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Abstract

Optimal decision-making under partial observability requires reasoning about the uncertainty
of the environment’s hidden state. However, most reinforcement learning architectures
handle partial observability with sequence models that have no internal mechanism to
incorporate uncertainty in their hidden state representation, such as recurrent neural networks,
deterministic state-space models and transformers. Inspired by advances in probabilistic
world models for reinforcement learning, we propose a standalone Kalman filter layer that
performs closed-form Gaussian inference in linear state-space models and train it end-to-end
within a model-free architecture to maximize returns. Similar to efficient linear recurrent
layers, the Kalman filter layer processes sequential data using a parallel scan, which scales
logarithmically with the sequence length. By design, Kalman filter layers are a drop-in
replacement for other recurrent layers in standard model-free architectures, but importantly
they include an explicit mechanism for probabilistic filtering of the latent state representation.
Experiments in a wide variety of tasks with partial observability show that Kalman filter layers
excel in problems where uncertainty reasoning is key for decision-making, outperforming
other stateful models.

1 Introduction

The classical reinforcement learning (RL) formulation tackles optimal decision-making in a fully observable
Markov decision process (MDP) (Sutton and Barto, 2018). However, many real-world problems are partially
observable, since we only have access to observations that hide information about the state, e.g., due to
noisy measurements. Learning in partially observable MDPs (POMDPs) is statistically and computationally
intractable in general (Papadimitriou and Tsitsiklis, 1987), but in many practical scenarios it is theoretically
viable (Liu et al., 2022) and has lead to successful applications in complex domains like robotics (Zhu et al.,
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2017), poker (Brown and Sandholm, 2019), real-time strategy games (Vinyals et al., 2019) and recommendation
systems (Li et al., 2010).

Practical algorithms for RL in POMDPs employ sequence models that encode the history of observations
and actions into a latent state representation amenable for policy optimization. Besides extracting task-
relevant information from the history, probabilistic inference over the latent state is also crucial under partial
observability (Kaelbling et al., 1998). As a motivating example, consider an AI chatbot that gives restaurant
recommendations to users. Since the user’s taste (i.e., the state) is unknown, the agent must ask questions
before ultimately making its recommendation. Reasoning over the latent state uncertainty is crucial to decide
whether to continue probing the user or end the interaction with a final recommendation. An optimal agent
would gather enough information to recommend a restaurant with a high likelihood of user satisfaction. In
Section 5.2, we evaluate performance of our proposed approach in a simplified version of this problem.

A standard recipe for model-free RL in POMDPs is to combine a sequence model (e.g., LSTM (Hochreiter
and Schmidhuber, 1997), GRU (Cho et al., 2014)) with a policy optimizer (e.g., PPO (Schulman et al., 2017)
or SAC (Haarnoja et al., 2018)), which has shown strong performance in a wide variety of POMDPs (Ni et al.,
2022). More recently, transformers (Vaswani et al., 2017) have also been adopted as sequence models in RL
showing improved memory capabilities (Ni et al., 2023). However, their inference runtime scales quadratically
with the sequence length, which makes them unsuitable for online learning in physical systems (Parisotto and
Salakhutdinov, 2020). Instead, recent deterministic state-space models (SSMs) (Gu et al., 2022a; Smith et al.,
2023; Gu and Dao, 2023) maintain the constant-time inference of stateful models, while achieving logarithmic
runtime during training thanks to efficient parallel scans (Smith et al., 2023). Moreover, SSMs have shown
improved long-term memory, in-context learning and generalization in RL (Lu et al., 2023). Yet, in problems
where reasoning over latent state uncertainty is crucial, it remains unclear whether such methods can learn
the required probabilistic inference mechanisms for decision making. The core objective of this work is to
study the role of explicit probabilistic inference within a model-free RL architecture for POMDPs.

While model-free architectures focus on deterministic sequence models, in model-based RL probabilistic
sequence models are a widespread tool to model uncertainty in environment dynamics (Watter et al., 2015;
Hafner et al., 2019; 2020; Becker and Neumann, 2022). Considering these two sequence modelling approaches,
we concretely investigate the following questions:

Can we leverage the same inference methods developed for model-based RL as general-purpose sequence
models in model-free architectures? If so, does it bring any benefits compared to deterministic models?

Our core hypothesis is that explicit probabilistic inference in sequence models may serve as an inductive bias
to learn in tasks where uncertainty over the latent state is crucial for decision making, as our motivating
example on the restaurant recommendation chatbot.

Our Contributions. Inspired by the simple inference scheme in the Recurrent Kalman Network (RKN)
(Becker et al., 2019) architecture for world models, we embed closed-form Gaussian inference in linear SSMs
as a standalone recurrent layer — denoted a Kalman filter (KF) layer — and train it end-to-end within
a model-free architecture (Ni et al., 2022) to maximize returns. Since our KF layers are designed to be a
drop-in replacement for standard recurrent layers, they can also be stacked together and combined with
other components (e.g., residual connections, normalization, etc.) to build more complex sequence models.
Similar to Becker et al. (2024), we leverage the associative property of the Kalman filter operations for
efficient training of KF layers via parallel scans, which scale logarithmically with the sequence length provided
sufficient parallel GPU cores.

We systematically evaluate our research questions across a variety of POMDPs that probe distinct capabilities,
such as uncertainty reasoning, adaptation, generalization and filtering of noisy observations. We benchmark
the performance of KF layers against a wide range of baselines from prior work, including GRUs, transformers,
and deterministic SSMs, all embedded in the same model-free architecture. To ensure fairness in our
comparisons, we meticulously control for confounding factors such as parameter count, training procedure
and hyperparameters. By holding all aspects of the architecture and training constant, we isolate the impact
of each sequence model in the overall performance, providing clear insights into their relative effectiveness.
Through these experiments, we demonstrate that KF layers can be trained effectively end-to-end on model-free
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objectives, excelling in tasks where probabilistic inference is key for decision-making and showing significant
improvements over deterministic stateful models.

2 Related Work

RL architectures for POMDPs. Partial observability in RL tasks requires agents to maintain memory of
past interactions. Some approaches incorporate memory systems inspired by principles of human psychology,
such as reward-based learning (Fortunato et al., 2019), or rely on mechanisms like context-dependent retrieval
(Oh et al., 2016). A more widespread solution involves sequence models, also referred to as history encoders
(Ni et al., 2024), which encode past observations and actions into a state representation useful for RL. These
models have been used to augment policies (Wierstra et al., 2007), value functions (Schmidhuber, 1990;
Bakker, 2001) and world models (Schmidhuber, 1991; Becker et al., 2019; Shaj et al., 2021a;b; 2023). This
enables RL algorithms, such as DQN (Hausknecht and Stone, 2015), SAC (Ni et al., 2022), PPO (Kostrikov,
2018; Ni et al., 2023; Lu et al., 2023), DPG (Heess et al., 2015) and Dyna (Hafner et al., 2020; Becker and
Neumann, 2022) to handle partial observability. In this work, we adopt an off-policy model-free architecture
similar to Ni et al. (2022), leveraging its strong performance in various POMDPs.

Sequence models in RL. Frame-stacking was one of the earliest methods used in RL to capture temporal
context by concatenating consecutive observations (Lin and Mitchell, 1993). It remains a common tool for
conveying velocity information from image-based observations, such as in the Atari benchmark (Bellemare
et al., 2013; Mnih et al., 2013). However, frame-stacking fails to model long-range dependencies in more
complex POMDPs due to its fixed and shallow representation of temporal relationships. To address this
limitation, stateful recurrent models became the dominant approach for extracting relevant information from
arbitrarily long contexts. Examples include RNNs (Lin and Mitchell, 1993; Schmidhuber, 1990), LSTMs
(Bakker, 2001) and GRUs (Kostrikov, 2018). More recently, the transformer architecture (Vaswani et al.,
2017) has shown promise in improving the long-term memory in RL agents (Ni et al., 2023). However, while
transformers excel at modeling long-range dependencies, their slow inference and large memory footprint
reduce their practicality for real-time control tasks, where efficiency is critical (Parisotto and Salakhutdinov,
2020). These challenges emphasize the need for more efficient sequence models that balance representational
power with computational feasibility.

Deterministic SSMs. State-space models are of particular interest to the RL community due to their
computational efficiency compared to traditional sequence models like RNNs and transformers. They maintain
the fast inference of RNNs, but scale logarithmically (rather than linearly) with the sequence length during
training (Smith et al., 2023). Moreover, they also circumvent vanishing/exploding gradients with proper
initialization (Gu et al., 2020) and match (or even exceed) the performance of transformers in long-range
sequence modelling tasks (Lu et al., 2023). In particular, structured state space models such as S4 (Gu et al.,
2022a), S5 (Smith et al., 2023) and S6 / Mamba (Gu and Dao, 2023) have emerged as a strong competitor
to transformers in general sequence modelling problems like language (Fu et al., 2023), audio (Goel et al.,
2022) and video (Nguyen et al., 2022). The adoption of these models in RL is still in its infancy, however.
For instance, Morad et al. (2023) report bad performance of a variant of S4 (Gu et al., 2022b) in various
POMDPs, while Lu et al. (2023) show that combining S5 with PPO yields strong results in long-term memory
and in-context learning. These mixed findings suggest that the performance of deterministic SSMs in RL is
sensitive to implementation details and possibly environtment-dependent. Furthermore, it remains unclear
how these models perform in tasks where uncertainty in the latent state is critical for decision-making, as
they lack explicit probabilistic inference mechanisms. We hypothesize that probabilistic inference is vital to
handle such problems.

Probabilistic SSMs. Probabilistic SSMs are a common tool in model-based RL to train both discriminative
(Haarnoja et al., 2016) and generative (Ha and Schmidhuber, 2018) models of the environment, often referred
to as world models. These models are trained to capture the environment’s dynamics, which can then be used
for: (i) planning (Hafner et al., 2019) or policy optimization (Becker and Neumann, 2022; Hafner et al., 2020)
via latent imagination (i.e., generating imaginary policy rollouts auto-regressively), or (ii) policy optimization
on the learned latent representation (Becker et al., 2024). A prominent approach is the Recurrent State
Space Model (RSSM) proposed by Hafner et al. (2019), which divides the latent state into deterministic and
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stochastic components and uses a GRU to propagate the deterministic part forward. More recently, GRUs
have been replaced by transformers (Chen et al., 2021) and S4 (Samsami et al., 2024) models, albeit in a
simplified inference scheme that conditions only on the current observation rather than the history, possibly for
computational efficiency. A common objective function for training these probabilistic SSMs is the evidence
lower bound (ELBO), which provides a lower bound on the log-likelihood of the environment’s data. This
ensures that generative models produce plausible trajectories given an action sequence, typically optimized
with variational autoencoders (Kingma and Welling, 2014). These autoencoders shape a low-dimensional
latent representation to capture salient features of the environment’s data generation process. The world
model objective can be viewed as an auxiliary loss that helps the sequence model learn a useful representation
for control tasks, which has shown improved sample efficiency in problems with complex, high-dimensional
observations like images (Hafner et al., 2023). Other approaches, such as contrastive learning (Laskin et al.,
2020), similarly propose a proxy objective that shapes the learned representation to maximize agreement
between augmented views of the environment. These auxiliary losses has benefits and drawbacks: they
provide a strong learning signal for representation learning, even in the absence of a reward signal, but they
introduce complexity in training and can interfere with the RL objective, known as the objective mismatch
problem (Lambert et al., 2020). While these tradeoffs warrant research on their own, the purpose of this
work is to bring understanding in the role of probabilistic inference in model-free RL architectures without
auxiliary objectives.

Kalman filters. A particular class of probabilistic SSMs of relevance to this work are Kalman filters
(Kalman, 1960), which perform optimal inference in linear SSMs under a Gaussian noise assumption. Since
then, Kalman filters have been theoretically extended to handle non-linear dynamics (Serra, 2018) and also
widely adopted in a range of science and engineering fields (Auger et al., 2013), including robotics (Urrea
and Agramonte, 2021), vision (Chen, 2012), signal processing and sensor fusion (Khaleghi et al., 2013).
They also have a rich history within the machine learning community, particularly in early applications for
time-series forecasting (Shumway and Stoffer, 1982). While the linear-Gaussian assumption in standard
Kalman filtering is restrictive for the high-dimensional data often found in machine learning applications
(Murphy, 2012; Bishop, 2006), several extensions have been proposed. One class of approaches circumvent
these limitations by modelling non-linear state transitions with neural networks (Krishnan et al., 2015; 2017)
and performing approximate inference via stochastic gradient variational Bayes (Kingma and Welling, 2014).
Alternatively, other approaches simplify the inference problem by embedding (locally) linear-Gaussian SSMs
in learned latent spaces (Watter et al., 2015; Karl et al., 2017; Klushyn et al., 2021), enabling exact Kalman
filtering and yielding better performance than methods with more complex dynamics but poor approximate
inference (Fraccaro et al., 2017). However, the use of full transition and covariance matrices limits the
practical dimensionality of the latent space and the expressivity of the models. In contrast, we adopt a simpler
parameterization of the linear-Gaussian SSM, using diagonal matrices and covariances, which significantly
reduces the computational burden of Kalman filtering. This approach scales to higher-dimensional latent
spaces, enables logarithmic scaling (in the sequence length) of the Kalman filter equations (Sarkka and
Garcia-Fernandez, 2021; Becker et al., 2024) and preserves the expressivity of the models by offloading
representational power to other components of the architecture, such as encoders and decoders (Haarnoja et
al., 2016; Becker et al., 2019).

Kalman filters in RL. Kalman filters have been extensively used in RL as discriminative (Haarnoja et al.,
2016; Becker et al., 2019; Shaj et al., 2021a;b; 2023) or generative (Watter et al., 2015; Becker and Neumann,
2022; Becker et al., 2024) world models. The former are trained on regression losses to obtain accurate
predictions, while the latter are trained with variational inference for temporally-consistent generation. In
the model-free architecture considered in this work, only discriminative sequence models can be integrated
without altering the training procedure; generative models would require auxiliary loss functions, which
would modify the training process and introduce potential confounding factors that are not part of our
experimental design. Closest to our approach is the Recurrent Kalman Network (RKN) (Becker et al., 2019),
an encoder-decoder architecture that employs Kalman filtering using locally linear models and structured
(non-diagonal) covariance matrices. Follow-up work has extended the RKN framework in various ways: Shaj
et al. (2021a) include action conditioning, Shaj et al. (2021b) consider a multi-task setting with hidden task
parameters and Shaj et al. (2023) propose a hierarchical, multi-timescale architecture. While these approaches
train the latent representation to capture the environment’s dynamics, our work instead focuses on training a
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similar Kalman filter end-to-end with the RL objective — return maximization — such that the latent space
is shaped specifically for control rather than prediction.

3 Background

In this section, we provide the relevant background and introduce core notation used throughout the paper.
We use bold upper case letters (A) to denote matrices and calligraphic letters (X ) to denote sets. The
notation diag(A) refers to a vector containing the diagonal elements for a square matrix A and P(X ) refers
to the space of probability distributions over X .

3.1 Reinforcement Learning in Partially Observable Markov Decision Processes

We consider an agent that acts in a finite-horizon partially observable Markov decision process (POMDP)
M = {S, A, O, T, p, O, r, γ} with state space S, action space A, observation space O, horizon T ∈ N, transition
function p : S × A → P(S) that maps states and actions to a probability distribution over S, an emission
function O : S → P(O) that maps states to a probability distribution over observations, a reward function
r : S × A → R, and a discount factor γ ∈ [0, 1).

At time step t of an episode in M, the agent observes ot ∼ O(· | st) and selects an action at ∈ A based on
the observed history h:t = (o:t, a:t−1) ∈ Ht, then receives a reward rt = r(st, at) and the next observation
ot+1 ∼ O(· | st+1) with st+1 ∼ p(· | st, at).

We adopt the general setting by Ni et al. (2023; 2024), where the RL agent is equipped with: (i) a stochastic
policy π : Ht → P(A) that maps from observed history to distribution over actions, and (ii) a value function
Qπ : Ht × A → R that maps from history and action to the expected return under the policy, defined
as Qπ(h:t, at) = Eπ

[∑T
h=t γh−trt | h:t, at

]
. The objective of the agent is to find the optimal policy that

maximizes the value starting from some initial state s0, π⋆ = argmaxπ Eπ

[∑T −1
t=0 γtrt | s0

]
.

3.2 History Representations

A weakness of the general formulation of RL in POMDPs is the dependence of both the policy and the
value function on the ever-growing history. Instead, practical algorithms fight this curse of dimensionality by
compressing the history into a compact representation. Ni et al. (2024) propose to learn such representations
via history encoders, defined by a mapping ϕ : Ht → Z from observed history to some latent representation
zt := ϕ(h:t) ∈ Z. With slight abuse of notation, we denote π(at | zt) and Qπ(zt, at) as the policy and values
under this latent representation, respectively.

3.3 Probabilistic Inference on Linear SSMs

We consider time-varying, discrete, linear-Gaussian SSMs defined by

xt = Atxt−1 + Btut−1 + εt, yt = Ctxt + Dtut−1 + νt, (1)

where t > 0 ∈ N, xt ∈ RN is the hidden or latent state, ut ∈ RP is the input, yt ∈ RM is the output,
(At, Bt, Ct, Dt) are matrices of appropriate size, εt ∼ N (0, Σp

t ) and νt ∼ N (0, Σo
t ) are zero-mean process

and observation noise variables with their covariance matrices Σp
t and Σo

t , respectively. Without loss of
generality and as it is common in linear SSMs, we set Dt ≡ 0. The latent state probabilistic model is
then p(xt | xt−1, ut−1) = N (Atxt−1 + Btut−1, Σp

t ) and the observation model is p(yt | xt) = N (Ctxt, Σo
t ).

Inference in such a model has a closed-form solution, which is equivalent to the well-studied Kalman filter
(Kalman, 1960).

Predict. The first stage of the Kalman filter propagates forward the posterior belief of the latent state at
step t − 1, given by N (x+

t−1, Σ+
t−1), to obtain a prior belief at step t, N (x−

t , Σ−
t ), given by

x−
t = Atx

+
t−1 + Btut−1, Σ−

t = AtΣ+
t−1A⊤

t + Σp
t . (2)
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Update. The second stage updates the prior belief at step t given some observation wt, to obtain the
posterior p(xt | xt−1, wt) = N (x+

t , Σ+
t ) given by

x+
t = x−

t + Kt(wt − Ctx
−
t ), Σ+

t = (I − KtCt)Σ−
t , (3)

where Kt = Σ−
t C⊤

t (CtΣ−
t C⊤

t + Σo
t )−1 is known as the Kalman gain. The predict and update steps are

interleaved to process sequences of input and observations {ut, wt}K−1
t=0 of length K, starting from some initial

belief N (x+
−1, Σ+

−1).

3.4 Simplifying Assumptions

The Kalman filter predict and update equations from (2) and (3) involve expensive matrix multiplication
and inversion, which scales poorly with the latent state dimension N . In this section we propose several
simplifications, both for easier implementation but also for better scalability.

Time-invariance. Prior work proposed time-varying SSMs via state-dependent (Becker et al., 2019) or
input-dependent (Gu and Dao, 2023) matrices. Instead, in this work we propose using simple time-invariant
matrices, as similarly done in prior deterministic SSMs (Gu et al., 2022a; Smith et al., 2023). First, state-
dependent matrices is well motivated by local linearization of dynamics, but they are incompatible with
efficient parallel scan routines, as they break the associative property of the Kalman filter equations. Second,
while input-dependent matrices excel in associative recall problems where input-selectivity is necessary,
Kalman filters provide similar selection mechanisms via its posterior update (see Section 4.2), without the
need for time-varying matrices. Concerning time-invariant process noise, such simplification reduces the
expressivity of the model. However, our initial experiments with input-dependent process noise showed worse
performance in RL than its time-invariant alternative (see Section 4.2 and Appendix E).

Diagonal matrices. In order to scale to higher-dimensional latent spaces, prior work in both deterministic
and probabilistic SSMs consider structured SSMs. This simply means special structure is imposed into the
learnable matrices (A, B, C). In particular, we consider a diagonal structure with the HiPPO initialization
proposed in Gu et al. (2020), which induces stability in the recurrence for handling long sequences. In addition,
we also consider: (i) diagonal process and observation noise covariances, (ii) N = M = P , which simplifies
the implementation and (iii) identity emission matrices C = I, as proposed in (Becker and Neumann, 2022).
Under this parameterization, the expensive Kalman filter equations reduce to element-wise operations:

x−
t = diag(A) ⊙ x+

t−1 + diag(B) ⊙ ut−1, diag(Σ−
t ) = diag(A)2 ⊙ diag(Σ+

t−1) + diag(Σp
t ), (4)

x+
t = x−

t + diag(Kt) ⊙ (wt − x−
t ), diag(Σ+

t ) = (diag(I) − diag(Kt)) ⊙ diag(Σ−
t ), (5)

diag(Kt) = diag(Σ−
t ) ⊘ (diag(Σ−

t ) + diag(Σo
t )), (6)

where ⊙ denoted element-wise vector product and ⊘ denotes element-wise vector division.

3.5 Parallel Scans

Efficient implementation of state-space models and Kalman filters employ parallel scans to achieve logarithmic
runtime scaling with the sequence length (Smith et al., 2023; Sarkka and Garcia-Fernandez, 2021). Given a
sequence of elements (a0, a1, . . . , at−1) and an associative1 binary operator • , the parallel scan algorithm
outputs all the prefix-sums (a0, a0 • a1, . . . , a0 • . . . • at−1) in O(log K) runtime, given sufficient parallel
processors.

4 Method: Off-Policy Recurrent Actor-Critic with Kalman filter Layers

In this section, we describe our method that implements Kalman filtering as a recurrent layer within a
standard actor-critic architecture.

1A binary operator • is associative if (a • b) • c = a • (b • c) for any triplet of elements (a, b, c)
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Embedder
History
Encoder MLP

Actor

Embedder

History
Encoder

MLP

History
Encoder MLP

Critic

Embedder

Figure 1: General Recurrent Actor-Critic (RAC) architecture. The components are trained end-to-end with
the Soft Actor-Critic (SAC) loss function (Haarnoja et al., 2018). To handle discrete action spaces, we use
the discrete version of SAC by Christodoulou (2019).

Linear

Predict

Update

Linear

KF Layer

Figure 2: Our proposed Kalman filter layer to build history encoders. The KF layer receives a history
sequence h:t and projects it into three separate signals in latent space: the input u:t, the observation w:t and
the observation noise (diagonal) covariance Σo

:t. These sequences are processed using the standard Kalman
filtering equations, which scale logarithmically with the sequence length using parallel scans. Lastly, the
posterior mean latent state x+

:t is projected from the latent space back into the history space to obtain the
compressed representation z:t.

4.1 General Architecture

In Figure 1 we present our Recurrent Actor-Critic (RAC) architecture inspired by Ni et al. (2022), where we
replace the RNN blocks with general history encoders. We will use this architecture in the following to test
the capabilities of different history encoders in various POMDPs.

For both actor and critic, we embed the sequence of observations and actions into a single representation h∗
:t

which is then passed into the history encoders. We use a single linear layer as embedder, which we found
worked as reliably as more complex non-linear embedders used in similar RAC architectures by Morad et al.
(2023); Ni et al. (2022). We also include the skip connections from current observations and actions into the
actor-critic heads, as proposed in previous memory-based architectures (Zintgraf et al., 2021; Ni et al., 2022).

4.2 Kalman Filter Layers

Our main hypothesis is that principled probabilistic filtering within history encoders boosts performance
in POMDPs, especially those where reasoning about uncertainty is key for decision-making. To test this
hypothesis, we introduce KF layers, as shown in Figure 2. The layer receives as input a history embedding
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sequence h:t which is then projected into the input u:t, observation w:t and observation noise Σo
:t sequences.

These three signals serve as input to the standard KF predict-update equations (2) and (3), which output a
posterior (filtered) latent state x+

:t . Finally, the posterior sequence is projected back to the history embedding
space to produce the compressed history representation z:t.

History encoders with KF layers. Similar to recent SSM layers such as S5 (Smith et al., 2023) and S6
(Gu and Dao, 2023), these KF layers can be stacked and combined with other operations such as residual
connections, gating mechanisms, convolutions and normalization to compose a history encoder block in the
RAC architecture. In favor of simplicity, our history encoders are only composed of KF layers and (optionally)
an RMS normalization (Zhang and Sennrich, 2019) output block for improved stability.

Filtering as a gating mechanism. We can draw interesting comparisons between KF layers and other
recurrent layers from the perspective of gating mechanisms. It was shown in Theorem 1 of (Gu and Dao,
2023) that selective SSMs (S6) behave as generalized RNN gates through an input-dependent step size ∆. In
this case, the gate depends on the SSM input and controls how much the input influences the next hidden
state. Similarly, as hinted by Becker et al. (2019), during the update step the Kalman gain is effectively an
uncertainty-controlled gate depending on the observation noise which regulates how much the observation
influences the posterior belief over the latent state. Our experiments in Section 5 shed some light on the
strengths and weaknesses of these approaches for RL under partial observability.

SSM Parameterization. We follow the procedure in Gu and Dao (2023) and initialize the continuous-
time system (Ã, B̃) with HiPPO matrices. The corresponding discrete-time system (A, B) is obtained via
zero-order hold discretization with a learnable scalar step size ∆ > 0 (Smith et al., 2023).

Design decisions. We want to highlight two considerations that went into the design of our KF layers. First,
we could generalize the architecture to support time-varying process noise by including one extra output channel
(alongside the input, observation and observation noise channels) in the history linear projection. Conceptually,
such an input-dependent process noise adds more flexibility to the gating mechanism implemented within the
KF layer, which would be controlled both by the observation and the process noise signals. Second, we could
include the posterior covariance Σ+

:t as an additional feature for the output linear projection, alongside the
posterior mean x+

:t . We conduct an ablation study over these two choices in several continuous control tasks
subject to observation noise and report the results in Appendix E. The best aggregated performance in this
ablation was obtained with time-invariant process noise and only using the posterior mean as a feature for
the output projection, which empirically justifies our final design.

4.3 Masked Associative Operators for Variable Sequence Lengths

In off-policy RAC architectures, the agent is typically trained with batches of (sub-)trajectories of possibly
different length, sampled from an experience replay buffer. Thus, history encoders must be able to process
batches of variable sequence length during training.

A common approach is to right-pad the batch of sequences up to a common length and ensure the model’s
output is independent of the padding values. For transformer models, this can be achieved by using the
padding mask as a self-attention mask. For stateful models like RNNs and SSMs, it is imperative to also
output the correct final latent state for each sequence in the batch. This typically requires a post-processing
step that individually selects for each sequence in the batch the last state before padding. It turns out that
for any recurrent model expressed with an associative operator (e.g., SSMs and KFs), we can obtain the
correct final state from a batch of padded sequences without additional post-processing by using a parallel
scan routine with a Masked Associative Operator (MAO).
Definition 1 (Masked Associative Operator). Let • be an associative operator acting on elements e ∈ E ,
such that for any a, b, c ∈ E , it holds that (a • b) • c = a • (b • c). Then, the MAO associated with • ,
denoted •̃ , acts on elements ẽ ∈ E ×{0, 1} = (e, m), where m ∈ {0, 1} is a binary mask. Then, for ã = (a, ma)
and b̃ = (b, mb), we have:

ã •̃ b̃ =
{

(a • b, ma) if mb = 0
ã if mb = 1

(7)
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In Appendix A, we show that any MAO is itself associative as long as we apply a right-padding mask2,
thus fulfilling the requirement for parallel scans. In practice, augmenting existing SSM and KF operators
with their MAO counterpart is a minor code change. MAOs act as a pass-through of the hidden state when
padding is applied, thus yielding the correct state at every time step of the padded sequence for each element
of the batch without additional indexing or bookkeeping. Due to their pass-through nature, MAOs require
strictly equal or less evaluations of the underlying associative operator, which may yield faster runtimes if the
operator is expensive to evaluate and/or many elements of the input sequence are masked.

MAOs for SSMs and KFs. As a concrete example, the associative operators for SSMs and KFs involve
matrix product and addition. A compute-efficient implementation of MAOs for such operators involves sparse
matrix operations, where the sparsity is dictated by the padding mask. However, sparse matrix operations
are only expected to yield better runtime than their dense counterparts for large matrices with sufficient
levels of sparsity, which are not typical in our application. Thus, no speed-up is expected from using MAOs
in the context of this work.

MAOs are similar to the custom operator proposed by Lu et al. (2023), but their effect is fundamentally
different: Lu et al. (2023) considers on-policy RL, where the goal is to handle multi-episode sequences,
thus their custom operator resets the hidden state at episode boundaries. Instead, in our off-policy RAC
architecture, MAOs act as pass-through of the hidden state for padded inputs.

5 Experiments

In this section, we evaluate the RAC architecture under different history encoders in various POMDPs.
Implementation details and hyperparameters are included in Appendices B and C, respectively.

5.1 Baselines

We consider the following implementation of history encoders within the RAC architecture.

vSSM. Vanilla, real-valued SSM with diagonal matrices. It is equivalent to a KF layer with infinite observation
noise, i.e., the update step has no influence on the output. It can also be seen as a simplification of the
S4D model (Gu et al., 2022b), where states are real-valued rather than complex (as in Mega (Ma et al.,
2023), such that the recurrence can be interpreted as an exponential moving average) and the recurrence is
implemented with a parallel scan rather than a convolution (as in (Smith et al., 2023)).

vSSM+KF. Probabilistic SSM via the KF layers described in Figure 2. While vSSM only predicts the next state
(i.e., the prior in Kalman filtering), vSSM+KF additionally filters the predicted state conditioned on the latent
observation. Therefore, vSSM+KF is equivalent to vSSM with the additional update step of the Kalman filter.
Similarly, vSSM is equivalent to vSSM+KF with an infinite observation noise variance.

vSSM+KF-u. Equivalent to vSSM+KF without the input signal u:t. It maintains the uncertainty-based gating
from the KF layer, but looses flexibility in the KF predict step to influence the prior belief via the input.

Mamba (Gu and Dao, 2023). Selective state-space model with input-dependent state transition matrices.

GRU (Cho et al., 2014). Stateful model with a gating mechanism and non-linear state transitions.

vTransformer (Vaswani et al., 2017). Vanilla encoder-only transformer model with sinusoidal positional
encoding and causal self-attention.

All SSM-based approaches are implemented using MAOs and parallel scans. Besides these memory-based
agents, we include two additional memoryless agents that implement the same RAC architecure but without
embedders or history encoders.

Oracle. It has access to the underlying state of the environment, effectively removing the partial observability
aspect of the problem. This method should upper-bound the performance of history encoders.

2A right-padding mask is a sequence {m0, m1, . . . } with mi ∈ {0, 1} such that if mi = 1 then mj = 1 for all j > i.
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Figure 3: Two example episodes of the Best Arm Identification task of Section 5.2, with µb = 0.5 and two
different noise scales. (Left) Narrow noise distribution with σb = 0.5. (Right) Wide noise distribution with
σb = 1.0. In red, we visualize the Bayesian posterior mean and 3σ confidence interval around µb, obtained
via Bayesian linear regression using all prior observations in the episode.

Memoryless. Unlike Oracle, it does not have access to the underlying state of the environment. This method
should lower-bound the performance of history encoders.

All the baselines share a common codebase and hyperparameters. For all stateful models, we use the same
latent state dimension N such that parameter count falls within a 10% tolerance range except for GRU, which
naturally has more parameters due to its gating mechanism (roughly 40% increase). For vTransformer we
choose the dimension of the feed-forward blocks such that the total parameter count is also within 10% of the
SSM methods. With this controlled experimental setup, we aim to evaluate strengths and weaknesses of the
different mechanisms for sequence modelling (gating, input-selectivity, probabilistic filtering, self-attention) in
a wide variety of partially observable environments.

5.2 Probabilistic Reasoning - Adaptation and Generalization

We evaluate probabilistic reasoning capabilities with a carefully designed POMDP that simplifies our
motivating example from Section 1, where an AI chatbot probes a user in order to recommend a restaurant.
Given noisy scalar observations sampled from a bandit with distribution N (µb, σb), the task is to infer whether
the mean µb lies above or below zero. At the start of each episode, µb and σb (the latent parameters) are
sampled from some given distribution. Then, at each step of an episode, the RL agent has three choices: (1)
request a new observation from the bandit, which incurs a cost ρ, (2) decide the arm has mean above zero or
(3) decide the arm has mean below zero, both of which immediately end the episode and provide a positive
reward if the decision was correct, or a negative reward if the decision was incorrect. We set a maximum
episode length of 1000 steps; if the agent does not issue a decision by then, it receives the negative reward.
Example rollouts for this environment are provided in Figure 3. Given the Bayesian state from Figure 3,
an optimal agent must strike a balance between requesting new information (which reduces uncertainty
about the estimated mean) and minimizing costs. Effective history encoders for this problem should similarly
produce a state representation that encodes uncertainty about the latent parameters.

We evaluate two core capabilities: adaptation and generalization. Intuitively, an optimal policy for this
problem must be adaptive depending on the latent parameters. For example, if µb is close to zero the agent
might need many observations to make an informed decision, whereas with a large |µb| the correct decision
can be made with few observations. Moreover, we can also evaluate generalization of the learned policy by
testing on latent parameters not seen during training. Our hypothesis is that an agent that learns proper
probabilistic reasoning (e.g., Bayes’ rule) should generalize reasonably well in this task.

We conduct experiments for all baselines under increasing cost ρ. Instead of providing the latent parameters
directly to the Oracle baseline, we provide the Bayesian posterior mean and standard deviation around the
latent parameter µb, as shown in Figure 3. The agents are trained under the latent parameter distribution given
by µb ∼ Unif(−0.5, 0.5) and σb ∼ Unif(0.0, 2.0). We additionally evaluate out-of-distribution generalization by
using σOOD

b ∼ Unif(2.0, 3.0), i.e., we test how the agent generalizes to bandits with higher variance. In Figure 4
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Figure 4: Performance of sequence models in the Best Arm Identification problem after 500K environment
steps. We conduct experiments for increasing cost of requesting new observations and evaluate performance
both in and out of distribution, averaged over 100 episodes, and report the mean and standard error over
5 random seeds. (Top row) Normalized return, obtained by dividing returns by the reward given after
winning (10 in our case). (Bottom row) Length of episodes.

we report the normalized return and average episode length for both the training and out-of-distribution
latent parameters. Full training curves are included in Appendix D. vSSM+KF achieves the highest return
out of the memory-based agents, both in and out-of-distribution, while matching the performance of Oracle
in-distribution. The better performance of vSSM+KF correlates with longer episodes: compared to the other
baselines, vSSM+KF learns to request more observations in order to issue a more informed decision.

vSSM+KF improves adaptation and generalization. To gain further insights on the results, we do a
post-training evaluation on a subset of the agents across the entire latent parameter space, as shown in
Figure 5. vSSM+KF learns adaptation patterns similar to Oracle: the length of episodes increase as the
noise scale σb increases and decrease as |µb| increases, as it is intuitively expected. Such adaptation is
less pronounced in vSSM, vSSM+KF-u and Mamba, where episodes are shorter and ultimately results in lower
win rates. While vSSM+KF does not match the generalization performance of Oracle, it remains the best
amongst the history encoder baselines. Given our controlled experimental setup, we attribute the enhanced
adaptation and generalization of vSSM+KF to the internal probabilistic filtering implemented in the KF layer.
Moreover, comparing vSSM+KF and vSSM+KF-u highlights that including the input signal in the KF layer leads
to improved performance in this task.

vSSM+KF can handle adversarial episodes. In Figure 6 we compare latent space rollouts3 from vSSM+KF
and vSSM in an adversarial episode: µb is negative, but the first two observations are positive and of relatively
large magnitude. After only four observations, vSSM is mislead by the positive observations and issues the
wrong decision, as visualized in Figure 6 (middle) where we show the policy’s output across latent space,
overlaid with the rollout trajectory. Instead, vSSM+KF remains in the region where the policy requests more
observations before it navigates to the correct region of latent space, as shown in Figure 6 (right). While this
example was hand-picked, it is consistent with the adaptation patterns from Figure 5.

5.3 Probabilistic Filtering - Continuous Control under Observation Noise

In this experiment, we evaluate the ability to learn control policies subject to observation noise. Effective
history encoders must learn to aggregate observations over multiple time steps to produce a filtered state

3We use a latent state dimension N = 2 in order to plot the policy decision boundary in latent space. This results in slightly
worse performance than the results reported in Figure 4, where we use N = 128.
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Figure 5: Performance heatmap on Best Arm Identification problem (ρ = 0). We generate a grid of noise
parameters (µb, σb) for a total of 625 unique combinations. The red vertical line separates training (to the
left) from out-of-distribution (to the right) latent parameters. For each pair of latent parameters, we evaluate
performance on five independently trained agents over 100 episodes and report the average win rate and
episode lengths.
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Figure 6: Latent space rollouts in adversarial Best Arm Identification episode. (Left) Rollout in latent space
(N = 2) for vSSM+KF and vSSM after training. (Middle-Right) Policy decision boundaries overlaid with the
latent space trajectory. Circles and stars denote the beginning and end of trajectories, respectively.

representation amenable for control. Our hypothesis is that internal probabilistic filtering provides an
inductive bias for learning such a filtered representation. To test our hypothesis, we conduct evaluations
across nine environments from the DeepMind Control (DMC) suite (Tunyasuvunakool et al., 2020) with
zero-mean Gaussian noise added to the observations, as done by Becker and Neumann (2022); Becker et al.
(2024). We present aggregated performance in Figure 7 following the recommendations from (Agarwal et al.,
2021). Detailed training curves are included in Appendix F. We now discuss the main insights from this
experiment.

vSSM+KF improves performance of stateful models. The KF layer is the only evaluated add-on for
stateful models that significantly improves performance over the baseline model vSSM. This suggests that
the uncertainty-based gating in Kalman filters is more effective at handling noisy data compared to the
gating mechanism implemented by GRU and Mamba. This observation matches the results in the Best Arm
Identification problem from Section 5.2. Comparing vSSM+KF and vSSM+KF-u, there is a slight improvement
in performance from using an input signal in the KF layer, but it is not statistically significant.

vSSM+KF learns consistently across environments. From the detailed results in Figure 14, we observe
that vSSM+KF consistently improves performance over the Memoryless lower-bound and achieves the best or
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Figure 7: Aggregated performance in noisy DMC benchmark (9 tasks) with 95% bootstrap confidence intervals
over five random seeds. (Left) Inter-quartile mean returns normalized by the score of Oracle. (Right)
Performance profile after 1M environment steps. Higher curves correspond to better performance.
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Figure 8: Final performance comparison of recurrent models in six tasks over increasing noise levels. We
report the mean and standard error over five random seeds (ten for pendulum due to large variance) of the
return after 1M environment steps, normalized by the score of Oracle.

comparable final performance in five out of nine tasks. Instead, GRU, Mamba and vTransformer completely
fail to learn in some tasks, barely matching the performance of Memoryless.

We conduct an additional ablation over increasing noise levels in six representative tasks from the DMC suite,
as shown in Figure 8. Training curves are included in Appendix G

vSSM+KF performs close to Oracle under full observability. We observe vSSM+KF generally matches the
performance of Oracle in the absence of noise (normalized score close to 1.0), whereas vSSM and vTransformer
significantly underperform in some tasks. This suggests that the added probabilistic filtering in vSSM+KF is a
general-purpose strategy even under full observability.

vSSM+KF’s robustness to noise is environment dependent. Figure 8 suggests that robustness to noise
depends generally on the environment, without any clear patterns related to task specifics. vSSM+KF is more
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Figure 9: Aggregated performance in POPGym selected environments (12 tasks) with 95% bootstrap
confidence intervals over five random seeds. We normalize the maximum-mean episodic return (MMER)
by the best reported MMER in (Morad et al., 2023)(Left) Normalized IQM MMER (Right) Performance
profile after 1M environment steps. Higher curves correspond to better performance and a score of 1.0 means
equivalent performance as the best baseline (per environment) reported in POPGym.

robust in finger-spin, cheetah-run and pendulum4, vSSM is more robust in walker-run but significantly
underperforms in other environments, and vTransformer is more robuts in reacher and point-mass but
fails to learn in pendulum. Overall, vSSM+KF shows the most consistent performance across environments and
noise levels.

We include additional experiments with noisy DMC tasks in Appendix H, where we compare performance of
vSSM and vSSM+KF against state-of-the-art model-based approaches. The main insight from this comparison
is that our model-free approach mostly matches the performance of model-based methods without additional
representation learning objectives.

5.4 General Memory Capabilities

So far the evaluations were conducted in tasks where probabilistic filtering was intuitively expected to excel.
In this experiment, we evaluate performance in a wider variety of POMDPs from the POPGym (Morad et al.,
2023) benchmark. We select a subset of 12 tasks that probe models for long-term memory, compression,
recall, control under noise and reasoning. The aggregated results are shown in Figure 9 and full training
curves are also included in Appendix I. Below we discuss the main insights.

KF layers can be generally helpful in POMDPs. From the performance profile in Figure 9 we
observe a statistically significant gap between vSSM and vSSM+KF. Interestingly, the largest improvements
in sample-efficiency (RepeatPreviousEasy) and final performance (MineSweeperEasy) correspond to tasks
that probe for memory duration and recall, respectively. The parameter count difference between vSSM and
vSSM+KF in these problems is less than 6%, so we believe model capacity is unlikely the reason behind the
large performance difference. We hypothesize that, while probabilistic filtering is not required to solve these
tasks, the KF layer has extra flexibility via the latent observation and noise signals to accelerate the learning
process. We also highlight that vSSM+KF and vSSM+KF-u show comparable performance in this benchmark,
suggesting the input signal to be less critical in general memory tasks.

vSSM+KF is less sample-efficient in pure-memory tasks. In particular, we observe that Mamba’s input-
selectivity is the best-suited mechanism for SSM agents to solve long-term memory problems, matching the

4We found that Oracle underperforms in the noiseless pendulum-swingup, similarly reported in (Luis et al., 2023), which is
why the normalized score in this task is larger than 1.0 in some cases. Moreover, performance does not strictly decrease under
higher noise levels, perhaps because noise may actually help avoid early convergence under sparse rewards.
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Figure 10: POPGym ablation for vSSM+KF over the latent state size N and the number of layers L. We
report the mean and standard error over five random seeds of the MMER score after 1M environment steps.
The MMER score is shifted from [−1, 1] to [0, 1] for easier visualization. The vertical line represents the best
score reported by Morad et al. (2023).

performace of GRU and vTransformer. This is an expected result based on the associative recall performance
of Mamba reported in its original paper (Gu and Dao, 2023).

Linear SSMs can have strong performance. Morad et al. (2023) report poor performance when
combining PPO with the S4D (Gu et al., 2022b) model. While we do not evaluate the S4D model and
use an off-policy algorithm in our RAC architecture, our evaluation shows various linear SSMs have strong
performance, often surpassing the best reported scores in Morad et al. (2023). Our observation is consistent
with the strong performance of PPO with the S5 model reported by Lu et al. (2023).

5.5 Ablation

We conduct an ablation on vSSM+KF where we vary two hyperparameters: the latent state size N and the
number of stacked KF layers L5. We select four representative tasks from POPGym that test different
memory capabilities. The final scores are presented in Figure 10 and the full training curves are included
in Appendix K. Performance is most sensitive to these hyperparameters in the RepeatFirstMedium task,
where the agent must recall information from the first observation over several steps. The general trend is
that using more than one layer improves final performance and increases sample-efficiency (see the training
curves in Figure 19). Our results are aligned with the good performance of stacked S5 layers reported by
Lu et al. (2023), but differ from the observations in (Ni et al., 2023), where both LSTM and transformer
models performed best with a single layer in a similar long-term memory task (T-maze passive). From these
observations, we believe an interesting avenue for future work is to study what mechanisms enable effective
stacking and combination of multiple recurrent layers.

6 Conclusion

We investigated the use of Kalman filter (KF) layers as sequence models in a recurrent actor-critic architecture.
These layers perform closed-form Gaussian inference in latent space and output a filtered state representation
for downstream RL components, such as value functions and policies. Thanks to the associative nature of the
Kalman filter equations, the KF layers process sequential data efficiently via parallel scans, whose runtime
scales logarithmically with the sequence length. To handle trajectories with variable length in off-policy
RL, we introduced Masked Associative Operators (MAOs), a general-purpose method that augments any
associative operator to recover the correct hidden state when processing padded input data. The KF layers
are used as a drop-in replacement for RNNs and SSMs in recurrent architectures, and thus can be trained
similarly in an end-to-end, model-free fashion for return maximization.

We evaluated and analysed the strengths and weaknesses of several sequence models in a wide range of
POMDPs. KF layers excel in tasks where uncertainty reasoning is key for decision-making, such as the
Best Arm Identification task and control under observation noise, significantly improving performance over

5We use an RMSNorm output block in vSSM+KF since it was critical to ensure stable learning when L > 1.
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stateful models like RNNs and deterministic SSMs. In more general tasks, including long-term memory and
associative recall, KF layers typically match the performance of transformers and other stateful sequence
models, albeit with a lower sample-efficiency.

Limitations and Future Work. We highlight notable limitations of our methodology and suggest avenues
for future work. First, we investigated two design decisions in KF layers related to time-varying process noise
and posterior covariance as output features. While they resulted in worse performance (see Appendix E),
in principle they generalize KF layers and may bring benefits in other tasks or contexts, so we believe it
is worth further investigation. Second, we use models with relatively low parameter count (< 1M) which
is standard in RL but not on other supervised learning tasks. It may be possible that deeper models with
larger parameter counts enable new capabilities, e.g., probabilistic reasoning, without explicit probabilistic
filtering mechanisms. Third, vSSM+KF uses KF layers as standalone history encoders, but more complex
architectures may be needed to stabilize training at larger parameter counts. Typical strategies found in
models like Mamba include residual connections, layer normalization, convolutions and non-linearities. Fourth,
our evaluations were limited to POMDPS with relatively low-dimensional observation and action spaces,
where small models have enough capacity for learning. Future work could further evaluate performance in
more complex POMDPs (e.g., with image observations) and compare with our findings.
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A Associativity of Masked Associative Operators

Let ã, b̃, c̃ ∈ Ẽ refer to elements in the space of the MAO •̃ , as in Definition 1, with ã = (a, ma), b̃ = (b, mb),
c̃ = (c, mc). We show that if the sequence {ma, mb, mc}, is a right-padding mask, that is: ma = 1 =⇒ mb =
mc = 1, and mb = 1 =⇒ mc = 1, then it holds that (ã •̃ b̃) •̃ c̃ = ã •̃ (b̃ •̃ c̃), i.e., the MAO is associative.
Similar to the proof in Lu et al. (2023) we consider all possible values for {ma, mb, mc}.

Case 1: mb = 1 and mc = 1. The binary masks of b and c are on, so b̃ •̃ c̃ = b̃, ã •̃ b̃ = ã and ã •̃ c̃ = ã. Then,

(ã •̃ b̃) •̃ c̃ = ã (8)
= ã •̃ (b̃ •̃ c̃) (9)

Case 2: mb = 0 and mc = 1. The binary mask of b if off while that of c is on, so b̃ •̃ c̃ = b̃, then:

(ã •̃ b̃) •̃ c̃ = ã •̃ b̃ (10)
= ã •̃ (b̃ •̃ c̃) (11)

Case 3: mb = 0 and mc = 0. No mask is applied, then the MAO is equivalent to the underlying operator
• , which is associative by Definition 1.

Note the case mb = 1 and mc = 0 violates associativity, but it is impossible under our initial assumption of a
right-padding mask sequence {ma, mb, mc}.

B Implementation Details

In this section we provide details of various components of the RAC architecture and the specific implemen-
tations of history encoders. All methods are implemented in a common codebase written in the Pytorch
framework (Paszke et al., 2019).

Embedder. We embed the concatenated observation-action history with a simple linear layer mapping from
the combined observation-action dimension to the embedding dimension E.

Soft Actor-Critic. We use a standard SAC implementation with optional automatic entropy tuning
(Haarnoja et al., 2019). For discrete action spaces, we use the discrete version of SAC by (Christodoulou,
2019) and one-hot encode the actions.

vSSM, vSSM+KF & vSSM+KF-u. These methods share a similar implementation, with an input linear layer,
a linear recurrence and an output linear layer. vSSM is equivalent to only using the “Predict” block from
the KF layer, while vSSM+KF-u removes the input signal u:t. For all methods, we discretize the SSM using
the zero-order hold method and a learnable scalar step size ∆. In practice we use an auxiliary learnable
parameter ∆̃ and define ∆ = softplus(∆̃) to ensure a positive step size. as similarly done in Mamba. We
initialize ∆̃ with a negative value such that after passing through the softplus and after ZOH discretization,
the SSM is initialized with eigenvalues close to 1 (i.e., slow decay of state information over time).

Mamba. Standard Mamba model from Gu and Dao (2023). We use a reference open-source implementation6

and modify the parallel scan to use the associated MAO.

GRU. Standard implementation included in Pytorch.

vTransformer. Default implementation of a causal transformer encoder from Pytorch. We additionally
include a sinusoidal positional encoding, as done in prior work using transformers for RL (Ni et al., 2023).

6https://github.com/johnma2006/mamba-minimal/tree/03de542a36d873f6e6c4057ad687278cc6ae944d
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C Hyperparameters

Table 1: Hyperparameters used for Section 5. For the Mamba parameters, we use the notation from the code
by Gu and Dao (2023) and select parameters to match a effective state size N = 128. GRU and vTransformer
use default parameters from Pytorch unless noted otherwise.

Parameter BestArm DMC POPGym
Training

Buffer size ∞
Adam learning rate 3e-4

Env. steps 500K 1M
Batch size 64 32

Update-to-data (UTD) ratio 0.25 1.0
# Eval episodes 100 16

RAC
Embedding size (E) 16

Latent size (N) 128
Activations ReLU

Context length 256 64
Actor MLP [128] [256, 256]
Critic MLP [256] [256, 256]

SAC
Discount factor γ 0.99
Entropy temp. α 0.1 Auto

Target entropy (continuous) N/A -dim(A)
Target entropy (discrete) N/A −0.7 log

(
1/dim(A)

)7

History Encoders (common)
Latent size N 128

# layers 1
vSSM, vSSM+KF & vSSM+KF-u

∆̃ init -7
A init HiPPO (diagonal)
B init I
Σp init I

Inital state belief N (0, I)
RMSNorm output? No Yes No

Mamba
A init HiPPO (diagonal)

d_model (embedding size) 16
d_state (per-channel hidden size) 4

Expand factor E 2
Size of ∆ projection 1
1D Conv kernel size 4

vTransformer
# heads 1

Feedforward size 128 256

7We use a lower value of −0.35 log
(

1/dim(A)
)

in the MineSweeper environment from POPGym, as the default value resulted
in divergence during training.
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D Best Arm Identification Training Curves
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Figure 11: Normalized average return over 100 episodes in and out of distribution, for increasing costs. We
report the mean and standard error over 5 random seeds.
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Figure 12: Average (log) episode length over 100 episodes in and out of distribution, for increasing costs. We
report the mean and standard error over 5 random seeds.
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E KF Layer Design Ablation
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Figure 13: Ablation on design considerations for KF layers. (Top) Aggregated performance in noisy
DMC benchmark (9 tasks) with 95% bootstrap confidence intervals over five random seeds. (Top-Left)
Inter-quartile mean returns normalized by the score of Oracle. (Top-Right) Performance profile after 1M
environment steps. (Bottom) Training curves. We show mean and standard error over five random seeds.
Based on these results, our final design for the KF layer uses only the posterior mean state as the output
feature and a time-invariant process noise.
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F DMC Training Curves
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Figure 14: Training curves for the noisy DMC benchmark. We show mean and standard error over five
random seeds. For all tasks, we add zero-mean Gaussian noise to the observations with a scale of 0.3, except
the pendulum-swingup and point-mass where the scale is 0.1.
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G DMC Noise Ablation
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Figure 15: Training curves in six environments from the DMC benchmark with increasing levels of noise. We
show mean and standard error over five random seeds (ten for pendulum). The base noise scale for all tasks
is 0.3, except the pendulum-swingup and point-mass environments where the scale is 0.1

H DMC Comparison to Model-Based Approaches

In Figure 16, we compare performance between vSSM, vSSM+KF and the following model-based baselines
reported in Becker et al. (2024)8:

Kalmamba. Uses a Mamba (Gu and Dao, 2023) backbone that outputs the SSM matrices, which are then
used within the VRKN architecture proposed in Becker and Neumann (2022). The representation is trained
end-to-end in a variational loss to produce plausible dynamic predictions. The learned representation is then
frozen and used within a SAC policy optimizer.

8The experimental data was provided by the authors on personal communication.
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RSSM+SAC. The Recurrent SSM as proposed in Hafner et al. (2019). Similarly, the representation is
trained on a variational loss for reconstruction of observations, while the policy is trained with SAC using the
learned latent representation. The gradients from SAC are not used to update the representation.

VRKN+SAC The Variational Recurrent Kalman Network (Becker and Neumann, 2022). Similarly to
RSSM+SAC and Kalmamba, the representation is trained with a variational loss for reconstruction while the
policy uses the learned representation for control.

SAC. Equivalent to the Memoryless baseline; a SAC agent with no memory.

The benchmark includes both observation and action noise with a standard deviation of σ = 0.3.
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Figure 16: Comparison of performance in DMC environments with observation and action noise. For the
model-based baselines, we report the final performance after 1M environment steps, as reported in Becker
et al. (2024).

From Figure 16 we observe that in three out of four tasks, vSSM+KF is close to or matches the asymptotic
performance of the best model-based baseline, albeit with less sample-efficiency. These results highlight
that good performance can be achieved in these tasks without the representation learning objectives from
model-based approaches. In quadruped-walk we found that probabilistic filtering hurts performance, given
the performance difference between vSSM+KF and vSSM. We hypothesize that to handle the larger observation
space in quadruped-walk (∼ 4× larger than walker-run), vSSM+KF would require further hyperparameter
tuning and potential regularization techniques we do not explore in this work. Moreover, the sample-efficiency
of the architecture could be further improved using recent developments such as higher update-to-data ratios
and network resets (D’Oro et al., 2022).
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I POPGym Training Curves
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Figure 17: POPGym training curves. We show mean and standard error over five random seeds.
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J POPGym Scores
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Figure 18: POPGym final MMER after 1M training steps. We show mean and standard error over five
random seeds.
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Table 2: Scores on POPGym tasks after 1M environment steps. For each environment, we report the MMER
mean and standard error over 5 random seeds after 1M steps of training. The MMER is calculated from 16
test episodes. For reference, we include the best MMER score reported by Morad et al. (2023) (mean and
standard deviation over three random seeds). We bold the highest score(s) per environment obtained by a
sequence model.

AutoencodeEasy CountRecallEasy HigherLowerEasy MineSweeperEasy

vSSM+KF −0.299 ± 0.012 0.983 ± 0.002 0.588 ± 0.002 0.818 ± 0.014

vSSM+KF-u −0.247 ± 0.036 0.978 ± 0.001 0.581 ± 0.004 0.864 ± 0.020

vSSM −0.320 ± 0.006 0.984 ± 0.002 0.592 ± 0.003 −0.307 ± 0.012

Mamba −0.335 ± 0.023 0.982 ± 0.002 0.580 ± 0.003 0.783 ± 0.039

GRU −0.317 ± 0.025 0.984 ± 0.001 0.586 ± 0.002 0.916 ± 0.034

vTransformer −0.179 ± 0.065 0.982 ± 0.001 0.590 ± 0.001 0.676 ± 0.031

Oracle −0.420 ± 0.008 0.984 ± 0.002 0.257 ± 0.003 1.000 ± 0.000

Memoryless −0.463 ± 0.001 −0.887 ± 0.001 0.571 ± 0.004 −0.382 ± 0.008

Best POPGym −0.283 ± 0.029 0.509 ± 0.062 0.529 ± 0.002 0.693 ± 0.009

BanditEasy BanditHard NoisyCartPoleHard NoisyPendulumHard

vSSM+KF 0.766 ± 0.005 0.541 ± 0.040 0.535 ± 0.023 0.677 ± 0.003

vSSM+KF-u 0.771 ± 0.019 0.579 ± 0.032 0.531 ± 0.007 0.675 ± 0.003

vSSM 0.612 ± 0.013 0.501 ± 0.025 0.528 ± 0.013 0.639 ± 0.004

Mamba 0.764 ± 0.011 0.608 ± 0.043 0.516 ± 0.010 0.658 ± 0.009

GRU 0.763 ± 0.012 0.705 ± 0.017 0.486 ± 0.010 0.701 ± 0.001

vTransformer 0.580 ± 0.030 0.384 ± 0.049 0.454 ± 0.009 0.604 ± 0.004

Oracle 0.889 ± 0.005 0.892 ± 0.006 1.000 ± 0.000 0.946 ± 0.001

Memoryless 0.324 ± 0.013 0.399 ± 0.031 0.225 ± 0.003 0.406 ± 0.012

Best POPGym 0.631 ± 0.014 0.574 ± 0.049 0.404 ± 0.005 0.657 ± 0.002

RepeatFirstEasy RepeatFirstMedium RepeatPreviousEasy RepeatPreviousMedium

vSSM+KF 1.000 ± 0.000 0.726 ± 0.127 1.000 ± 0.000 −0.423 ± 0.006

vSSM+KF-u 1.000 ± 0.000 0.607 ± 0.186 1.000 ± 0.000 −0.429 ± 0.008

vSSM 0.989 ± 0.009 0.495 ± 0.034 1.000 ± 0.000 −0.420 ± 0.008

Mamba 1.000 ± 0.000 0.575 ± 0.160 0.993 ± 0.001 −0.441 ± 0.005

GRU 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 −0.440 ± 0.004

vTransformer 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 −0.426 ± 0.006

Oracle 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Memoryless 0.093 ± 0.085 0.100 ± 0.061 −0.434 ± 0.013 −0.450 ± 0.007

Best POPGym 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.789 ± 0.288
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K POPGym Ablation
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Figure 19: POPGym training curves for vSSM+KF ablation over latent state size N and number of KF layers L.
We show mean and standard error over five random seeds. For this experiment, vSSM+KF uses an RMSNorm
output block to ensure stability for L > 1.
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