to the AC at trusted des-
tinations. A secure handoff protocol is presented as part of
the agent transfer protocol, that allows for on-the-fly detec-
tion of malicious alterations to an AC.

Mansion provides protection of agents, hosts and informa-
tion in the system. Avoidance of security risks, and (audit)
mechanisms to detect malicious actions of entities in the sys-
tem are important mechanisms used to protect the system.

Keywords
Mobile Agents, Multi-Agent ystems, Middleware, ecurity,
Distributed ystems, Agent Transfer Protocol, Audit Trail

1. INTRODUCTION

Mansion is a system aimed at supporting heterogenous, large-
scale distributed mobile agent applications. Mobile agents
have a number of well-described advantages over traditional
distributed systems [1]. The most significant of these is that
an agent can move its computation to the resource or data
which it needs, which alleviates problems due to latency or
bandwidth limitations.

There are a number of solutions for Multi-Agent ystems
(MA es), most of which provide little structure to applica-
tion developers. Most existing MA es provide some form of
security to agents and machines in the system, but typically
those solutions are tied to a single programming language
(e.g., Java) [2, 3, 4]. Mansion is a MA which provides a
clear paradigm for designing multi-agent applications.

Important aspects for security in this system are: protec-
tion of agents, protection of hosts, protection of information

*This research has been funded by tichting NLnet

43

and protection of the middleware and resources. This paper
first introduces the logical and physical model underlying
Mansion. Then we will explain how the identified security
areas are addressed in Mansion, followed by a discussion and
related work.

2. THE MANSION FRAMEWORK

The Mansion framework consists of a logical and a physical
model. The logical model is used to structure an applica-
tion and to provide a consistent view of this application to
agent programmers. The physical model underlies the logi-
cal model, and consists of a network of (heterogenous) hosts
on which the logical model is mapped. Mansion provides a
(distributed) middleware which provides an interface (API)
to agents which they can use to interact with the system
and hides distribution and location aspects of the system.

2.1 Logical Model

An application in our framework is modeled as a closed
world containing a set of hyperlinked rooms. Entities in
a room can be agents, objects, or hyperlinks. Each agent
is a (possibly multithreaded) process running on one host.
No part of the internal process state of an agent can be ac-
cessed from the outside by other agents. Objects are strictly
passive: they consist of data and code hidden by an inter-
face. Hyperlinks determine how the rooms in a world are
connected.

An agent is injected into a world (by its owner) through a
world entry daemon (WED). Each world has one or more
entry rooms, each of which contains a WED. The WED
does some security and consistency checks on each injected
agent, and places the agent in its entry room. Once in an
entry room, an agent may follow a hyperlink to go to another
room.

Once in a room, an agent can access a special object, called
Room Monitor Object (RMO). The RMO registers all con-
tent in the room, and provides an interface for agents to
interact with the room. Descriptions of entities in a room
(e.g., agents, objects and hyperlinks to other rooms) are
specified in Attribute Sets (ASes) which can be obtained
through the RMO interface. The RMO Interface is auto-
matically loaded in an agent’s address space when it enters
a room.

Each entity has a (possibly empty) attribute set, placed in
the RMO, using which the entity is described. Example
attributes are the name of an agent or the coordinates of an
object in a room. Attribute sets are represented as a set of
(entity, attribute, value) triples. The attributes of an A are
typically predefined in a world, but they may be extensible
in some applications. An agent can alter an attribute set if
it is the owner of the entity.

Each object in a room can also contain an attribute set in-
ternally, independent of the RMO, which specifies additional
(private) attributes. An event-mechanism can be provided
by objects (including the RMO), based on attribute set
matching, comparable to template-tuple matching in Linda
or Javaspaces [5].

Every world can also have an attic. The attic contains global
services and is directly accessible to agents in any room.
Through the attic, an agent can obtain world-scoped infor-
mation, for example, the topology (hyperlink layout) of a
world, directory services, or a bulletin board service (e.g.,
for publishing agent information). ervices in the attic are
provided as attic objects or attic agents. Attic agents are
the only agents allowed in the attic. Other agents cannot
move to the attic.

Each world has a basement, which keeps track of the in-
formation needed to make the world function, such as the
location of the agents. When an agent enters a world, it is
assigned a Global Agent ID (GAID), which is registered in
the basement. The basement is not visible to agents.

2.2 Examples

As an example of the Mansion paradigm, consider a shop-
ping mall world. A shopping mall can be modeled as a
number of separate stores, which each consist of a set of
hyperlinked rooms, one or more of which are entry-points
to the store. An entry room to the mall is provided by the
world owner, which provides hyperlinks to the (entry) rooms
of the shops in the mall. In each room, there may be ob-
jects that represent items (for example clipart or music) for
sale, and shopkeeper agents which can be queried for infor-
mation or be involved in commercial transactions. Agents
that represent users can roam through the mall to find items
to their liking. Agents can communicate with each other or
their owner to speed up their search or notify each other
of interesting bargains. An agent may take some form of
digital cash with it to be able to buy items for its owner.
Items that are bought by an agent can be transported to
their owner by means of inter-agent communication or as
part of the agent.

Other examples are: Multi-User Dungeons (MUDs), in which
players have to find their way through a maze of rooms, in
which they can find items and may meet many adversaries; a
virtual learning environment, where users can move among
classrooms; and a library world, where (groups of) rooms
represent sections for different topics.

In short, the Mansion paradigm replaces the World Wide
Web paradigm of a collection of hyperlinked documents that
users can inspect with that of a collection of hyperlinked
rooms in which agents can meet to do business.

44

2.3 Physical Model

A world may be spread over multiple machines. In partic-
ular, a room can be distributed over multiple machines by
means of distribution of the RMO and other objects in the
room. Globe is an object architecture [6] which can be used
to distribute passive objects over multiple hosts (e.g., using
active replication). This can provide reliability (availability)
and locality of data in the system.

The basement is a central component in each world. To
achieve scalability, the basement can be distributed over
multiple hosts (servers). In particular, for worlds with a
large number of agents which may migrate frequently, the
agent location database which is part of the basement may
be partitioned over multiple separate servers based on a hash
over the agent’s GAID, possibly combined with a primary
backup scheme to provide reliability.

In Mansion, logical and physical migration are coupled into
one atomic operation follow_hyperlink, which is invoked by
an agent on the Mansion API. A hyperlink is a logical link,
which uniquely identifies a target room. If necessary, part of
following a hyperlink is that the middleware transports the
agent to a physical location from which the room is available.

Mansion - by design - only supports weak migration. An
agent’s execution state is not retained during migration. Af-
ter physical migration, each agent is restarted from its initial
state. This decision is in part taken because of supporting
heterogenous agents (agents written in multiple program-
ming languages); only weak migration can be supported
by all programming languages that we want to support,
which includes binary agents whose stack and data cannot
be transparently transported from machine to machine.

In order to support migration of an agent, Mansion pro-
vides a data structure for transporting the agent and its
data. This data structure is managed by the middleware
and called an Agent Container (AC). The AC contains a
number of (typed) segments, which are used to contain the
agent’s code, data, authentication information and other in-
formation needed by the agent on its itinerary. The AC can
be used to transport data back to the agent’s owner, or to
move objects from one room to another, for example. An
agent needs to serialize all information that it needs for its
own execution, and store all data that it or its owner may
need at a later time, in its AC.

Currently, each hyperlink is internally associated with a set
of IP-addresses from which the target room is available. If
the agent does not already reside on one of those machines,
the agent has to be physically migrated to one of the ma-
chines associated with the hyperlink.

A zone is used to indicate the physical boundary for dis-
tributing a room. A room is only accessible from one of the
hosts in the room’s zone. An agent that wants to access a
room has to migrate to a host in that room’s zone.

The room owner trusts the zone in which he / she deploys
his room (and the objects therein); typically, the zone owner
is also the owner of the rooms in the zone.

As an example, a zone may consist of a set of trusted hosts
located in a protected network segment within an organi-
zation (e.g., a staff-network segment at a university). In
another case, a zone may consist of a number of hosts which
are placed in 'server hotels’ located all over the world, which
are deployed by an organization to host rooms.

2.4 Zone Administration

A world deployer determines which and how many zones
may be deployed in its world. For example, certain worlds
may consist only of one zone owned by the world adminis-
trator, while other worlds may contain zones (and rooms)
owned by a number of organizations.

Zones are protected by public-key cryptography. Each zone
has a unique public/private key-pair, which is registered
with the world. The public keys of registered zones in a
world are made available through the basement (possibly
signed by the world owner).

Which hosts are part of a particular zone is managed in a
decentralized way. Each host in a zone has a zone certificate,
using which it is capable of proving that it is part of a zone.
A zone certificate consists of a host’s public key, signed using
the zone’s private key. Using its zone certificate, a host can
prove that it is part of a zone. A host’s certificate may
expire or be blacklisted: a zone manager may revoke host
certificates, or issue them for a limited time only (i.e., as a
lease).

Using zone certificates has administrative scalability advan-
tages: zones can be managed decentralized. In addition
to this, there are security advantages compared to using a
shared private key for all zone members (i.e., it is possible
to pinpoint the host on which a security violation took place
within a zone)

3. SECURITY ASPECTS

The previous sections discussed the logical and physical model
of Mansion. The following sections discuss the security as-
pects that need to be considered for applications using Man-
sion: protection of an agent against malicious hosts in the
system, protection of hosts against agents, and protection
of objects and information in the system.

3.1 Agent Protection

In Mansion, we do not assume general availability of mech-
anisms which protect an agent from the host on which it
executes. Although solutions exist which protect an agent
against the host on which it resides (at least for a limited
period of time [7]), it is not yet clear whether these solutions
can be applied in a multiple-language, heterogenous system.
For example, solutions based on language-dependent mech-
anisms or secure hardware cannot be expected to be imme-
diately applicable in a heterogenous, large-scale system.

Zones are convenient to express and analyze distribution and
security properties of the hosts on which rooms are deployed.
The zones in a world and their properties (e.g., owner) can
be listed in a central service, for example in the attic.

The owners of agents can use the central zone-infor mation
service to gather information about the zones in a world, and

45

determine which zones they trust enough for their agent to
migrate to.

Certain worlds may require a certificate containing a set of
predefined properties to be published by each zone-deployer.
These properties can then be stored in a database which can
be queried by users (agent-owners) of that world. For ex-
ample, this can be used to find all zones owned by company
zyz, or all zones that guarantee to protect your privacy.

In our model, an agent’s owner can make sure that its agent
does not migrate to a host in a zone which is not trusted. To
do this, the agent is equipped with a list of trusted zones to
which the agent may migrate. The host on which the agent
executes then is assumed not to send an agent to a host in an
untrusted zone. This is not fail-proof, but Mansion provides
a mechanism to detect which host violated the agent owner’s
trust by sending the agent to an untrusted host, and for
detecting this violation as soon as the agent is migrated to
another host (see section 3.1.1).

As an aside, note that it does not make sense for an agent
to specify its own list of allowed zones as an argument when
it follows a hyperlink. This would offer no security, since
no-one except the agent’s current host can, in retrospect,
verify what the list of allowed zones was, in case the agent’s
host sent the agent to an untrusted host after all.

If an agent needs to inspect data or a room that is located on
an untrusted machine, it has to spawn off a ’helper agent,’
which is equipped to take orders from its parent, or has min-
imal functionality and takes minimal (sensitive) information
with it to the untrusted host.

3.1.1 AgentContainerSecurity

An agent should be able to pick up data and / or objects
on its way. Objects in Mansion can be transported from
room to room in some worlds. Details of this mechanism
are outside the scope of this paper. imply put, however,
this entails storage of a reference to this object, or storage
of serialized state of the object, in the AC.

Data storage is a more general requirement. ince we only
support weak migration, an agent does not retain data stored
in its address space if it migrates to another host. Therefore,
it has to store any data it may need later, or which it thinks
is useful for its owner, into its AC.

The AC is also used to store the agent’s code and pos-
sibly initial data (dependent on the agent’s programming
language), static information about the agent, such as its
Global AgentID, authentication information, owner, and so
on.

AgentContainerDesign

A Mansion AC consists of a number of (typed) segments and
a table of content (TOC). For each segment, an entry exists
in the AC’s TOC, which maps the segment’s name to its
internal segment-name and other metadata about the seg-
ment. The segments are typed to indicate the information
(e.g., the agent’s code or data saved by the agent) stored

in the segment. Furthermore, each TOC-entry contains a
checksum (e.g., a secure hash) of the entry’s content. Using
the checksum, the segments integrity can be verified.

When a new segment is created, as part of the per-segment
TOC-entry a bit may be set which indicates whether this
segment is persistent (nonremovable), or whether it is tran-
sient (i.e., it may be removed some time later). For transient
segments, it is possible to note in the segment’s entry where
(in what zone or on what host) the segment may be removed.

For integrity verification throughout the agent’s itin erary,
we use a mechanism in some ways similar to work by Karnik
and Tripathi [8]. Each time an agent migrates to another
host, the agent’s middleware signs the agent’s TOC (reflect-
ing the AC’s current content) with the private host key. By
retaining old TOCs as part of the AC (before the new one
is signed), a complete audit trail can be established of all
the changes that are made to the AC during its itinerary.
The world entrance daemon’s (trusted) host signs the first
TOC of the agent’s AC (the initial signature is returned to
the agent’s owner).

It is important that the private host key of each host on
the agent’s itinerary is used to sign the TOC, since this
makes it possible to pinpoint the exact location where a
possible security breach took place; for convenience, the zone
certificate of the signing host may be added to the AC before
it is signed.

One problem with this solution, is that it is possible to roll
back the state of the AC to an earlier state, by removing all
changes that were made to the AC after visiting a particular
host, and by reinstating the TOC to the one signed by that
host.

Including forward references in the AC to the next host that
has to sign the TOC (i.e., the host that the agent is going to
be sent to), makes it harder to revert back to an arbitrary
previous state of the AC, however, it is still possible to re-
move segments if cycles are present in the agent’s itinerary.

As a simple solution to avoid rollback, each TOC can be sent
to a trusted ’auditor process’ which is part of the world. This
way, the audit trail is stored at a (trusted) location external
to the AC, where it can be collected by the agent’s owner.
It can also be timestamped upon arrival at the auditor to
make it possible for the owner to track agents roughly in
real time.

The audit trail mechanism makes it possible to verify whether
segments were illegitimately removed on a particular host
(typically, this can already be verified by the next host on
the agent’s itinerary).

AgentTransferProtocol

A handoff protocol between hosts is used as part of the agent
transfer protocol (ATP) which requires that each host veri-
fies the content of the AC as it comes in. The TOC of the
outgoing AC is already signed: in the protocol discussed
above, each host on the agent’s itinerary signs the TOC as
the agent is migrated to the next host. An additional re-
quirement on the ATP is that the target host verifies the

46

Host A Host B
2
N e — S
3 |
4/5
1 4/5
Basement

Figure 1: The agent handoff protocol. 1) Middle-
ware A connects to the basement and initiates agent
migration using the call init_migr(GAID,[target host]).
Next it connects with Middleware B on host B, and
tranfers the agent’s AC to B (2). Middleware B ver-
ifies the AC’s TOC as signed by middleware A, and
possibly evaluates whether any changes (visible by
means of the audit trail) made to the AC on host A
were actually allowed (see sec. 3.1). If middleware
B accepts the agent, it sends back the AC’s TOC
signed with its own key, and it commits the migra-
tion on the basement (3 4+ 4). Middleware A verifies
middleware B’s signature, and commits the migra-
tion on the basement (4). Both Middleware A and
B can abort the migration transaction at any time
during the protocol (5). Middleware A can store the
signed TOC obtained from B, or it can send it to an
auditor (sec. 3.1). The basement authenticates both
middleware A and middleware B during the proto-
col — only the agent’s current host may initiate an
agent’s migration, while the target host is indicated
by the source host using the init_migr call.

integrity of the incoming agent’s AC, and returns the TOC
back to the source-host signed with its own key (see fig. 1),
as proof that the AC arrived consistent with the AC’s TOC
as signed by the source host.

In Mansion, physical migration is completed by registering
the agent’s new physical location in the basement. Before
this happens, both the sending host and the receiving host
have to agree to agent migration, and both have to indicate
this agreement to the basement. Essentially, agent migra-
tion is an (atomic) transaction involving both the sender
and the receiver (host) of the agent. The sending host will
only commit a migration transaction if it has obtained the
signed TOC from the target-host; the target host will only
commit the migration (and return this TOC signed with its
own secret key) if it has verified that the content of the AC
corresponds to the AC’s signed TOC. Note that the base-
ment does not need to know anything about the handoff
protocol, signed TOCs or any other security measure taken
as part of the ATP.

Verifying incoming TOCs is important so that the target
host cannot claim at a later time that the source-host omit-
ted certain segments; conversely, the source-host cannot omit
segments and claim that the target host removed them. En-
forcing that each host on the agent’s itinerary verifies the
AC’s integrity avoids the situation that a valid audit-trail
is established, but that the segments are lost nevertheless

along the way, without being able to prove where those
segments were lost exactly. This is an improvement over
the system proposed in [8]. The ’incoming-TOC’ which was
signed by the target host can be stored by the source-host,
or it can be forwarded to a (trusted) auditor process in the
world.

An essential and not often realized advantage of audit trails,
is that an audit trail views a host on which an agent executes
as a black box. An audit trail shows which segments have
been added and which segments have been removed on each
host that the agent visited.

ince in Mansion the signed TOCs can be stored as readable
(unencrypted) segments in the AC, this audit trail can be
used to verify whether any changes were made to the AC
that were not allowed on the previous host, or possibly even
further back.

For example, for each transient segment, there may be an
indication of the host or zone that may remove this segment
in the segment’s TOC-entry. If the segment is removed by a
different host than the indicated one, this will be detected.
If an agent is sent to a host that is not part of one of the
zones of the trusted zones list that was provided as part of
the agent, this can be observed from the audit trail too.

Audit-trail BasedSecurity

As an example of a security measure that can be based on
an audit trail, an agent’s owner may equip an agent with a
policy describing the changes that may take take place to an
agent’s AC at any host on its itinerary. This ’AC-change’
policy can be used to avoid that a supposedly trusted host
can do too much or any damage to an agent, for example by
stealing (removing) segments from its AC.

An AC-change policy may specify how many (transient) seg-
ments (for example containing e-cash) may be removed from
the agent’s AC per zone. Verification of policies regarding
(changes to) the AC may take place as part of the TOC-
verification step at the next host on the agent’s itinerary,
Alternatively, verification may be done by an independent
‘notary’ process to which the agent’s signed TOC is sent
after each physical migration. uch a notary process can,
for example, make the validity of a particular e-commerce
(e.g., payment) transaction dependent on adherence to the
agent’s AC-change policy (see related work). Another ex-
ample is a policy that specifies that segments may only be
added to the AC.

The secure audit trail makes it possible to pinpoint ille-
gitimate changes made to an AC to the host where these
changes took place. This detection can take place as soon as
the next host on the agent’s physical itinerary; this host can
not only refuse the agent if it finds a discrepancy between
the TOC and the AC, but also if it detects an illegitimate
removal of a transient segment (e.g., at the wrong host) or
an ’AC-change’ policy violation.

Providing an agent with a list of trusted zones (security do-
mains) makes it possible to limit the chances of malicious
attacks against an agent. Note that it is not necessary to
predefine the full physical itinerary of the agent. This is im-

47

portant, since in Mansion the physical itinerary of an agent
depends on the hyperlink layout of the world, in combination
with the agent’s interests. Which zones will be transfered as
the agent roams a world will (in most cases) not be known
before the agent sets out.

3.1.2 Sececyof Data

To provide secrecy of data in an AC, public key encryption
can be used. An agent or the agent’s middleware can encrypt
data (segments) intended for its owner using the owner’s
public key, which can be provided as part of the agent’s AC.
It is also possible to encrypt data (segments) intended for
usage in a particular zone or on a particular host, using that
zone or host’s public key.

To provide secrecy of data between two communicating agents
(or other entities), link encryption can be used to hide the
information sent over the wire between two hosts (see sec-
tion 3.4).

3.2 Protection of hosts

Protecting hosts in Mansion has two important aspects. The
first is that a host should start up (untrusted) agents in a
sandbox which makes it possible for the execution environ-
ment to control an agent’s actions and resource-usage, and
to protect the host from a malicious agent. An example
sandbox is the well-known Java Virtual Machine, which can
be used to protect a host from Applets downloaded from the
Internet. Another example is the padded cell approach used
for interpreting afe-Tcl applets [4].

The other aspect is trust. This aspect is particularly im-
portant because of the support for heterogenous agents in
Mansion. ome applications may support agent program-
ming languages against which no easy or foolproof way exist
to completely protect the machine. An example is of course
a binary program. In this case, it is important that some
verification company or the author of the code vouches for
the agent’s safety. In some cases, it may be that a host’s
owner knows the owner of an agent personally, and therefore
trusts the agent. Authentication of the principal owning an
agent and possibly other principals related to the agent are
important to establish trust in an agent, which may deter-
mine whether a host will execute the agent or not.

3.2.1 AgentAuthentication

Agent authentication in Mansion is based on the Agent Pass-
port (AP, see also [9]) concept. An AP is composed of a set
of signatures of the agent’s code'. In particular, the agent’s
owner signs the Agent Passport; this signature declares that
the agent is sent in the system on behalf of this owner, i.e., a
middleware that receives the agent can find out what prin-
cipal owns the agent. The AP is stored in a segment of the
agent’s AC.

Another principal that can sign the agent’s code is the au-
thor of that code. This may allow receiving hosts to attach
trust in an agent’s code (e.g., because the agent was written
by wun Microsystems). In addition, a (trusted) code ver-
ification company may sign the agent’s code (this may be

!This can be executable or interpretable code, or an URL
from which the code can be obtained, for example.

required for languages that one cannot sandbox easily, such
as binaries).

In how far an agent’s author or a code verification principal
should sign the code, depends on the application and the
agent programming language in question (e.g., a Java applet
or afe Tcl program may be sandboxed enough to avoid
malicious agent behaviour, so it is more easily trusted). The
AP contains as much information as necessary to convince
a host that the agent packed in the AC is trustworthy.

3.2.2 SecueAgentExecution

In Mansion, each agent is started up as a separate process.
The only interactions that an agent may make with the (out-
side) world is by using the Mansion API. The Mansion mid-
dleware can act as a reference-monitor with regard to all
invocations made by an agent, and is it possible to enforce
security policies (access control policies). The Mansion mid-
dleware (MMW) runs in a protected address space separate
from the agent’s address space. The middleware may even
run on a different host.

A Mansion agent is started up by the middleware in a sand-
box, which makes sure that a sandboxed agent can only in-
teract with the Mansion middleware using an IPC channel
(e.g., asocket connection) to the middleware. Invocations by
an agent on the Mansion API (provided through the agent’s
runtime system) are sent as marshaled invocations to the
middleware.

The agent’s execution environment (sandbox) has to take
care that the agent does not bypass the middleware’s control
mechanisms. The way in which sandboxing is implemented
differs per programming language and operating system, and
is subject to research. As an example, it is possible to ex-
tend an O kernel (e.g., Linux or FreeB D) with a system
call which makes sure that all system calls made by a child
process of the process that invoked the system call (i.e., the
MMW) are sent to its parent (in marshaled format), rather
than being executed by the O . This mechanism can be used
to sandbox binary agents.

Typically, the supported languages in a world are decided
upon by a world designer based on the application’s require-
ments (e.g., a scientific application may require high perfor-
mance, and assume trustworthy agent owners. This may
lead to support for binary programs. Other worlds may
only support Java or afeTcl agents). Whether an individ-
ual agent is accepted on a host (and whether its code is run)
is decided by the host’s Mansion middleware. This decision
can be based on the language in which an agent has been
developed, its size or any other aspect.

3.3 Protecting Information (Authorization)
When an agent migrates to a host in a zone, it is authen-
ticated using its agent passport. Then it immediately has
to access the RMO of the room to which it migrated. ub-
sequently, the agent may have to access many more objects
which are located in the room.

All objects (including RMO) are located in the room’s zone.
As soon as an agent attempts to access an object (using a
bind request, which results in the object’s interface being

48

loaded into the agent’s address space), the agent will have
to be authorized with regard to the object.

In Mansion, we use the Globe access control mechanism us-
ing roles [10] for access control to objects. A role-certificate
is a bitmap, signed by the object’s owner, which indicates
the methods that may be invoked on an object by the client
to which the role-certificate was issued.

Normally in Globe, the role-certificate binds an authorized
user’s public key to a role-bitmap. In Mansion, the mid-
dleware obtains a role-certificate using which it accesses the
objects that an agent is bound to on the agent’s behalf.

To obtain a role-certificate, the middleware that authen-
ticated the agent contacts a central database in the zone,
called the authorization server. The authorization server
trusts the agent’s middleware to provide proper authentica-
tion information about the agent’s principal (owner), which
is obtained from the agent’s AP, and looks up what role is
associated with this owner. The owner-to-role mapping is
stored in the authorization server by the object’s owner. The
authorization server returns a role-certificate to the middle-
ware reflecting the agent owner’s role.

The middleware stores the role-certificates for each object
that an agent is bound to in an internal table. Each time
an agent does a method invocation on an object, the mid-
dleware provides the role-certificate belonging to this agent
to the object. Role-certificates are only valid within a zone,
possibly only for a limited time (this is a decision made by
the object’s owner).

In some cases, there may be a ’guest’ role-bitmap for prin-
cipals for whom no specific access rights were set by an ob-
ject’s owner.

3.4 Link Encryptionand Middleware Authen-

tication
The basement stores each agent’s current location in a world.
For example, for each agent, the IP-address and port number
to which a connection request can be made may be stored
in the basement.

Besides this information, the basement can contain the zone
certificate of the host on which the agent currently resides.
Using this information, any middleware process in a world
can verify whether it is communicating with the right host,
for example when a request for communication is made.
There are mechanisms to keep track of the agent’s current
location in a secure and verifyable way (using the handoff
protocol, explained in sec. 3.1).

Agent authentication in Mansion happens transitively and
contains a trust component. This applies only to inter-zone
authentication of entities. Within a zone (i.e., intra-zone),
all hosts and middlewares trust each other equally, so au-
thentication of an agent taking place by one MMW in a zone
is assumed to be correct and trusted by all other MMW pro-
cesses in that zone (e.g., the authorization server).

An agent executes as a process on a host, and is under con-
trol of that host: all data in transport can be intercepted by

the agent’s current host, in general. Also, an agent’s execu-
tion can be tampered with by the host on which it executes.
Therefore, one can never be sure that one is not talking with
an impersonating process rather than the agent one intended
to talk to. In short, one needs to trust the host on which
an agent executes not to impersonate the agent; in general,
one depends on the host on which the agent executes to
authenticate an agent properly.

In Mansion, end-to-end (middleware-to-middleware) authen-
tication will be used to set up authenticated, encrypted com-
munication channels (e.g., using L) between middleware
processes, and for communication with the basement.

4. RELATED WORK

In the literature a number of Multi-agent systems are de-
scribed that support mobile agents [11, 12, 2]. ecurity of
Mobile agents is addressed in most multi-agent systems [13,
4, 12], although often only briefly. Most MA es are Java-
based and build on protection mechanisms offered by Java.

There are some approaches that address the problem of pro-
tecting agents against the host on which they execute. Code-
obfuscation (cloaking) or time-limited blackbox [7] techniques
can be used to obtain secrecy of data or computation inside
an agent, at least for a limited period of time. Another ap-
proach is protecting agents based on cryptographically hid-
ing polynomials or rational functions in an agent [14]. As
discussed in section 3.1, we do not currently use such mecha-
nisms as part of the Mansion security architecture, although
Mansion could easily support agents that embed their own
internal security mechanisms or detection mechanisms (e.g.,
cryptographic tracing [15]) in addition to the mechanisms
provided by the Mansion middleware.

Ajanta [8] is a java-based mobile agent system. Ajanta is
the first MA that provides a tamper-detection mechanism
as part of its append-only data container. Ajanta’s audit
trail (based on signing added objects) is only visible to the
agent’s owner because this information is encrypted using
the agent’s public key; the audit trail cannot be inspected
by other principals (hosts) on the agent’s itinerary.

In contrast to Mansion, Ajanta’s ATP requires only the
sending host to update the location service. This makes
it hard for a host to defend itself against certain security
attacks that can be mounted by a malicious source-host.
For example, a host can send an AC of which the segments
are tampered with, even though the TOC still reflects the
original, untampered state. It is hard for the target host to
prove that it did not change the segments itself. The handoff
protocol in Mansion makes it possible for the target host to
refuse an agent based on verification of the incoming agent’s
AC.

Ajanta supports removable (transient) data in an unpro-
tected container, but does not allow an agent or host to spec-
ify where (e.g., on which host) this data may be removed.
Deviation from a (fixed) itinerary can only be detected in
retrospect by the agent’s owner.

An interesting technique that may be usable in Mansion, is
the blinded-key signature proposal by Ferreira and Dahab

49

[16]. This proposal is based on the idea of blinding secret
keys. A blinded secret can be used to sign agreements, for
example. A notary is a trusted third party which is re-
sponsible for verifying blinded-key signatures and enforcing
agreements signed by agents using the blinded key. Enforce-
ment of an agreement can only be done by a notary process
which has access to the blinding factor using which the pri-
vate key is blinded. uch enforcement of an agreement (e.g.,
a payment transaction) by a notary may be dependent on
adherance to the AC-change policy set by the agent’s owner,
as explained in section 3.

D’Agents [13] is one of the few systems that supports het-
erogenous agents (currently Tcl, cheme and Java agents).
D’Agents supports strong migration within trusted domains;
transitive trust is used to authenticate the agent from host
to host. Only if a host trusts the previous host on the agent’s
itinerary (and this one trusts the one before, etc.), does an
agent remain ’owned’ (authenticated). As soon as an agent
migrates to a host that does not trust the previous host, the
agent becomes anonymous (hence it has less access rights).
After that, the agent can never become owned again, that
is, the agent can no longer be authenticated transitively, so
it remains anonymous.

In a large-scale system this approach’s applicability can be
questioned: agents whose execution state been changed will
probably not be trusted by any machine after they have been
changed on their itinerary.

Ara [9] distinguishes mutable and immutable parts of an
agent’s execution state, and has an agent passport concept.
This is similar to our approach. Ara supports heterogenous
agents using strong migration. Ara does not provide an
AC concept. Instead, as many other systems, Ara relies on
sending an agent from one host to another over a protected
channel, but provides no mechanisms to protect an agent
or its stored data from tampering by malicious hosts on the
agent’s itinerary.

5. DISCUSSION

Mansion provides a framework for designing MA es in a
structured way. The logical model provides a clear frame-
work for developing applications. This model is mapped on
a set of hosts, using zones as an abstraction to group hosts
that belong to a common (security) domain.

Mansion provides a middleware layer for multi-agent sys-
tems. This middleware provides the basic primitives for
interaction with the world, such as inter-agent communi-
cation, binding to objects, and for logical (hyperlink) and
physical migration. Mansion provides location and distri-
bution transparency of logical entities in a world.

ome parts of Mansion’s middleware functionality will be
based on the Agent cape O middleware system [17], for
which a prototype exists. Mansion middleware is currently
being implemented as a second middleware layer on top of
the Agent cape O . Agent cape O offers basic functional-
ity such as inter-agent communication and migration prim-
itives. The Globe middleware [6] is used to provide access
to distributed objects. The security design of Mansion will
be supported by Agent cape O .

In this paper, we presented a number of security mecha-
nisms, which are designed to provide protection of agents,
hosts and information in the system.

Agents can be sandboxed to protect the host. Agents are
authenticated using their agent passport, which contains at
least a signature of the agent’s code by its owner, but pos-
sibly also of other principals like the author of the code.
Authorization takes place using the authorization server in
a zone, which assigns role-certificates for the objects in the
room that an agent entered. Besides by using the Mansion
API, an agent is not allowed to interact with the outside
world. This way, it is possible to sandbox an agent in the
Mansion environment, and enforce the logical rules and se-
curity policies set by the world.

An agent communicates directly with the Mansion middle-
ware. The Mansion middleware manages such issues as
inter-agent communication, binding to objects and migra-
tion to another room, possibly another host, mostly trans-
parent from the agent. The middleware contains an Agent
Container for each agent, which is the programming-language
independent physical representation of an agent in Mansion.
Agent protection is based on defining lists of trusted zones
to which the agent may migrate, in addition to protection
of the AC.

To our knowledge, there is currently no middleware design
that allows for storing heterogenous agents and both per-
sistent and transient segments in a secure and flexible way.
Mansion’s AC design is the first attempt to build a flexi-
ble container for transporting heterogenous agents as well
as fixed and transient data from host to host in a secure
way. The secure audit trail makes it possible to pinpoint
illegitimate changes made to an AC to the host where these
changes took place. Providing an agent with a list of trusted
zones makes it possible to limit the chances of malicious at-
tacks against an agent by those hosts, while not depending
on fixed, completely predefined itineraries of trusted hosts.

Acknowledgements

We wish to acknowledge Benno Overeinder, Maarten van
teen and Niek Wijngaards for their useful contributions to

the model and this paper.

6. REFERENCES
[1] D. Chess; B. Grosof; C. Harrison; D. Levine; C.
Parris; G. Tsudik. Itinerant Agents for Mobile
Computing. IEEE Personal Communications,
4(5):34-49, October 1995.

J. Baumann; F. Hohl; M. trasser; K. Rothermel.
Mole - Concepts of a Mobile Agent ystem. Technical
Report, Universitit Stuttgart, August 1997.

D.B. Lange and M. Oshima. Programming and

Deploying Java Mobile Agents with Aglets.

Addison-Wesley, 1998.

[4] J.K. Ousterhout; H.Y. Levy; B.B. Welch. The
afe-Tcl ecurity Model. Mobile Agents and Security,

1998. LNC 1419, pringer-Verlag.

50

[5]

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

E. Freeman; . Hupfer; K. Arnold. JavaSpaces
Principles, Patterns and Practice. Addison-Wesley,
1999.

M. van teen; P. Homburg; A. . Tanenbaum. Globe:
A Wide-Area Distributed ystem. IEEE Concurrency,
January-March 1999.

Fritz Hohl. Time Limited Blackbox ecurity:
Protecting Mobile Agents from Malicious Hosts.
Mobile Agents and Security, pages 154-187, 1998.
LNC 1419, pringer-Verlag.

N. Karnik and A. Tripathi. ecurity in the Ajanta
Mobile Agent ystem. Software - Practice and
Ezxperience, 2001.

H. Peine. ecurity Concepts and Implementation for
the Ara Mobile Agent ystem. 7th IEEE Workshop on
Enabling Technologies: Infrastructure for Collaborative
Enterprises, June 1998.

Bogdan C. Popescu; Maarten van teen; Andrew

. Tanenbaum. A ecurity Architecture for
Object-Based Distributed ystems. Technical Report
IR-492, Vrije Universiteit Amsterdam, February 2002.

H. . Nwana; D.T. Ndumu; L.C. Lee. ZEU , A
Collaborative Agents Toolkit. Proc. of the 8d Int’l
Conference on Practical Applications of Agents and
Multi-agent Technology, London, UK, pages 377-392,
March 1998.

H.C. Wong and K. ycara. Adding ecurity and Trust
to Multi-Agent ystems. Proceedings of Autonomous
Agents Workshop on Deception, Fraud and Trust in
Agent Societies, pages 149-161, May 1999.

R. . Gray; D. Kotz; G. Cybenko; D. Rus. D’Agents:

ecurity in a Multiple-language, Mobile-agent ystem.
Mobile Agents and Security, pages 154-187, 1998.
LNC 1419, pringer-Verlag.

T. ander; C.F. Tschudin. Protecting Mobile Agents
Against Malicious Hosts. Mobile Agents and Security,
1998. LNC 1419, pringer-Verlag.

G. Vigna. Cryptographic Traces for Mobile Agents.
Mobile Agents and Security, pages 137-153, 1998.
LNC 1419, pringer-Verlag.

Lucas. C. Ferreira and Ricardo Dahab. Blinded-key
ignatures: ecuring Private Keys Embedded in

Mobile Agents. 17th ACM Symposium on Applied
Computing, Madrid, Spain, pages 82—-86, March 2002.

N.J.E. Wijngaards; B.J. Overeinder; M. van teen;
F.M.T. Brazier. upporting Internet- cale
Multi-Agent ystems. Data and Knowledge
Engineering, 2002.

Extending execution tracing for mobile code security

*
Hock Kim Tan
Department of Electronics and Computer
Science
University of Southampton
Southampton SO17 1BJ, UK

hkvt99r@ecs.soton.ac.uk

Keywords
Mobile agent security protocols, mobile agent security frame-
work, cryptographic tracing

ABSTRACT

The problem of protecting mobile code from both denial-of-
service and state tampering attacks by malicious hosts are
not well addressed in existing techniques for mobile code se-
curity. We propose a possible approach based on extending
an existing mobile code security technique: cryptographic
tracing. This is achieved through the introduction of a
trusted third party, the verification server, which undertakes
the verification of execution traces on behalf of the agent
owner. The interaction between the verification servers and
host platforms in the new protocol is outlined. Security
properties of the protocol are verified by modelling the sys-
tem in CSP and checking the resulting state transitions us-
ing the model checker FDR. Limitations of this approach to
verification are then briefly discussed.

1. INTRODUCTION

Mobile code security can be broadly classified into two areas:
host security and code security. Host security is concerned
with protecting the host platform (i.e. the computational
environment that supports the execution of the agent) from
malicious agents. Such agents may attempt to gain unau-
thorized access to local resources on the host or else in-
flict damage on other agents or programs executing on the
host. Code security deals with the exact reverse; it attempts
to safeguard honest agents from potentially malicious host
platforms. Attacks from these malicious hosts could take the
form of extracting confidential information (such as crypto-
graphic keys or credit card numbers) embedded within the
agent. Many viable mechanisms have been developed to
tackle the host security aspect, but code security still re-
mains problematic. An overview of security issues in both
these areas, along with a comparative discussion of the cur-
rent techniques available to address them can be found in

[10], [4]-

In general, the most common types of attacks on mobile
agents described in literature can be classified as involving
either:

*This research is funded in part by QinetiQ and EPSRC
Magnitude project (reference GR/N35816).

51

Luc Moreau
Department of Electronics and Computer
Science
University of Southampton
Southampton SO17 1BJ, UK

L.Moreau@ecs.soton.ac.uk

e manipulation / extraction / truncation of information
accumulated in the agent from its previous hops, par-
ticularly in a free-roaming scenario (i.e. where the
itinerary of the agent is dynamically determined dur-
ing migration). Techniques such as forward integrity
[11] and chained signatures [5] can provide some pro-
tection again this type of attack by making it possible
to detect the point in the route at which the attack
occurred.

e alteration of the state or execution flow of the agent.
Techniques such as execution tracing [24] or obfus-
cated code [9] are designed to either detect an attack
and identify the perpetrator or render such attacks im-
practical by increasing the difficulty of interpreting the
semantics of code execution correctly.

More recently the issue of resource control has become a
topic of interest in host security research [25], [18], partic-
ularly in the Java environment which is extremely popular
for developing mobile agent systems. This raises the inter-
esting question from the viewpoint of code security: how do
we ensure that an agent is provided sufficient resources by
its host in order for it to complete execution successfully ?
In its most basic form, a denial-of-service attack would in-
volve a malicious host platform simply terminating all mo-
bile agents that migrate to it. A more subtle form of attack
could involve withholding resources (memory, CPU cycles)
for a protracted period of time so that an agent executes
for a longer period than it normally would. This may be
problematic in certain situations; for example, if the agent
owner is later charged for the amount of resources allegedly
consumed by the agent on that host.

A survey of the code security literature reveals very few tech-
niques that address this problem directly. The techniques
we have mentioned so far appear to be vulnerable to this
type of attack. Approaches that could address this prob-
lem include the use of replicated agents [17]or co-operating
agents [19]. In [17], replicated agents are executed on differ-
ent hosts and simple voting is used to determine the outcome
of computational results. This approach is extended on in
[19], where other strategies such as secret sharing, remote
authorization or remote storage of commitments can be used
as part of protocols involving two co-operating (but not nec-
essarily identical) agents that communicate with each other
while migrating in different host platform domains. Some

of the criticisms regarding these approaches are that they
require replication of services on all host platforms and may
fail if the number of malicious hosts outnumber the honest
ones (for the case of replicated agents). Co-operating agents
appear more feasible but require that a specific co-operating
agent and associated protocol be created for each application
scenario, thus making it difficult to use for generic mobile
agents.

In this paper, we provide three contributions:

e Describe an approach to detecting some forms of denial-
of-service attacks that involves extending the execu-
tion tracing protocol, an existing code security tech-
nique.

e Formally model the extended protocol using CSP and
FDR and establish specific security properties.

e Outline some general problems related to the use of
finite state models in modelling mobile code security
protocols.

In the next section, we discuss the original protocol and how
it is extended. The detailed protocol of message exchanges
involved in this extension version is outlined in section 3.
Formal modelling and verification of the protocol using CSP
and the model checker FDR is presented in section 4. Sec-
tion 5 discusses the limitations of this modelling approach
as well as some general problems that may arise when at-
tempting to formally model mobile agent security protocols.
Finally, section 6 concludes with a short summary and di-
rection for future work.

2. EXTENDING EXECUTION TRACING

In execution tracing (Fig. 1), a host platform executing an
agent creates a trace of an agent’s execution that contains
precisely the lines of code that were executed by the mo-
bile agent as well as all the external values that were read
by the mobile agent. The trace is then stored by the host.
This tracing activity is repeated for all hosts in the path of
the agent. Upon its return, the agent owner may (if she/he
suspects that the mobile agent was not correctly executed)
request the complete trace of the agent’s execution com-
mencing from the first host platform (a). The agent owner
will then simulate the execution of the mobile agent based
on the information contained in the trace. This simulation
will result in an intermediate state and identify the next
host platform in the mobile agent’s itinerary. The agent
owner requests from this platform its trace (b) and proceeds
in this manner for all hosts in the agent’s itinerary (¢). If
at some point a discrepancy is found during the verification
of the trace provided by a particular host platform, then a
malicious host has been detected.

There have been some criticisms of this approach. The main
drawbacks are the size and number of logs related to traces
that need to be retained by the hosts, and the fact that
the detection process is triggered only on suspicion that an
agent has been manipulated. Other problems include the
difficulty of tracing the execution results of multi-threaded
agents.

52

Owner

O

Figure 1: Execution tracing - original protocol

mobile
agent

2.1 Introducing verification servers

In extending this protocol, we seek only to change the man-
ner in which agents and traces are propagated in the system.
The possible implementation of trace creation and verifica-
tion using the approach outlined in the original protocol
merits a complete analysis of its own and will not be dis-
cussed in this paper. Our approach is based on an earlier
proposal [23] which involves the introduction of a trusted
third party, the verification server that undertakes the pro-
cess of verifying traces on behalf of the agent owner (Fig.
2). When an agent owner launches a mobile agent to a host
platform (b), it creates a copy of the agent’s code and state
and forwards it onto a verification server (a) designated by
the host platform. While the host executes the agent, it cre-
ates a trace of this execution simultaneously. Upon request
of migration, the host then forwards this trace and the final
agent state (¢) to the designated verification server, which
ensures that the execution sequence is valid. Once a verifi-
cation server receives an agent copy, it will be aware of the
identity of the platform executing the actual agent. It can
thus implement a mechanism (for example, using time-outs)
to ensure that a trace of the execution arrives from the re-
quired host within a reasonable time. This provides a way
to safeguard against some forms of denial-of-service attacks.

5 5 ;
\ \ \
J —e—}) \ j

) g o

/q?

Owner

+
e d

Auc)“

vs]
=

¥
o 0
O mobile agent

A, B, C - Host platforms /™ mobile agent

_J copy

/\ A
O

V,u Vg, V¢ - Verification
servers

Figure 2: Execution tracing - extended protocol

When the validity of a trace is ascertained by a verifica-
tion server, the agent is then forwarded from the verifica-
tion server to its next destination host (d) and a copy (e)
is sent to the corresponding verification server. Verification

and migration then proceed in this fashion until the agent
completes its itinerary and returns to its owner (f). Host
platforms do not need to retain traces once they are submit-
ted to the verification server; verification servers only retain
submitted traces which do not verify properly. These faulty
traces can later be submitted as evidence to the agent owner
or a suitable arbitrator for appropriate sanctions to be un-
dertaken if so required. Only verification servers are allowed
to migrate agents to host platforms; correspondingly, honest
platforms will only accept agents from authenticated verifi-
cation servers (more on this in section 4).

Prior to the commencement of a protocol run, host platforms
will need to interact with verification servers to determine
the servers that are willing (or capable) of verifying traces
of agents executing in their environment. A host platform
could thus have a choice of several verification servers to use
in verifying any trace from its environment; conversely, a
verification server could be responsible for verifying traces
from several different hosts. Verification servers may dele-
gate verification activities to other verification servers in the
system if they are overloaded; this allows the formation of
trust relationships between servers as detailed in [22].

2.2 Comparison with existing protocol
This extended protocol yields several advantages over the
original one:

1. Trace verification is now performed by a verification
server for each host platform that an agent migrates
to in its itinerary. This permits the detection of mali-
cious tampering as soon as it occurs at any platform
on the agent’s itinerary. In the original protocol, trac-
ing only commences when an agent completes its tour
and returns (by which time the damage inflicted by a
malicious host could have been propagated to the re-
maining hosts in the itinerary) and even then, is only
an optional activity triggered by a suspicious owner.

2. Traces have to be retained by a host in the original
protocol (since the owner could request these for veri-
fication after a complete run of the agent), resulting in
a high storage and maintenance overhead. This is no
longer necessary in the extended version as verification
is performed at every platform. In addition, verifica-
tion servers can discard successfully verified traces and
need only retain those with discrepancies as possible
future evidence.

3. One of the primary motivations for using a mobile
agent is to avoid communication problems attributable
to low bandwidth or intermittent network links. In
such an instance, the request of traces by an agent
owner from potentially remote hosts in the original
protocol could be problematic (for example, from be-
hind a firewall). It would be easier instead for a host to
select verification servers in its network vicinity that
it can establish reliable communications with.

The extended protocol employs replication of agent code
and state and is thus similar in motivation to the replicated
agents approach. However, by imposing the trusted third

53

party concept (i.e. the verification server is assumed to be a
trustworthy entity that would not willingly collaborate with
other hostile parties), we eliminate the need for replication
of hosts as well as the possibility of failure that may arise
when the number of malicious hosts outnumber honest ones
in a voting scheme.

Our extended protocol shows greater similarity with the co-
operating agents approach. The agent copy forwarded to
verification servers for purposes of verifying the actual agent
that migrates along a separate itinerary of host platforms
can be regarded as a ‘co-operating’ agent that helps to de-
tect tampering of the actual agent. However, the extended
protocol offers the additional advantage of fault tolerance.
A co-operating agent is not a replica of the actual agent
to be protected, rather it is an agent that is specifically
designed to support the actual agent in specific scenarios
via constant communication so that it is immediately aware
whenever the actual agent is compromised. In such an event
however, it can only note or report the compromise but is
incapable of continuing the compromised agent’s agenda on
its own. In the extended protocol however, if a verification
server detects tampering in a trace, it can signal an excep-
tion to the agent copy executing in its environment so that
suitable action can be taken.

3. PROTOCOL DESCRIPTION

In this section, we detail the protocol used in the extended
version of execution tracing for one stage of a single protocol
run (Fig. 3). A single protocol run is defined as the com-
plete traversal of an unique agent instance along its itinerary,
starting from where it departs from its owner (Fig. 2 b) to
the point when it returns again (Fig. 2 e). This may include
any possible loops in its path (i.e. when an agent returns to
a previously visited host). We assume that a PKI is operat-
ing in the background, from which appropriate certificates
and corresponding public keys can be obtained to perform
encryption of data or verification of digital signatures. The
pseudocode for the verification server and host platform is
given in the Appendix. The format and sequence of mes-
sages exchanged in the protocol are shown in Fig. 4 and are
explained as follows:

\\3 Y
’\1\

V,u Vg, V¢ - Verification
servers
A, B - Host platforms >

Message for next stage of protocol run

Figure 3: Message sequence in extended protocol

my1: This message sent by Va4 is in reaction to the mobile
agent’s request to migrate to A. It is essentially a request

my {{Va, Ainy s Ie, {C}SPT(Owner)}SPT(VA)}Pb(A)
ma {{A,Va,tay,nv,, Ic, Ace, VR, {4, VB}SP”(VB)}SPT(A)}P,,(V)
A
mg {Va. A ta; ny, Te, S(e, Va, T(e, VA))}SP"'(VA)}Pb(A)
my {{A, VA tay.ny, Te, S(e, Vg, Tle, VA))}SP"(A)}Pb(VA)
mg {{VAvVB,{c}spr(owner)}SPT(VA),m4}Pb(VB)
mg {VB,VA,nVA,Ic}Pb(VA)
my {{A, Vg, Ie,ny, T(c, A), S(c, A, T(c, A))}SPT(A)}Pb(VB)
mg {VB,A,nVA,Ic}Pb(A)
Notation

e {X}spr(v) - indicates a message sequence X signed with the
private key of entity Y

o {X}pp(y) - indicates a message sequence X encrypted with the
public key of entity Y

e ty - indicates a timestamp created at entity Y
e ny - indicates a nonce created at entity Y

e Ic - refers to a unique agent identifier

e ¢ - refers to static mobile agent code

o T(c,Y) - refers to the trace of the agent code c after execution
at entity Y

e S(c,Y,T(c,X)) - refers to the state of the agent code c after
execution at entity Y, using the trace of the agent execution
specified by T'(c, X)

Figure 4: Protocol messages

to A to accept a mobile agent code instance Ic with asso-
ciated code c. A nonce ny, is included here to keep track
of a protocol run, and will be subsequently included in the
following messages as a reference to that protocol run.

mz2: Upon receipt of m1, A can decide whether or not to ac-
cept the mobile agent, based on consideration of the agent
code. This may involve performing security checks on the
code itself (i.e. host security) using techniques such as byte-
code verification or proof carrying code. Acc in this message
is therefore an indication of A’s willingness (or otherwise)
to accept the mobile agent. The last part of this message
indicates the verification server (in this case Vp) that will
verify the execution of any dispatched agent to A. This
is accompanied by a certification signed by the verification
server in question ({4, VB}gp,(y,))- Message mz must be
dispatched regardless of A’s willingness to accept the mobile
agent; this is necessary for V4 to distinguish between com-
munication/server failure or agent rejection. A time-stamp
ta, is included so that a record can be kept of ms in the
event of a rejection.

ms: An affirmative decision (with Acc = Accept) results
in the state of the agent prior to migration being sent to
A. In the event of rejection of platform A, the protocol run
will terminate at this stage (with an appropriate exception
flagged to the mobile agent), and recommence again at m.
if so required by the mobile agent.

my4: An acknowledgment message from A of the receipt of
the agent. This message is vital to provide non-repudiation
in the event that A attempts a denial of service attack once
it has received the agent. The time-stamp ¢4, provides a
reference value to implement a time-out mechanism in Vg

54

to safeguard against denial of service.

ms: A copy of the agent code and the entire contents of m4
(which includes the agent’s state) along with the appended
signature created by SPr(A) is then dispatched to Vg, the
server that will be responsible for verifying correct execution
on A. The identity of this verification server is obtained
from the second portion of message mz. Upon receipt of this
message, a time-out mechanism will be in effect at VB using
ta, to ensure that me arrives within a reasonable period of
time, the failure of which is an indication of either a denial
of service attack or a possible failure at A.

me: A simple acknowledgement of receipt of ms by Vg with
inclusion of ny, and Ic to keep track of the current protocol
run and agent instance.

my7: Upon completion of agent execution, a trace is created
at A (T(c, A)) and then submitted along with the new agent
state S(c, A,T(c, A)) to the appropriate verification server.

mg: A simple acknowledgement of receipt of m7 by Vg with
inclusion of ny, and Ic to keep track of the current protocol
run and agent instance.

Upon receipt of my, Vp will commence replay of the agent ¢
(identified by Ic) using the submitted trace T'(c, A). If the
resulting state from this replay S(c, VB, T'(c, A)) is equiva-
lent to the submitted state S(c, A,T(c, A)), then the next
stage of the protocol run can be initiated, that is Vp can
dispatch mi* (the equivalent of m1 in the next stage of the
protocol) to B. The submitted trace can then be discarded.
If equivalence is not obtained, an appropriate exception is
raised to the mobile agent and the faulty trace and state is
retained as evidence for further action by the home platform
or an arbitrator (if so required).

4. FORMALLY MODELLING AND VERI-
FYING THE PROTOCOL

The primary security goal of execution tracing is to safe-
guard the state and execution flow of an agent, which is ac-
complished in the original protocol and in our extended ver-
sion, by verifying agent states produced by replaying agents
according to a given trace. If we assume that the verification
and replay process is capable of detecting any malicious tam-
pering, then the security goal essentially reduces to ensuring
that traces and agents are dispatched correctly and securely
to their designated destinations as outlined in the protocol.
The original protocol uses various cryptographic primitives
in order to achieve this goal (in a similar fashion to us) but
does not attempt to formally verify the satisfaction of any
security property. As it has been noted in literature that de-
veloping good security protocols is notoriously difficult [2],
we believe that some form of modelling and verification is
necessary in order to provide a basic assurance that certain
specific security properties are achieveable. In the case of
our extended protocol, we are primarily interested in two
security properties that provide guarantee of correct and se-
cure dispatch of agents and traces:

e Mutual authentication of verification servers and host
platforms - It is important to make a distinction be-

tween these two entities as host platforms should only
accept mobile agents that are dispatched from verifica-
tion servers. This ensures that honest host platforms
will never accept agents with potentially corrupted
states directly from other platforms. The possibility
of a hostile host platform spawning multiple copies of
an agent and dispatching it randomly to other plat-
forms in the system is also circumvented. In a similar
context, a verification server has to ensure that it re-
ceives a copy of an agent from an authentic verification
server to ensure that it is verifying the correct agent
instance for a particular protocol run.

e Non-repudiation of commitment to executing agents -
It is important to retain evidence of the fact that a
host platform has committed to executing a particu-
lar mobile agent instance in a given protocol run to
prevent a denial of service attack (i.e. terminating a
mobile agent or delaying its execution for an inordi-
nate period of time). This is primarily achieved by a
digital signature appended to ma4 which is retained by
Va. The trace of agent execution as encapsulated in
my is also retained by Vg in the event it turns out to
be faulty; this can be later be submitted to a third
party arbitrator or the agent owner for sanctions to
be undertaken towards the erring platform if the need
arises.

In considering the security properties of the protocol, it
should be mentioned that the basic underlying assumption
is that the verification server is treated as a trusted third
party. Thus we assume that verification servers will not en-
gage in any action that will directly or indirectly lead to the
corruption of an agent’s state. We also make the usual as-
sumption that the basic cryptographic primitives used are
resistant to standard cryptanalysis and that private keys
are not compromised. There are many approaches available
for formally modelling and verifying properties of a security
protocol. Some of the more commonly utilised ones include:

1. BAN logic of authentication [3], which reasons about
the states and beliefs of agents involved in a protocol
run and how these beliefs evolve with the reception of
new information

2. Spi-calculus [1], which is an extension of w-calculus
designed to deal with cryptographic primitives

3. Strand-spaces approach [6] uses the concept of a strand
to represent the sequence of actions in which a partic-
ular protocol principal may participate and then rea-
sons about how the strands interact or intertwine as
participants interact by the exchange of messages

4. CSP-based approach [12] models the protocol interac-
tions as a system described by CSP process algebra [8],
for which violation of given specifications can be de-
tected through the use of a finite-state model checker
such as FDR [16]

We have chosen the last approach as it has been used suc-
cessfully in discovering attacks upon cryptographic protocols

55

([12], [13], [15]). In addition, modelling protocol runs as in-
teractions between entities using a process algebra like CSP
appears to be a reasonably intuitive one. As a complement
to this approach, tools such as Casper [14] have been devel-
oped that are capable of converting a high-level description
of a security protocol to a CSP specification of the model
that can be fed as input into the FDR model checker for
subsequent verification. This greatly simplifies the process
of CSP specification, which can be tedious and error-prone
for complicated protocols. We employ Casper in describing
our protocol in this section, further details on this protocol
specification language can be found at [14].

4.1 Modelling the protocol in Casper

For the free variables section, we have declared the following
variable types:

#Free variables

A : Agent

VA, VB : Server
nva, ntl, nt2
ca : AgentCode
asva, asa : AgentState
ata, atvb : AgentTrace

PK : Agent -> PublicKey

SK : Agent -> SecretKey

Nonce

SSK : Server -> ServerSecretKey
SPK : Server -> ServerPublicKey
hash : HashFunction

InverseKeys = (PK,SK), (SSK, SPK)

The agent code ¢, trace T(c,Y’) and state of the agent S(c,
Y,T(c, X)) (see Fig. 4) are represented by the types Agent
Code, AgentState and AgentTrace respectively and can as-
sume different values independently of each other. This
makes the protocol easier to model as it is difficult to de-
fine multi-variable functions correctly using Casper (i.e. the
state of an executed agent would be a one way function of its
code, initial state and trace). A side effect of this is that the
chances for attack by a malicious host is increased since it
can interleave different values of code, state and trace with
impunity in a protocol run. Indirectly, this enhances the
strength of the security property that we intend to estab-
lish. We distinguish between the public and private keys of
host platforms and verification servers as we regard them as
two distinct classes of entities in our protocol. A hash func-
tion is used to model the unique agent identifier, ¢, which
we treat simply as a hash of the agent code (the actual value
of Ic is explained at the conclusion of Section 6).

There are three processes representing Va4 (SERVERINI-
TIATOR), Vg (SERVERRESPONDER) and A (HOSTRE-
SPONDER) respectively of Fig. 3. All three entities will
have knowledge of their respective secret keys and will be
able to access the public keys of the other entities.

#Processes

SERVERRESPONDER (VB) knows SSK(VB), SPK, PK
SERVERINITIATOR(VA, nva, ca, asva) knows SSK(VA), SPK, PK
HOSTRESPONDER(A, ntl, nt2, asa, ata) knows SK(A), SPK, PK

The protocol is modelled below, where lines 1 — 8 correspond
to m1 — msg of the protocol. We use ntl and nt2 (of type

Nonce) to represent the time-stamps t4, and ta, issued by
A, as we are only interested in their unique values in the
protocol run and do not employ them to enforce a notion
of freshness. The protocol run is preceded with step Oc.,
which establishes the result of an earlier interaction where
A obtains a certification from a verification server Vg certi-
fying Vp’s capability of verifying agent traces from A. The
% notation is used to indicate that this certification is not
processed directly by A, rather stored in a temporary vari-
able and then later relayed to V4 in message 2. The same
comments apply as well to enc in message 4 and 5.

#Protocol description

0. -> VA : A
Oa. -> A : VA, VB
Ob. ->VB : A
Oc. VB —> A : {{A, VB}{SSK(VB)} % storecert}{PK(A)}
1. VA -> A : {{VA, A, nva, ca, hash(ca)}{SSK(VA)}}{PK(A)}
2. A -> VA : {{A, VA, nva, ntl, hash(ca), VB,
storecert % {A, VB}{SSK(VB)}}{SK(A)}}{SPK(VA)}
3. VA -> A : {{VA, A, ntl, hash(ca), asva}{SSK(VA)}}{PK(A)}
4. A -> VA : {{A, VA, nt2, nva, hash(ca), asva}{SK(4)},
{A, VA, nt2, nva, hash(ca), asva}
{SK(A)} % enc}{SPK(VA)}
5. VA -> VB : {{VA, VB, ca}{SSK(VA)},
enc % {A, VA, nt2, nva, hash(ca), asva}
{SK(A) }}{SPK(VB) }
6. VB —> VA : {VB, VA, nva, nt2}{SPK(VA)}
7. A > VB : {{A, VB, hash(ca), nva, ata, asa}{SK(A)}}{SPK(VB)}
8. VB -> A : {VB, A, nva, hash(ca)}{PK(A)}

We assume that the intruder is capable of creating its own
agent trace, code and state. In addition, in line with the
normal assumptions for an intruder in Casper, the intruder
will also be capable of creating its own nonces and accessing
the public keys and identities of all entities in the system.

#Intruder Information

Intruder = BadHost
IntruderKnowledge = {FirstServer, SecondServer, BadHost, Nb,
Nbt1l, Nbt2, Cb, PK, SPK, Asb, Atb, SK(BadHost)}

4.2 Specifying security properties

As mentioned earlier, the two important security proper-
ties to be established are mutual authentication and non-
repudiation. We employ the concept of authentication as
outlined in Casper . This is briefly expressed in the form
of the statement Agreement (A, B, [x]), which states that
A is authenticated to B on the basis of the fact that both
A and B agree on the value of x. More formally [14], this
means that if B (taking the role of responder) completes
a protocol run, apparently with A, using the data value x,
then the same entity A (taking the role of initiator) has pre-
viously been running the protocol, apparently with B, using
the same value x. In addition, each such run of B corre-
sponds to a unique run of A. x is typically some unique data
item (such as nonce or time-stamp) known only to A or B.
Mutual authentication will therefore require the additional
statement Agreement(B, A, [x]) to be verified as well.

For the case of V4 and A, we can claim that these two en-
tities are properly authenticated to each other after the ex-
change of mi - my, if only these two entities agree on the

56

values Ic,ta,,nv,, S(c,Va, T(c,Va)). Icis necessary to pro-
vide reference to the unique agent instance, ny, provides ref-
erence to the current protocol run, t4, and S(c, Va, T(c, Va))
provides reference to A’s response in my4.

Agreement (VA, A, [nva, nt2, hash(ca), asval)
Agreement (A, VA, [nva, nt2, hash(ca), asval)

Similarly mutual authentication between V4 and Vp and
between Vs and A can be expressed as

nt2])
nt2])
nt2])
nt2])

Agreement (VA,VB,
Agreement (VB,VA,
Agreement (VB, A,
Agreement (A, VB,

[nva,
[nva,
[nva,
[nva,

Non-repudiation can be simplified to the more general case
of maintaining secrecy of specific data items whose non-
repudiation is to be established. If we know that only entity
A issues item z in a protocol exchange between itself and an-
other entity B, and if we can establish that item x remains
secret in such a protocol exchange, then we can conclude
that A is indeed responsible for issuing . In our protocol,
we are not interested whether x can later be duplicated by
another entity (such as B) in another protocol run, rather
we are concerned with whether z is issued in a given protocol
run. The property of non-repudiation then follows simply
by applying a digital signature to #. As mentioned earlier,
non-repudiation is necessary for messages:

1. m2 - to provide evidence a host accepts or denies an
agent for a particular protocol run indicated by ny,
and an agent instance indicated by Ic;

2. mg4 - to provide evidence a host has received the state
S(c,Va,T(c,Va)) necessary to begin execution of the
agent instance Ic in the protocol run indicated by nv, ;

3. m7 - to provide evidence the agent instance was Ic
executed with a trace T'(c, A) to provide a state S(c, A,
T(c, A)).

In Casper, the statement Secret(A, x, [B]) is used to ex-
press the property that A believes x remains secret in an
interaction between itself and an entity that appears to be
B. If this entity is not B, then x will remain hidden to it.
Thus, to show non-repudiation, we have the following secu-
rity specifications !:

Secret(VA, nva, asva, ca, [A])
Secret(A, ntl, [VA])
Secret(A, ata, asa,

Secret(VB, nt2, [A])

[VB])

Both specifications for mutual authentication and secrecy
were satisfied in the resulting CSP model that was checked
using FDR. The checking process itself was lengthy (several
hours) due to the complexity of the protocol and the number
of independent data variables involved.

!These are provided in an abbreviated form; specifications
for secrecy should be in the form Secret(VA, x, [A]) for each
item x

5. LIMITATIONS OF MODELLING USING
CASPER AND FDR

The use of Casper to model security protocols for mobile
agent systems has been attempted previously by Hannotin
et al. [7]. In their work, they attempt to verify the property
of data integrity in a protocol proposed by Corradi et. al
[5] which intends to safeguard data accumulated by a mobile
agent (for example, price offers from various shop platforms)
during its itinerary from invalid tampering. The protocol
functions by making tampering of this data by a malicious
host (for example:- modification or truncation of previous
offers) detectable by either the home platform of the agent
or the next honest host that the agent migrates to. Although
this property is verified in the CSP model that they develop,
the same protocol (as well as other protocols with a similar
motivation of protecting accumulated data) was shown to
be vulnerable to a certain type of attack described by Roth
in [20], which has a general two-step approach:

1. Protocol data from an honest mobile agent is cut and
pasted on to a ‘dummy’ mobile agent generated by a
hostile host. This mobile agent is then launched to
another honest host with which it interacts in a cer-
tain manner to acquire critical information about the
current protocol run (which it would not normally be
able to acquire without the use of the ‘stolen’ protocol
data).

2. The ‘dummy’ agent migrates back to the hostile host
with this information, which is then used by the host
in some way to change the accumulated data of the
honest agent. This change will subsequently be unde-
tectable when the honest agent is migrated on to the
next host or back to its home.

The strategy of this attack is not new and is similiar in mo-
tivation to an earlier well-known attack on the Needham-
Schroeder public key protocol described by Lowe [13]. In
his attack, a replayed message from a previous protocol run
is used by an intruder to initiate a new protocol run in which
an unsuspecting participant is then abused as an unwitting
oracle to reveal confidential information. This information
can then be used to compromise the integrity of a commu-
nication channel. Roth’s technique is essentially the same
with the primary difference being that a new mobile agent
(instead of a replayed message) is used by a malicious host
in a new protocol run to initiate the oracle attack. In order
to nullify the attack, it is necessary to prevent one or both
of these steps from occurring. Roth presents a method to
prevent the first step by using authentication to uniquely
associate the identity of an agent instance along with the
protocol data transported by it. This would allow an hon-
est host to discern whether an incoming agent is carrying
protocol data that belongs to it or that was ‘stolen’ from
another agent. The host could then refuse to accept or ex-
ecute agents carrying ‘stolen’ data, thus preventing itself
from being abused as an oracle. This security measure is in
actual fact a form of host security, and we have here an in-
teresting illustration of how the two different aspects of code
and host security (which often appear to be orthogonal to
each other) can be actually closely interlinked.

57

The main reason underlying the failure of Hannotin’s Casper
model to detect such attacks is the inability to model a mo-
bile agent accurately using traditional cryptographic pro-
tocol analysis methods. In those methods, a fundamental
assumption in analysis is that the format of messages ex-
changed between static entities and the sequence in which
they occur within a single protocol run are predefined and
remain fixed throughout the duration of the protocol run.
Thus, attacks can only occur through judicious interleaving,
reflection or replay of messages from different protocol runs.
In Hannotin’s approach (and our approach as well) the mo-
bile agent is implicitly treated as a unique, static portion
of a message. This permits a reasonably straightforward
approach to modelling, but as we have just seen, it is not
accurate as it does not reflect the ability of the mobile agent
to potentially alter the sequence and content of messages
during an ongoing protocol run. For example, in the second
step of the attack, the data carried back by the ‘dummy’
agent to the hostile host has to be part of the specification
of the protocol run (since this is the data that actually al-
lows the hostile host to successfully carry out its attack).
Obviously, the format and contents of this data cannot be
predefined and will depend on the interaction of the agent
with the honest host. Thus, in order for a model to be able
to detect such attacks, two additional requirements are nec-
essary:

1. The model must be able to encapsulate all possible
behaviours of a mobile agent (as a function of its code,
internal state and state of its execution environment)
that have the ability to alter the format or sequence
of messages exchanged within a single protocol run

2. The model must be able to take into account all these
different possibilities of message contents and sequences
when it is used to simulate a protocol run

With regards to the first requirement, the identification of
the specific state or code of an agent that is capable of al-
tering the format or sequence of messages is clearly not a
trivial matter. Even if this could be accomplished, the addi-
tional possibilities for protocol runs with different message
contents and sequences will greatly increase the number of
possible interleaving of protocol runs, consequently creat-
ing a potential explosion in the state space to be explored.
This may make it less suitable for use on a finite state space
model checker such as FDR. In that case, checking the vi-
ability of the model may require techniques to reduce the
state space explosion (such as those used in [21]) or mod-
elling the protocol using a different approach (for example
strand spaces or spi-calculus). As a matter of interest we
note that the attacks described by Roth were discovered in
an ad hoc, intuitive manner without resort to any formal
methods of verification. It is thus possible that more subtle
attacks may yet exist on the protocols in question (even after
the remedy of authentication is applied), if these protocols
can be expressed and analysed in more thorough manner us-
ing models that encapsulate the two requirements that we
have briefly discussed.

Since we also treat the mobile agent as a static message in
our approach, our model is equally susceptible to the same

vulnerabilities as Hannotin’s. However, our modified proto-
col for execution tracing differs from the approach employed
by Corradi as well the original execution tracing protocol in
an important way: agent state (and code) is replicated. In
our approach, the agent that is actually migrated on to the
next host platform is the mobile agent copy on the verifica-
tion server (the trusted platform), and not the actual agent
on the current host. The consequence of this is that the cur-
rent host will not be able to directly manipulate the state
of the mobile agent, in effect nullifying step two of Roth’s
attack. The only way a hostile host can affect the state of
the agent copy is through the trace it supplies; this how-
ever will also contain the signature of the host to act as
a measure of non-repudiation. Supplying faulty traces as a
form of attack is thus meaningless as liability can eventually
be established for the resulting problems that arise (this, of
course, is based on the assumption that the economic cost
of being sanctioned for an attack is greater than the eco-
nomic cost resulting from the attack). Therefore, our only
concern is ensuring that traces, agent code and agent state
are securely propagated in our system, and that traces are
correctly associated with the corresponding agents. Mobile
agent behaviour is subsequently of no concern to us any
longer. We are therefore justified in using Casper to model
our protocol as the nature of our protocol is now analogous
to those modelled in standard cryptographic protocols. It
is also our belief that completely secure code execution on
untrusted platforms cannot be achieved without some form
of code/state replication.

6. CONCLUSION

In this paper, we identified the need for code security tech-
niques that address the concept of denial-of-service attacks
in addition to the usual data integrity and state tampering
attacks. A technique to detect some forms of such attacks is
proposed which involves the extension of a well known code
security technique, execution tracing. This essentially in-
volves the introduction of a trusted third party, the verifica-
tion server, that undertakes verification of traces on behalf of
the agent owner. The advantages of this modified technique
as compared to the original approach as well as other tech-
niques that prevent denial-of-service attacks are outlined.
The sequence of messages for the new protocol is described
in detail, and is then modelled in CSP using the high-level
security protocol description language, Casper. The model
is then analysed in FDR to determine whether specific se-
curity specifications are valid. Finally, we discuss the lim-
itations of modelling the protocol using Casper and finite
state model checkers such as FDR and point out the diffi-
culties involved in formal modelling of mobile agent security
protocols in general.

Our current work focuses on developing a practical method
to implement creation and verification of traces in a work-
ing mobile agent system. In addition, we are also looking
at ways of reducing the cryptographic cost of the protocol
without compromising on its security properties. A more
formal method of expressing the use of time-outs to pro-
vide protection against denial-of-service attacks would also
be useful. Once the protocol is sufficiently refined and trace
verification properly developed, a mobile agent framework
using the extended protocol can be created and evaluation
conducted against existing code security techniques.

58

7. REFERENCES
[1] Martin Abadi and Andrew D. Gordon. A calculus for
cryptographic protocols: The spi calculus. In Fourth
ACM Conference on Computer and Communications
Security, pages 36-47. ACM Press, 1997.

Martin Abadi and Roger M. Needham. Prudent
engineering practice for cryptographic protocols.
Software Engineering, 22(1), 1996.

Micheal Burrows, Martin Abadi, and Roger Needham.
A logic of authentication. Proceedings of the Royal
Society, 426(1871), 1989.

D. M. Chess. Security issues in mobile code systems.
In Mobile Agents and Security, number 1419 in LNCS.
Springer-Verlag, 1998.

[5] A. Corradi, R. Montanari, and C. Stefanelli. Mobile
agents integrity in e-commerce applications. In
Proceedings of the19th IEEE International Conference
on Distributed Computing Systems Workshop, IEEE
Computer Society Press, Austin, May 1999.

[6] F. J. Thayer F’abrega, J. C. Herzog, and J. D.
Guttman. Strand spaces : Why is a security protocol
correct 7 In Proceedings of the 1998 IEEE Symposium
on Security and Privacy, pages 160-171, February
1998.

Xavier Hannotin, Paolo Maggi, and Riccardo Sisto.
Formal specification and verification of mobile agent
data integrity properties : A case study. In Mobile
Agents : Proceedings of the 5th International
Conference, Altanta, USA, number 2240 in LNCS.
Springer-Verlag, 2001.

[8] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall International Series in Computer
Science, 1985.

Fritz Hohl. Time limited blackbox security: Protecting
mobile agents from malicious hosts. In Mobile Agents
and Security, number 1419 in LNCS. Springer-Verlag,
1998.

[10] Wayne Jansen. Countermeasures for mobile agent
security. In Computer Communications, Special Issue
on Advances in Research and Application of Network
Security, November 2000.

[11] G. Karjoth and N. Asokan. Protecting the
computation results of free-roaming agents. In Mobile
Agents and Security, number 1419 in LNCS.
Springer-Verlag, 1998.

[12] Gavin Lowe. Breaking and fixing the
Needham-Schroeder public-key protocol using FDR.
In Proceedings of Tools and Algorithms for
Construction and Analysis of Systems, number 1055 in
LNCS. Springer-Verlag, 1996.

[13] Gavin Lowe. Some new attacks on security protocols.
In 9th IEEE Computer Security Foundations
Workshop, 1996.

[14] Gavin Lowe. Casper : A compiler for the analysis of
security protocols. In Proceedings of The 10th
Computer Security Foundations Workshop. IEEE
Computer Society Press, 1997.

[15] Gavin Lowe and Bill Roscoe. Using CSP to detect
errors in the TMN protocol. IEEE Transactions on

Software Engineering, 23(10), 1997.

[16] F.S.E. Ltd. Failures-Divergence Refinement : FDR2
User Manual, Available at
http://www.formal.demon.co.uk/fdr2manual/.

Technical report, Formal Systems Europe, 1999.

[17] Yaron Minsky, Robbert van Renesse, Fred B.
Schneider, and Scott D. Stoller. Cryptographic
support for fault-tolerant distributed computing. In
Proceedings of the Seventh ACM SIGOPS European

Workshop, 1996.

[18] Luc Moreau and Christian Queinnec. Distributed
computations driven by resource consumption. In
Proceedings of IEEE International Conference on

Computer Languages (ICCL’98), 1998.

[19] Volker Roth. Mutual protection of co-operating
agents. In Secure Internet Programming: Security
Issues for Mobile and Distributed Objects, number

1603 in LNCS. Springer-Verlag, 1999.

[20] Volker Roth. On the robustness of some cryptographic
protocols for mobile agent protection. In Mobile
Agents : Proceedings of the 5th International
Conference, Altanta, USA, number 2240 in LNCS.

Springer-Verlag, 2001.

D. Song, S. Berezin, and A. Perrig. Athena, a novel
approach to efficient automatic security protocol
analysis. Journal of Computer Security, 9(1), 2001.

(21]

[22] H. K. Tan and L. Moreau. Trust relationships in a
mobile agent system. In Proceedings of the 5th IEEE
International Conference on Mobile Agents, Georygia,

USA, December 2001.

[23] H. K. Tan and L. Moreau. Certificates for mobile code
security. In Proceedings of the 17th ACM Symposium
on Applied Computing, March 2002.

[24] Giovanni Vigna. Cryptographic traces for mobile
agents. In Mobile Agents and Security, number 1419 in

LNCS. Springer-Verlag, 1998.

Alex Villazon and Walter Binder. Portable resource
reification in java-based mobile agent systems. In
Mobile Agents : Proceedings of the 5th International
Conference, Altanta, USA, number 2240 in LNCS.
Springer-Verlag, 2001.

25]

APPENDIX

Operation of host platform

Accept my

Verify signature SPr(V4) and identity of verification server (V4)
through a certificate

Verify signature on agent code ({c}spr(Owner)) to detect possible
tampering

59

Perform security check on agent code ({c})
If decision is made to commit to running agent code
Select verification server Vg to be employed in verifying the code
Submit in m2 suitable certification {A, Ve }spr(vy)
If verification server responds with ms
Verify signature on S(m, Va,T(m, Va)) to safeguard
against possible tampering
Respond with acknowledgment mg4
Instanstiate agent code with verified state
Commence execution of mobile agent and create a trace of its
execution sequence T'(m, A)
Upon completion of an agent run, sign trace and submit in my
to Ve
else
Terminate protocol run and await commencement from another
verification server
else
Indicate refusal in reply ma
Terminate protocol run and await commencement from another
verification server

Operation of verification server Vg

Receive initial state of agent S(c, Va,T(c,Va)) in ms
Implement time-out mechanism using ta, from ma4
If trace T'(c, A) in m7 arrives in specified time period
Verify identity of host submitting trace
Replay agent execution from initial state and submitted trace to
obtain final state S(c, Vg, T(c, A))
If final state S(c, Vs, T(c, A)) is equivalent to submitted
state S(c, A, T(c, A))
Identify destination platform contained in S(c, Vg, T(c, A))
Submit mi* to destination
Receive mox*
If Acc in mox* is positive
Verify identity of the verification server associated with
submitted certification
Submit final state of agent S(c, Ve, T(c, A)) to
host platform in msz*
Receive acknowledgment of reception my* from
the host platform
Forward S(c, Ve, T(c,A)) and {c}sPrgypnen
on to the next verification server in ms*)
else
Signal exception to agent
Record platform identity that refused to host the agent
else
Retain trace T'(c, A) as evidence
Signal exception to agent
Record occurrence of trace inequivalence in agent
else
Signal exception to agent
Record occurrence of time-out in agent

Securing M ulti-Agent Platform Communication

Juan Jim Tan, Leonid Titkov, Constantinos Neophytou

Department of Electronic Engineering, Queen Mary, University of London,
Mile End Road, London E1 4NS
+44 (0) 20 7882 5542
Email: {juanjim.tan, leonid.titkov, c.neophytou}@elec.gmul.ac.uk

Abstract

Communicaion between multi-agent platforms has sown
potential problems in aspeds of searity, for example
confidentiality, authenticaion and integrity. To address ®me
these isaues, this document focuses on analysing and spedfying
inter-platform agent seaurity in generd. In thisinitial document,
we investigate various core requirements and the SIMIME
content-type for inter-platform messaging. This paper aso
presents a message @nfidentiality design using ‘Enveloped
Data SIMIME content-type alhering PKCS 7 standards. In our
design, we have dso included CMS designs using ASN.1
notations to derive our message identifiers suppating platform-
to-platform communicaion. We ewisage the result of this
spedfication to be gplicable & most current HTTP messaging
systems suppat MIME standards. Finaly, further additiona
enhancements are discussed such as ‘Enveloped and Signed
Data content-type and cher key transport or key agreament
methods; these will be @vered in future pubicaions.

Keywords

SIMIME (Seasre/Multipurpose Internet Mail Extensions),
MIME, ASN.1 (Abstrad Syntax Notation), CMS
(Cryptographic Message Syntax), PKCS (Public-Key
Cryptography Standards), SS., PEM, CBC, RMI, IIOP, HTTP
(Hypertext Transfer Protocoal), FIPA.

1 Introduction

The Founcktion for Intelligent Physicd Agents (FIPA) Agent
Message Transport Service (MTS) Spedficaion [1] can be
improved by applying seaurity over transport messages in
suppat of the MTS [11]. Seaurity issues within this
communicaion grotocol may pose athrea in developing large-
scde ebusiness based solutions for example in
Agentcities.RTD [2].

Agents mostly interad in two types of environments; inter
platform and/or intra-platform communicaion [1]. In these
environments agents may use various types of messge
transport protocols for instance HTTP, 110OP (Internet Inter-Orb
Protocol) or RMI (Remote Method Invocdion). In the MTS of
an Agent Platform (AP), an agent has three options' when
sending a message to another agent resident on a remote Agent
Platform (AP) (seeFigure 1):

1. Agent A sends the messge to its locd Agent
Communicaion Channel (ACC) using a proprietary or
standard interface The ACC then takes care of sending the
messge to the wrred remote ACC using a suitable

1 A fouth passbility (not illustrated) is that instead of
completing the last two stages of the first path, the ACC on
the first platform contads Agent B diredly — this depends
uponthe aldressthat the ACC is delivering to.

60

Message Transport Protocol (MTP). The remote ACC that
will eventualy deliver the message.

2. Agent A sends the message diredly to the ACC on the
remote AP on which Agent B resides. This remote ACC
then delivers the message to B. To use this method Agent
A must suppat accessto ore of the remote ACC's MTP
interfaces.

3. Agent A sends the message diredly to Agent B, by using a
dired communicaion mechanism. The message transfer,
addressng, buffering of messages and any error messages
must be handled by the sending and receving agents. This
communicaion mode is nat covered by FIPA.

(=]

Agent B

===l
e
I~

/" o)

&
o]
»
E
)
]

Figure 1: ThreeMethods of Communication between Agents
on Different Agent Platforms

For now, the most commonly used communicaion method is
based largely on the first of the threemethods above. This paper
will addressthe problem of seauring data transmisgon between
two dfferent agent platforms over inseaure dhannels. In dang
so0 the following assumption hes been made; the agent platform
itself is eaure. This means that intra-platform communication
isn't a threa to the domain, as a result of this the focus of this
paper concerns faure inter-platform communication.

2. Problem Analysis

This sdion will try to addressthe problem by identifying the
searrity requirements and suitability of various ware
communicaion mechanisms used with HTTP. The modelling
choice for HTTP is encouraged by fadors pertaining to the
robustness and advantages of HTTP in general against other
Message Transport Protocols such as RMI or [IOP in FIPA.
HTTP aso runs on pats that most often permitted by most
firewalls and hes been generaly acceted as the defado
transport protocol for data communicaion.

FIPA messge spedficaion employs MIME (RFC822) [3]
standard. RFC822 spedfies that Encryption Types for mail may
be adgned. There ae arrently no RFC822 encryption types

assgned. Therefore usage of the Mail Privagy procedures is

reoommended [4] in RFC1421 [5]. Privacy Enhanced Mail

(PEM) [6] or RFC1421 were in the past a popular

cryptographic technique for authenticaion and pivagy of

messages. Unfortunately the success of PEM has siffered
because of drawbadks or flaws that have become gparent over
the yeas, such as the foll owing:

e Support Infrastructure: the IETF standard that addresses
seaure email proposes using a hierarchy of trusted bodes
to resswre users of the validity of a particular e-malil
messge. At the toplevel sits the Internet Policy
Registration Authority (IPRA), which would be the
governing cetificae trusted by al. The IPRA would sign
cetificates for a seoond layer of trusted bodes cdled
Policy Certification Authorities (PCAs). These in turn
would authorize cetificaes for another layer of bodes
cdled Certificae Authorities (CAS). In spite of this, there
are several products on the market or the Internet that
follow the PEM model, including ones from RSA Data
Seaurity, Trusted Information Systems, and Michigan State
University (cdled RIPEM). However, becaise the
certificete hierarchy suggested by PEM (the IPRA model)
hasn't been established, some of these products use
proprietary CA schemes. In ather words, the ladk of the
infrastructure, pulic diredories, has been the main
obstade in proliferation o PEM. For example, RIPEM,
the flagship of PEM, does not implement certificates.

e Surreptitious Forwarding: PEM essntialy provides only
two variants of mail seaurity; a messsge can simply be
signed, or it can be signed and then encrypted. PEM has
no ndion d signing or authenticaing ancill ary attributes,
and also doesn't suppat extra aypto layers. To prevent
surreptitious forwarding, a PEM messge's author would
have to include the redpient's name diredly in the
message-body. Of courseg, it could be very difficult for the
recaving PEM mail-client to find the redpient's name in
the body, thus making it difficult to automaticaly prevent
surreptiti ous forwarding.

Due to some of the PEM flaws mentioned above, newer
improved standards have been developed such as SIMIME
(Seaure/Multi purpose Internet Mail Extensions) [7] and PKCS
7:CMS (Cryptographic Message Syntax) [8], which provide a
consistent way to send and receve seaure MIME data. Based on
this gandard, we have proposed S'MIME to be complemented
with FIPA Message Spedfication to provide seaure dedronic

messaging: authentication, messge integrity and
confidentiality.
2.1 Message Structure

The FIPA Agent Messge Transport Protocol for HTTP
Spedficaion is based on MIME Spedficaion for multi part
message ontent type [13], this contains an envelope sedion
based on RFC822 [12] and a mntent sedion kased on FIPA
ACL Message Structure Spedficaion [14]. To provide seaurity,
using SIMIME over current HTTP Spedfication, we have re-
defined the content multi part sedion o the HTTP messge to a
SIMIME multipart using PKCS 7 Spedficaion. This re-
definition daesn’t change the overal spedficaion, but merely
contains the unencrypted ACL into a SIMIME definition that
aready resemble the arrent Multipat MIME Messge
Structure. The SSMIME sedion d the content utilises CMS to
provide the necessary definition o seaurity comporents and
encryption d the ACL Messge. This SMIME part is also

61

encoded in Base 64 encoding to ensure end to end transmisson
reliability of irregular characer types. The figure below (Figure
2), expresss how simply an SSMIME fedure can be integrated
to the present FIPA HTTP Message Structure:

CURRENT REVISED

HTTP Message Structure HTTP Message Structure

MIME Parts MIME Parts

RFC 822 Envelope

ACL Message

‘ RFC 822 Envelope ‘

S/MIME

Base 64 Encoding

CMS Objects
Parameters

Encrypted
ACL Message

Figure 2: Changesto Current FIPA HTTP Message Structure
to suppat SSMIME

In this context, SIMIME and PKCS 7 provides 4 core (there ae
more @ntent types that are not listed) content types of seaurity
mechanisms:

e Signed Data

e Enveloped Data

e Clea-Signed Data

e Signed and Enveloped Data

In the dfort to provide seaure communication between inter-
platforms, the use of SIMIME Enveloped data has been
employed as a first step towards platform-to-platform seaurity.
The remainder of this paper will also provide an architedure of
the system followed by use caes describing the high level
design.

Agent Agent
Platform A Platform B
HTTP Multipart MIME message
Header
Envelope | Base6d | g\[TVIE header Encrypted ACL ‘

Figure 3: HTTP message structure

Based onthe @ove achitedure (Figure 3), some of the strong
points have been naed in suppat of using SMIME and PKCS
7 with FIPA Message Transport Spedficaion, these ae &
follows:

e Clea separation ketween seaurity related data (the signed
attributes) and the goplication data (the cntent).

e CMS is widely used syntax for SIMIME enabled
messaging that is platform-independent as well.

e Allows douHe signing of messages, espeddly caered for
multi agent to multi agent messaging.

e Privagy in endto-end communicaion which dces not
impad mail processng by intermediate relay hosts that do
not incorporate privagy fadlity.

2.2 Use Case

This ®dion dscusses the steps in processng a message
encrypted in SIMIME when it is transmitted from one ACC to
ancther.

Step 1: The ACC of an agent platform recaeves a HTTP
messge from another agent platform's ACC. The
message ontains MIME bodes with a SSMIME part. The
Message Processng use cae strips the messge into
separate boundxries and relays the parts into the relevant
parsers and message strippers.

Step 2: The encoded SIMIME message is deaded to retrieve
the Java CMS objeds. From the objeds, the content key
is deaypted using either a previous ymmetric key or the
private key of the redpient.

Step 3: Once the ontent deayption key is retrieved, the
encrypted content can be deaypted to retrieve the ACL
Message and its relevant information. Following this, the
ACL Messge is passd to the Message Transport System
(MTS) to berouted to the final redpient.

3. SMIME and CMS

This £dion cfines how seaure message exchange between two
FIPA compliant agent platforms is constructed. This sdion
aso provides examples of CMS objeds, and the choices and
functions that are enployed.

The process by which enveloped data is constructed involves
the following steps[8]:

1. A content-encryption key for a particular content-
encryption algorithm is generated at random.

2. For eat redpient, the content-encryption key is encrypted
with the redpient's pubic key.

3. For ead redpient, the encrypted content-encryption key
and aher redpient-spedfic information is colleded into a
Redpientlnfo value, defined in Sedion 31.2 and 31.3.

4, The ontent is encrypted with the content-encryption key.
(Content encryption may require that the cntent be
padded to a multi ple of some block size)

5. The Redpientinfo values for al the redpients are olleaed
together with the encrypted content into an EnvelopedData
value, defined in Sedion 31.2.

6. Itisasuumed that the enveloped data wntains ©me binary
information. Therefore Base64 Content-Transfer encoding
is used.

A redpient platform opens the ewvelope by first decoding and
then deaypting the encrypted content-encryption keys with the
redpient's private key and ceaypting the encrypted content
with the recovered content-encryption key. The redpient's
private key isreferenced by an isauer distinguished name and an
isaler-spedfic seriadl number that uniquely identify the
cetificae for the wrrespondng pulic key. In a similar
scenario, two communicating platforms may also use symmetric
key exchange to pubic key when continuing previous

62

communicaions using an ealier symmetric key. A big picture
of HTTP Messages using MIME bodes couped with SMIME
parts using PKCS-7 can be seen in the Appendix prior to the
next part that isthe CMS objeds.

3.1 CMSusing ASN.1 Notation for SMIME

Body

This ®dion is divided into three parts. The first part describes
the top-level type EnvelopedData, the second part describes the
per-redpient information type RedpientInfo, and the third part
describes the cntent-encryption and key-encryption type.

3.1.1 Top Level Type Enveloped Data

The top level EnvelopedData CMS Notation described below
contains the identifier and enveloped data portions. The
identifier defines the standards and spedficaions used for
constructing an enveloped data S'MIME content type seaurity
mechanism. As for the other portion, it describes the version
info, redpient info and encrypted content info that will be
discussed in further detail in later sedions of this document.

id-envelopedData OBJECT IDENTIFIER ::={
iso(1) member-body(2)
us(840) rsadsi(113549 pkes(1) pkes7(7) 3

}
EnvelopedData ::= SEQUENCE {
version Q
redpientInfo Redpientinfo,
encryptedContentinfo EncryptedContentinfo
}

3.1.2 Per Recipient Information Type

This part describes the redpient information type; it consists of
the choices available between using asymmetric or symmetric
key exchange for content deayption. Both methods are valid
depending on a given situation, for example, if two patforms
were ommunicating, on their first attempt they would be using
the RSA type objeds. But if the platforms have ommunicaed
before they may choose the seacond ogion wsing symmetric keys
for greaer efficiency. There ae 3 key management algorithms
availablein CMS[9], they are:

« Key transport: the mntent-encryption key is encrypted in
the redpient's pullic key;

» Key agreement: theredpient's puldic key and the sender's
private key are used to generate apairwise symmetric key,
then the ntent-encryption key is encrypted in the
pairwise symmetric key; and

* Symmetric key-encryption keys. the mntent-encryption
key is encrypted in a previoudly distributed symmetric key-
encryptionkey.

In this document, we use two of the three aailable key
management algorithms to seaure ommunicaion ketween two
platforms. The dgorithms are expressd in Sedion 31.2.1 and
3.1.2.2 below.

3.1.2.1 Key Transport Algorithm
This sdion hes described the Redpient Info that contains
version, key identifiers, encryption algorithm used and the

encrypted key (will be described in Sedion 31.3) data. The key
identifier refers to a unique @nversation id and may aso
include more than ore redpient. The encryption algorithm here
refers to RSA encryption due to the nature of this algorithm that
suppats arre ommunicaion for the first time between two
agent platforms that would latter fadlitate symmetric key
generation (can be used in conjunction with conceptsin Sedion
3.1.22)

-- Used for first time wnredion, using RSA encryption o keys
-- Start RSA type objed

Redpientinfo ::= SEQUENCE {
version 2
subjeaKeyldentifier
agentB @agents.elecgmul.acuk/12345678
KeyEncryptionAlgorithm rsaEncryption,
encryptedKey EncryptedK ey
}

rsaEncryption OBJECT IDENTIFIER ::={

iso(1) member-body(2)

us(840) rsadsi(113549 pkes(1) pkes-1(1) 1
}

-- End o RSA type objed
-- use dther the RSA (above) or Triple-DES (below) type
objeds for key encryption

3.1.2.2 Symmetric Keys-Encryption-Keys

Algorithm

This algorithm caers for seaure @mmunicaion wing a
previously agreed or newly generated symmetric key between
two agent platforms. As in the previous sdion, one or more
sets of Key-Encryption-Key (KEK) redpients info with the
desired Key ldentifier (spedfied with a unique ID and a
timestamp) can be defined, and lastly the key encryption
agorithm is based onTriple-DES algorithm that is described in
ANSI X9.52 [15]. The Triple-DES is composed from three
sequential DES [16] operations. encrypt, deaypt, and encrypt.
Also, t