
SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 1

Motion Planning Diffusion: Learning and Adapting
Robot Motion Planning with Diffusion Models

João Carvalho1, An T. Le1, Piotr Kicki2,3, Dorothea Koert1,4, and Jan Peters1,5,6

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may no longer be accessible.

Abstract—The performance of optimization-based robot mo-
tion planning algorithms is highly dependent on the initial
solutions, commonly obtained by running a sampling-based
planner to obtain a collision-free path. However, these methods
can be slow in high-dimensional and complex scenes and produce
non-smooth solutions. Given previously solved path-planning
problems, it is highly desirable to learn their distribution and
use it as a prior for new similar problems. Several works
propose utilizing this prior to bootstrap the motion planning
problem, either by sampling initial solutions from it, or using its
distribution in a maximum-a-posterior formulation for trajectory
optimization. In this work, we introduce Motion Planning Dif-
fusion (MPD), an algorithm that learns trajectory distribution
priors with diffusion models. These generative models have
shown increasing success in encoding multimodal data and have
desirable properties for gradient-based motion planning, such as
cost guidance. Given a motion planning problem, we construct
a cost function and sample from the posterior distribution using
the learned prior combined with the cost function gradients
during the denoising process. Instead of learning the prior on all
trajectory waypoints, we propose learning a lower-dimensional
representation of a trajectory using linear motion primitives,
particularly B-spline curves. This parametrization guarantees
that the generated trajectory is smooth, can be interpolated at
higher frequencies, and needs fewer parameters than a dense
waypoint representation. We demonstrate the results of our
method ranging from simple 2D to more complex tasks using
a 7-dof robot arm manipulator. In addition to learning from
simulated data, we also use human demonstrations on a real-
world pick-and-place task. The experiment results show that
diffusion models are strong priors for encoding multimodal
trajectory distributions for optimization-based motion planning.
https://sites.google.com/view/motionplanningdiffusion

Index Terms—Deep Learning, Learning to Plan, Motion Plan-
ning, Diffusion Models.

I. INTRODUCTION

Autonomous robots are becoming a ubiquitous technology,
and motion planning is an important core component. Among
several methods [1], optimization-based motion planning is
a popular approach for solving robot motion planning prob-
lems [2]–[4]. Methods in this category formulate planning as
an optimization problem, where the goal is to find a trajectory

Corresponding author: João Carvalho, joao@robot-learning.de
1Intelligent Autonomous Systems Lab, Computer Science Department,

Technical University of Darmstadt, Germany; 2Poznan University of Technol-
ogy, Poland; 3IDEAS, Warsaw, Poland; 4Centre for Cognitive Science, Tech-
nical University of Darmstadt, Germany; 5German Research Center for AI
(DFKI), Research Department: SAIROL, Darmstadt, Germany; 6Hessian.AI,
Darmstadt, Germany

that minimizes a cost function, e.g., collision avoidance, while
satisfying constraints, such as joint limits. Popular methods,
such as CHOMP [2], TrajOpt [4] and GPMP/GPMP2 [3], are
heavily dependent on initialization since a bad initial trajectory
can lead to getting stuck in local minima and failing to find
a collision-free path [4]. Without prior information, the initial
trajectory is commonly assumed to be a straight line in the
configuration space. However, [3] mentions that in practice, a
straight-line initialization might fail for some tasks, e.g., those
with narrow passages. Thus, for complex motion planning
tasks, it is common to first run a sampling-based planner,
such as RRT-Connect [5], followed by an optimization-based
planner for trajectory smoothing [6].

To better illustrate this issue, in fig. 1 we show a motion
planning task for a planar 2-link robot. The task is to obtain
a smooth joint trajectory from a start to a goal configuration
without colliding with the environment. Figure 1b shows how
narrow passages appear in the configuration space. When
using a straight-line trajectory in the configuration space, as
in fig. 1b, CHOMP cannot escape local minima to find a
collision-free path. As shown in fig. 1d, if first a global
sampling-based planner is used, particularly RRT-Connect,
which produces a collision-free path, then the initial trajectory
used in CHOMP is already collision-free, albeit being non-
smooth. Using CHOMP, this trajectory is further optimized for
smoothness while avoiding collisions. Additionally, in fig. 1d,
we can see two modes to traverse the configuration space
found by multiple runs of RRT-Connect. These insights also
transfer to higher dimensions. These examples depict charac-
teristics that priors should have: being (almost) collision-free,
representing complex trajectories, and encoding multimodality.

Instead of computing an initial path with a sampling-
based planner, another approach is to learn from previous
motion planning solutions a manifold of trajectories that are
good initializations [7], [8]. Several choices must be made
when encoding a prior distribution, depending on the nature
of the data and the sampling process. The simplest prior
is building a memory of past solutions and using them as
initializations [9]. However, this approach is not scalable, and
it is not straightforward to generalize to new start and goal
configurations other than interpolating between the closest
solutions using, e.g., the k-nearest neighbors. A parametrized
model removes these issues but must consider whether the data
is unimodal or multimodal and how fast we can sample from
this model. If the prior trajectories are unimodal, Gaussian

ar
X

iv
:2

41
2.

19
94

8v
3

 [
cs

.R
O

]
 1

4
A

ug
 2

02
5

https://sites.google.com/view/motionplanningdiffusion
joao@robot-learning.de
https://arxiv.org/abs/2412.19948v3

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 2

(a) CHOMP (task space)

−2 −1 0 1 2

q0 [rad]

−2

−1

0

1

2

q 1
[ra

d]
(b) CHOMP (joint space) (c) RRT-Connect + CHOMP

(task space)

−2 −1 0 1 2

q0 [rad]

−2

−1

0

1

2

q 1
[ra

d]

(d) RRT-Connect + CHOMP (joint space)

Fig. 1. These figures illustrate the need for using good initializations for optimization-based motion planning methods when there are narrow passages in
the robot’s configuration space. In (a) and (c) the task space of a 2-link robot arm is depicted. The grey circles are obstacles that the robot needs to avoid
while moving from the start configuration to the goal configuration. One robot trajectory corresponding to (b) and (d) is also shown. In (b) and (d), the
configuration-free space is shown, where the grey areas indicate collision in the task space. In (a)/(b), we run CHOMP using a straight-line initialization in the
configuration space (black dashed lines). The resulting optimized trajectories (solid lines) show that the robot gets stuck in a local minimum and cannot find a
collision-free path. In (c)/(d) we first run RRT-Connect (dashed black lines) and initialize CHOMP with these trajectories. The resulting optimized trajectories
(solid orange lines) are collision-free. The initial paths are already collision-free, and during optimization, they are shortened and smoothened using CHOMP.
It is also possible to observe the two modes found by RRT-Connect.

distributions representing the parameters of a Probabilistic
Movement Primitive (ProMP) [10] or a Gaussian Process (GP)
of the waypoints of a discretized trajectory [8], [11] can be
used. These, however, fail to encode multimodal data. For
multimodality, GMMs [12] can be used, but they are not easy
to train for high-dimensions and large datasets. Additionally,
choosing the number of modes is not trivial [13]. In contrast
to the simple parametric models, deep generative models,
such as Variational Auto Encoders (VAEs) [14], Generative
Adversarial Networks (GANs) [15], Energy-Based Models
(EBMs) [16], and diffusion models [17], [18], can express
multimodal distributions due to the modeling power of deep
neural networks. Methods such as VAEs and GANs are easy
to sample from but show problems such as mode-collapse
or training instability [19]. EBMs can be difficult to train
and sample from [20]. Therefore, we chose to model prior
trajectory distributions using diffusion models, which present
several important qualities when learning from demonstrations.
First, they encode well multimodal data [21], as there might
be several collision-free paths [22]. Second, diffusion mod-
els are empirically easier to train than others (e.g., GANs
and EBMs) [21]. Finally, after learning, given an external
likelihood function to optimize, sampling from a posterior
distribution is done by smoothly biasing samples from the
prior toward the high-likelihood regions during the denoising
process [23].

The key contributions of our work are:

• Motion Planning Diffusion (MPD) - a novel method that
combines learning and adaptation of robot trajectories
using diffusion models; implemented as a diffusion-based
generative framework that learns trajectory priors in a
compact B-spline parameterization.

• A cost-guided posterior sampling, following the planning-
as-inference framework, that blends learned trajectory
priors with task-specific objectives during the reverse
diffusion process, enabling the generation of diverse,
feasible, and collision-free trajectories.

• An empirical evaluation demonstrating MPD’s effective-
ness across a variety of planning problems, ranging from

simple 2D setups to environments with a 7-dof robot
manipulator, and a real-world pick-and-place task learned
from human demonstrations via kinesthetic teaching.

The rest of this article is structured as follows. Section II
presents related works on learning priors for motion planning
and how diffusion models are used in robotics and motion
planning. In section III we provide the necessary background
and present our method. To highlight the benefits of diffusion
models as priors, in section IV we evaluate our method
against several baselines in simulated and real-world tasks. In
section V we discuss the limitations of our work and propose
further research ideas. Lastly, section VI summarizes the key
points of this article.

This work is an extended version of our previous work [24],
in which we added several improvements and more clarifica-
tion and details. Instead of learning a model on dense way-
points, we propose using parametric trajectories with lower-
dimensional representations that ensure smoothness, namely
B-splines. Previously, we only considered contexts as joint
positions at the start and goal. In this work, we use the
desired end-effector goal pose as a conditioning variable,
which is more natural for some planning tasks. We expanded
the related work section, described MPD in more detail, and
performed more experiments in simulated environments. To
show the method’s applicability to real-world tasks, we learn
a prior distribution from human demonstrations via kinesthetic
teaching for a pick-and-place task, and adapt it by using
obstacles not present in the training setup.

II. RELATED WORK

A large body of literature exists on learning to plan for
robotics. In this section, we discuss classical works in path
and motion planning (section II-A), and methods that combine
learning methods with optimization-based motion planning ap-
proaches (section II-B). Additionally, we present an overview
of how diffusion models are used in robotics and, more
specifically, in motion planning (section II-C).

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 3

A. Path and motion planning

Path and motion planning are fundamental components of
any robotics system. Path planning aims to find a collision-
free path, and motion planning aims to find a trajectory (a
time-dependent path) that prevents the robot from colliding
with its environment and respects its joint limits. Importantly,
for robot applications, the solutions should be smooth to avoid
jerky movements. There are two main branches of path and
motion planning: sampling-based and optimization-based.

Sampling-based planning algorithms ensure probabilis-
tic completeness by conducting an extensive search over
the whole configuration space. They sample points, eval-
uate whether they are in collision, and connect them to
form a path. These include classical algorithms such as
PRM [25], RRT [26], RRTConnect [5], or their improved
versions, PRM/RRT* [27], Informed-RRT* [28], BIT* [29]
and AIT* [30]. One drawback of these planners is that they
simply connect configurations in such a way that the resultant
paths are typically non-smooth. Hence, after finding a path, it
must be post-processed by a smoother guaranteeing the motion
is collision-free [31].

On the other hand, optimization-based motion planners
search for a collision-free movement by locally optimizing
a trajectory either via gradient descent or stochastic opti-
mization, aiming for smoothness while satisfying other ob-
jective constraints. These methods can be seen as perform-
ing sampling-based planners’ search and smoothening steps
in one step. Gradient-based methods include CHOMP [2],
TrajOpt [4] and GPMP/GPMP2 [3]. Stochastic optimization
methods based on path integral formulations [32] include
STOMP [33], Stochastic GPMP [34] and MGPTO [35]. Other
works solve motion planning by optimal transport [36].

B. Learning priors for optimization-based motion planning

Optimization-based planning methods often use an unin-
formed initial/prior distribution, whose mean is a constant-
velocity straight line between the start and goal configurations.
As a deterministic method, CHOMP has no initial distribution.
STOMP uses a distribution with high entropy in the middle
of the trajectory and decreasing entropy towards the start and
goal points. GPMP/GPMP2 uses a Gaussian Process prior and
likelihoods of the exponential family to perform maximum-a-
posteriori (MAP) trajectory optimization.

To find good initializations, we might have access to a
database/library containing a set of motion-planning tasks and
their respective solutions. When presented with a new task,
some methods take the k-nearest neighbor (k-NN) solution in
the database [9], [37], [38]. k-NN approaches may achieve
good results in low-dimensional tasks but have two issues:
they need to keep a growing database, which can hurt memory,
and suffer from the curse of dimensionality when computing
distances in higher dimensions. Alternatively, other methods,
commonly named memory of motion, build a function ap-
proximator that maps tasks to solutions [9], [39]. Then, they
query the learned function at inference time to obtain an initial
solution to warm start a trajectory optimizer. Care is needed

when approximating the function mapping from tasks to trajec-
tories. If a deterministic function approximator is learned using
mean squared error [40], [41], the learned model averages the
solutions, resulting in a poor fit. A better approach is to learn
a multimodal distribution of trajectories [9], [42]. With an
expressive enough model, we can recover all the distribution
modes effectively. Several of the mentioned methods first
obtain a sample from the prior distribution and then optimize
it, which can lead to the final solution being far away from
the prior distribution. This can be problematic if the prior is
constructed from human demonstrations, which we’d like to be
close to when performing optimization. In turn, in our work,
we use a diffusion model to build a memory of motions, which
stay close to the prior while minimizing a cost function.

Other methods propose using learning from human demon-
strations [43] to build trajectory distribution priors. Then,
given a likelihood function, they use sampling or optimization
methods to obtain the maximum-a-posterior solution, a sample
from the posterior distribution, or even recover the posterior
distribution in closed form. [10] introduced DEBATO, which
learns a ProMP of trajectories containing the position of a
human hand during demonstrations. The ProMP weights are
Gaussian distributed, so they only encode unimodal distribu-
tions. During inference, obstacles are included in the scene,
and a return function that includes a negative collision cost
and a KL divergence penalty between the current trajectory
distribution and the demonstrations is used. The Gaussian
parametrization allows for computing the posterior distribution
in closed form by solving the optimization problem using
Relative Entropy Policy Search (REPS) [44]. This work only
considers collisions between the end-effector and the envi-
ronment. In CLAMP [11], the authors encoded a trajectory
prior distribution of the robot’s end-effector position and
velocity, which was enough for their tasks, using a Gaussian
Process prior. At inference, they use GPMP to solve the
motion planning problem. The likelihood factors/costs used
are to start close to a given start joint state and to avoid
collisions of the robot with the environment. With maximum-
a-posterior inference, one solution is found to optimize the
likelihood function and penalize deviations from the prior GP
distribution. Like [10], this method works for unimodal dis-
tributions and produces only one solution and not a posterior
distribution. Contrary to these works, we use diffusion models
to capture the multimodality of human demonstrations and
learn trajectory distributions directly on the robot’s joint space.
To handle trajectory multimodality, [34] learns an Energy-
Based Model (EBM), whose inputs are the current state and
a phase variable, and the output represents the density of the
state distribution. To generate a trajectory from this model, a
cost function is built to minimize the energy of the single states
across increasing phase values while minimizing the norm
between adjacent states. At inference, new costs are formulated
and added as energy functions. The posterior distribution is
obtained in the form of particles by sampling from the EBM
using stochastic optimization. In contrast to incorporating the
prior as a cost, we model the full trajectory using diffusion,
and optimization is done with gradient-based approaches. With
our formulation, we can directly sample trajectories from the

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 4

posterior by following the reverse diffusion sampling process,
contrasting to sampling from the optimized proposal distribu-
tion, which commonly fails because sampling trajectories is
hard for EBMs [20].

C. Diffusion models in robotics and motion planning

In recent years, several works have explored score-based
and diffusion models in robotics. They are commonly used as
expressive multimodal generative model priors for downstream
tasks, as similarly done in image generation [45]. At task
planning levels, [46] proposed DALL-E-BOT, which, given
a set of objects, generates a text description from a scene
image and then prompts the text-to-image generator DALL-
E [47] to generate a “proper goal scene”. [48] proposes
StructDiffusion for arranging objects based on language com-
mands by predicting the object arrangements using a language-
conditioned diffusion model. For grasping, [49] used denoising
score matching to learn a generative grasp pose model for a
parallel gripper in SE(3) to optimize motion and grasping
poses jointly. Several works have also used diffusion models
for generating grasps using dexterous grippers [50], [51].
In trajectory planning, [52] introduced Diffuser, a trajectory
generative model used for planning in Offline RL and long-
horizon tasks. This work introduced a U-Net deep learning
architecture to encode trajectories, which is the basis for
many follow-up works that model trajectory distributions with
diffusion models. MPD builds on the ideas of Diffuser but
with a focus on robot motion planning. Namely, we use a B-
spline trajectory representation instead of waypoints, leading
to faster inference and smooth trajectories; and at inference
time, we add new obstacles not seen during training and gen-
erate collision-free trajectories using the environment’s signed
distance function as a cost function. In behavior cloning and
visuomotor imitation learning from human demonstrations,
[53] introduced diffusion policy, a method that learns policies
that take as input a history of visual observations and outputs a
sequence of actions. The action distribution is modeled with a
diffusion model. Concurrently, [54] introduced BESO, which
has a similar structure to diffusion policy, except they use
a different formulation of score-based models. These works
focused on closed-loop reactive policies that generate short-
horizon trajectories, while we focus on generating open-loop
point-to-point collision-free trajectories. Recent methods have
been built on top of these two works to include better percep-
tion, language commands, collision avoidance (for dynamic
environments), equivariance and define subgoals for an MPC
controller [55]–[62]. In these works, trajectories are typically
encoded using waypoints, but in [63] the authors introduced
Movement Primitive Diffusion, which instead generates the
parameters of a Probabilistic Dynamic Movement Primitive
(ProDMP) [64], guaranteeing smoothness in the predict trajec-
tories. Similarly, we predict the control points of a B-spline.

In motion planning for robot manipulators, [24] introduced
the first version of Motion Planning Diffusion. Given mo-
tion planning trajectories obtained from an expert planner,
this method learns a diffusion model as a prior distribution
over trajectories. Then, at inference, when new obstacles

are added to the scene, MPD samples trajectories from the
posterior distribution that is formed with the diffusion prior
and a likelihood function that includes collision costs and
trajectory smoothening, among others, using classifier guided
diffusion [23]. Since the trajectories are modeled using dense
waypoints, an additional cost function (a Gaussian Process
trajectory prior) is needed to ensure smooth solutions. In this
work, we encode the trajectory using B-spline coefficients,
which have a smaller dimension than the dense waypoints
and ensure smoothness by construction. EDMP [65] follows
up on the work of [24] by using an ensemble of collision cost
functions instead of a single one. [66] used diffusion trajectory
models as priors to sample good initializations for solving
downstream constrained trajectory optimization problems. In
our work, we show that first sampling from the prior and
then only optimizing the cost is less performant than the
proposed approach of sampling from the posterior distribution.
SafeDiffuser [67] uses control barrier functions to extend
Diffuser to safety-critical applications. In APEX [68], the idea
of integrating sampling and collision avoidance cost guidance
using diffusion models is used for bimanual tasks. Some works
have also used environment conditioning to build conditional
diffusion models that generate multimodal trajectories given an
encoding of the environment in the form of object positions
and dimensions, point clouds or RGB images [69]–[72].
For proper generalization, these approaches require obtaining
multiple scenes and several motion plans, which might take too
much effort to generate [73]. Several planning-with-diffusion
works can also be found in autonomous driving, quadruped
path planning, and UAVs, whose techniques are closely related
to robotic manipulators [74]–[79]. For a recent review of
generative models for robotics consult [80].

III. ROBOT MOTION PLANNING WITH DIFFUSION MODELS

This section details our method and the necessary back-
ground. Figure 2 shows an overview of the inference process.

A. Optimization-based Motion Planning

Starting from an initial joint position qstart ∈ Rd with zero
velocity and acceleration, we consider the task of generating a
smooth joint trajectory that either reaches a goal joint position
qgoal ∈ Rd or a goal end-effector pose WHEE

goal ∈ SE(3),
with zero velocity and acceleration. The obtained trajectory
must avoid collisions, be smooth, short, and satisfy joint
limits. Let q(0) and q(T) ∈ Rd be the start and final joint
positions of a robot with d degrees-of-freedom, respectively, T
a fixed trajectory duration, q̇ the velocities, q̈ the accelerations
and τ (t) = (q(t), q̇(t), q̈(t)) a trajectory. This problem is
formulated as trajectory optimization:

min
τ

Cvel(τ) + Cacc(τ) (1)

s.t. q(0) = qstart

FK(q(T)) = WHEE
goal (or q(T) = qgoal)

q̇(0) = q̈(0) = q̇(T) = q̈(T) = 0

within joint limits
no collisions,

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 5

Conditional Temporal U-Net

Update control points

EE pose goal

Collision-free trajectories

Planning Costs

Collision Task

...

C
o
n

d
it

io
n

a
l

R
e
s
N

e
t

B-spline
interpolation

MPD denoising process

⁓

FiLM

Conditional ResNet

+

C
o
n

v
1
D

C
o
n

v
1
D

Fig. 2. Overview of inference using Motion Planning Diffusion. An initial joint position qstart and an end-effector goal pose WHEE
goal are context variables

to a conditional diffusion model. The diffusion model consists of a conditional U-Net architecture (made of conditional ResNet blocks) that takes as input
the context, the current time index i and the B-spline control points wi, and outputs the denoising vector ϵθ . The control points mean µi are obtained with
eq. (6) and used to compute the gradient of a motion planning cost function, which is used to bias the samples towards higher (negative) cost likelihood
regions. These particles are injected as input to the U-Net at the next denoising step. In the conditional ResNet block, the time and context embeddings are
stacked and used as input for computing the parameters a and b of a FiLM encoder, which are used to transform the embedded control points (xin), computed
with a one-dimensional convolution. MPD’s output are joint space trajectories that balance the prior distribution and the cost likelihood.

where the costs Cvel and Cacc promote short and smooth paths,
and are detailed in section III-G. In this work we consider a
fixed trajectory duration T , similarly to other motion planning
algorithms [2], [3], [33]. The optimization of minimum-time
trajectories is left for future work.

As the optimization can become unfeasible while trying
to satisfy the constraints, it is common practice to relax and
include them in the cost function as soft constraints [2], [3],
[81]. As we do batch optimization, we can filter the solutions
for the ones respecting the constraints. Hence, we solve

argmin
τ

∑
j

λjCj(τ), (2)

where λj are positive weights to balance the costs. These costs
are detailed in section III-G.

B. Motion Planning as Inference

Solving eq. (1) with gradient-based methods relies on an
initial trajectory. In some cases, we would like the solution
to remain close to the initialization to keep properties such as
smoothness or if the initial trajectory is derived from human
demonstrations. Then, instead of a single particle, it is useful
to describe a prior distribution over trajectories. Hence, the
motion planning problem can be formulated as inference [82],
[83]. The goal is to either sample from or maximize the
posterior distribution of trajectories given the task objective

p(τ |O) ∝ p(O|τ)p(τ)λprior , (3)

where p(τ) is a prior over trajectories with temperature λprior,
and p(O|τ) is the likelihood of achieving the task objectives.
A common assumption is that the likelihood factorizes as [34]

p(O|τ) ∝
∏
j

pj(Oj |τ)λj (4)

with λj > 0. The costs relate to distributions by
pj(Oj |τ) ∝ exp(−Cj(τ)). Then, performing Maximum-a-

Posteriori (MAP) on the trajectory posterior

argmax
τ

log p(O|τ)p(τ)λprior

=argmax
τ

∑
j

log exp(−Cj(τ))
λj + log p(τ)λprior

=argmin
τ

∑
j

λjCj(τ)− λprior log p(τ)

is equivalent to eq. (2) regularized with the prior. Contrary
to classical optimization-based motion planning, planning-as-
inference has several advantages. Notably, it provides a princi-
pled way to introduce informative priors to planning problems,
e.g., GPMP2 [3] utilizes a GP to encode dynamic feasibility
and smoothness. Additionally, specialized methods can be
employed to sample from the posterior. We use diffusion
models as a prior over trajectories, and instead of computing
the MAP solution, sample from the posterior to obtain a
trajectory distribution. Sampling from the posterior was done
previously for GPMP with Gaussian approximations using
variational inference, which are inherently unimodal [84].
Instead, the diffusion framework provides an approach to
obtain a multimodal distribution, which allows for a more
expressive posterior and a natural way to treat stochasticity.

C. Diffusion Models for Trajectory Priors

Generative modeling methods, such as Generative Adver-
sarial Networks (GAN) [15] and Variational Auto Encoders
(VAE) [14] are trained to maximize the data log-likelihood,
and sampling is done by applying deterministic transforma-
tions to a random variate of an easy-to-sample distribution.
Instead, diffusion models [17], [85] perturb the original data
distribution pdata(x) via a diffusion process to obtain noise,
and learn to reconstruct it by denoising using the score-
function ∇x log pdata(x). In this work, we use Denoising
Diffusion Probabilistic Models (DDPM) [17].

We first consider an unconditional diffusion model. Let τ0
be a sample from the data distribution τ0 ∼ q(τ0), which

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 6

is transformed into Gaussian noise by a Markovian forward
diffusion process q(τ0:N) = q(τ0)

∏N
i=1 q(τi|τi−1, i) with

q(τi|τi−1, i) = N
(
τi;

√
1− βiτi−1, βiI

)
q(τN) ≈ N (τN ;0, I) ,

where i = 1, . . . , N is the diffusion time step, N is the number
of diffusion steps, and βi is the noise scale at time step i.
Common schedules for β are linear and cosine [17], [86].

The denoising process transforms noise back to the data
distribution such that p(τ0) ≈ q(τ0)

p(τ0:N) = p(τN)

N∏
i=1

p(τi−1|τi, i), p(τN) = N (τN ;0, I)

Sampling from p(τ0) is done by first sampling from an
isotropic Gaussian and sequentially sampling from the pos-
terior distribution p(τi−1|τi, i). For N → ∞ and βi → 0, this
posterior converges to a Gaussian distribution [87]. Hence,
during training, the goal is to learn to approximate a Gaussian
posterior with parameters θ such that

pθ(τi−1|τi, i) = N (τi−1;µi = µθ(τi, i),Σi) ≈ p(τi−1|τi, i)
(5)

For simplicity, only the mean is learned, and the covariance
is set to Σi = σ2

i I = β̃iI , with β̃i = (1− ᾱi−1)/(1− ᾱi)βi,
αi = 1− βi and ᾱi =

∏i
k=0 αk [17]. Instead of learning the

posterior mean, we learn the noise vector ϵ, since

µθ(τi, i) =
1√
αi

(
τi −

1− αi√
1− ᾱi

ϵθ(τi, i)

)
. (6)

ϵθ is typically implemented using a neural network, whose
architecture we detail in section III-F.

The network parameters are learned by maximiz-
ing a lower bound on the expected data log-likelihood
Eτ0∼pdata

[log pθ(τ0)]. After simplifying, we minimize

L(θ) = Ei,ϵ,τ0

[
∥ϵ− ϵθ(τi, i)∥22

]
(7)

i ∼ U(1, N), ϵ ∼ N (0, I) , τ0 ∼ q(τ0), τi ∼ q(τi|τ0, i).
For a complete derivation, we refer the readers to [88]. Due to
the Markov property, and given the data is in Euclidean space,
the distribution of the noisy trajectory at time step i given the
original one is Gaussian and can be written in closed form
as q(τi|τ0, i) = N (τi;

√
ᾱiτ0, (1− ᾱi)I). This allows for

efficient training by sampling from q(τi|τ0, i) without running
the forward diffusion process. Intuitively, eq. (7) states that the
goal of training is to learn a denoising network that removes
the noise added to the data sample at step i.

At inference, we obtain a sample τ̃0 ∼ pθ(τ0) through a
series of denoising steps from eq. (5). In practice, to control
stochasticity, we also pre-multiply the posterior variance,
resulting in αΣi [89], with α ∈ [0, 1]. α = 0 means no
noise and α = 1 is the DDPM sampling algorithm. This
is particularly important in our work because it lowers the
chance that trajectories that are already collision-free come
into collision due to large noise values.

To generate a trajectory distribution based on a context c,
e.g., a start joint position and a desired end-effector pose, we

extend to a conditional diffusion model p0(τ |c), and thus
p(τ0:N |c) = p(τN)

∏N
i=1 p(τi−1|τi, c). The only change to

the above is that now we learn a noise model with an additional
c input ϵθ(τi, i, c). The expectation in eq. (7) is modified to
include the context distribution c ∼ p(c) and τ0 ∼ q(τ0|c).

D. Blending Sampling and Optimization
With a prior trajectory diffusion model and an optimality

variable O (e.g., representing collision avoidance), our goal is
to sample from the posterior distribution

p(τ0|O) ∝ p(O|τ0)p(τ0). (8)

To show that this is equivalent to sampling from the prior while
biasing the trajectories towards the high-likelihood regions,
for completeness, we replicate here the proof from [23]. By
definition of the Markovian reverse diffusion

p(τ0|O) =

∫
p(τN |O)

N∏
i=1

p(τi−1|τi, i,O)dτ1:N , (9)

where p(τN |O) is standard Gaussian noise by definition.
Hence, to sample from p(τ0|O), we iteratively sample from
the objective-conditioned posterior using Bayes’ law

p(τi−1|τi, i,O) ∝ p(O|τi−1)p(τi−1|τi, i), (10)

where p(τi−1|τi, i) ≈ pθ(τi−1|τi, i) is the approximate
learned prior, and p(O|τi−1) = p(O|τi−1, τi, i), since due to
the Markov property in diffusion, O and τi are conditionally
independent given τi−1. The objective-conditioned posterior
cannot be sampled in closed-form, but given the learned de-
noising prior model over trajectories is Gaussian, its logarithm
equates to

log pθ(τi−1|τi, i) = logN (τi;µi = µθ(τi, i),Σi) (11)

∝ −1

2
(τi−1 − µi)

⊤Σ−1
i (τi−1 − µi).

By definition of the noise schedule β, as the denoising step ap-
proaches zero, so does the noise covariance limi→0 ∥Σi∥ = 0.
Therefore, pθ(τi−1|τi, i) concentrates its mass close to the
mean µi, and the task log-likelihood is approximated with a
first-order Taylor expansion around µi

log p(O|τi−1) ≈ log p(O|τi−1 = µi) + (τi−1 − µi)
⊤g

(12)
with g = ∇τi−1

log p(O|τi−1 = µi).

Combining eq. (11) and eq. (12) we obtain

log p(τi−1|τi, i,O) (13)

∝ −1

2
(τi−1 − µi)

⊤Σ−1
i (τi−1 − µi) + (τi−1 − µi)g

∝ −1

2
(τi−1 − µi −Σig)

⊤Σ−1
i (τi−1 − µi −Σig)

= log p(z = τi−1), p(z) = N (z;µi +Σig︸ ︷︷ ︸
µz

,Σi). (14)

In motion planning-as-inference we have from eq. (4)

g = ∇τi−1
log p(O|τi−1) = −

∑
j

λj∇τi−1
Cj(τi−1 = µi),

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 7

where the costs are assumed to be differentiable w.r.t. the
trajectory. Hence, sampling from the task-conditioned poste-
rior is equivalent to sampling from a Gaussian distribution
with mean and covariance as p(z). At every denoising step,
we sample from the prior, move the particle toward low-cost
regions, and repeat this process until i = 0. This formulation
benefits us by allowing us to use gradient-based techniques
to guide the sampling process while running the denoising
process for the prior. The updated mean of z in eq. (14) can
be interpreted as taking a single gradient step starting from
µi, but several aspects are crucial for making guided sampling
work in practice [90].

First, the entries in Σi approach 0 with i → 0. Hence, the
guidance function vanishes towards the end of the denoising
process. This is desirable if the prior covers a very large space
of the data manifold where the objective likelihood is high.
However, if there is no (or little) data in those regions, the
generative model might be unable to move samples towards
high objective likelihood regions. To counteract this and keep
the influence of the task likelihood, we drop the covariance Σi.
This is equivalent to changing the cost weights per denoising
step λj := Σ−1

i λj , which keeps the likelihood relevancy.
Second, instead of performing one gradient step, we take M

gradient steps and choose the step size such that the optimized
mean of z is within a small deviation δ of the prior mean as
motivated in [91]. This is equivalent to solving

min
µz

∑
j

λjCj(µz), s.t. |µz − µi| ≤ δ, (15)

using first-order gradients starting from µi, and δ prevents the
optimization from moving too far from the prior, which could
lead to a distribution shift.

Third, recall from eq. (3) that we can control the influence
of the prior by sampling from p(τ0|O) ∝ p(O|τ0)p(τ0)λprior .
In image generation, typically λprior = 1, and the classifier
weight λj is increased to generate images belonging to a
desired class. This balance works well because image models
are trained with large amounts of data, and the desired class is
covered in the prior distribution. For instance, when generating
images of dogs, we steer particles towards regions of the prior
that include dogs. In motion planning, we want to obtain
collision-free trajectories in new environments. This means
our prior might not have samples in the new collision-free
region. Hence, we treat λprior as a hyperparameter to control
the influence of the prior. From the relation between the score
function and the predicted noise we have [18]

∇τi
log p(τi) = − 1√

1− ᾱi
ϵ(τi, i) ∝ ϵ(τi, i) (16)

∇τi
log p(τi)

λprior = λprior∇τi
log p(τi) ∝ λpriorϵ(τi, i).

Therefore, we replace ϵθ(τi, i) in eq. (6) with λpriorϵθ(τi, i).

Accelerated sampling. A standard sample method uses the
same number of time steps as the ones from training, which
leads to a slow sampling process. However, the initial steps of
the denoising process include regions with large noise levels,
and it was shown that several steps can be discarded by
making the diffusion model non-Markovian, using Denoising

Diffusion Implicit Models (DDIM) [92]. Instead of sampling
with N steps as in DDPM, we select a subset of time indices
i ∈ M = {1, . . . , N}, with typically |M | ≪ N . To adapt
DDIM to cost guidance, to sample from the posterior in
eq. (10), we make use of eq. (16) and write

∇τi−1
log p(τi−1|τi, i,O) (17)

∝ ∇τi−1
log p(O|τi−1) +∇τi−1

log p(τi−1|τi, i) (18)

= − 1√
1− ᾱi

ϵ(τi, i) +∇τi−1
log p(O|τi−1)

= − 1√
1− ᾱi

(
ϵ(τi, i)−

√
1− ᾱi∇τi−1 log p(O|τi−1)

)︸ ︷︷ ︸
=ϵ

,

and replace ϵ in the original DDIM equations [23]. In practice,
we note that, similarly to DDPM,

√
1− ᾱi → 0 with i → 0,

and therefore remove this term to maintain the influence of the
cost function by adjusting the weights λj := (

√
1− ᾱi)

−1λj .

A note on classifier-free guidance. An orthogonal approach
to introduce guidance in diffusion models is to use classifier-
free guidance [89]. This method works by embedding informa-
tion from the objective function (or constraints) into a context
variable. This is not as flexible since the constraints need
to be known during training. On the contrary, cost guidance
can easily integrate new constraints via differentiable cost
functions, which makes it easier to adapt to new problems.

E. Trajectory Parametrization

Until this point we did not specify how the trajectory τ
is parametrized. In previous work [24], the diffusion prior
over trajectories was represented as a time-discretized vector
of joint positions τ = [q0, . . . , qH−1] ∈ RH×d, where H is
the number of waypoints. Given a planning frequency 1/∆t,
the trajectory duration is T = H∆t. On the positive side,
the waypoint representation ensures the trajectory passes on
the waypoints, which is useful when precise path-following
is required, especially for tasks that require strict position
control. Waypoints can be placed freely, making them suitable
for representing paths with sharp turns or discontinuities. How-
ever, velocities and accelerations were computed with finite
differences, which did not provide smoothness guarantees.
A cost function/regularizer (the GP prior cost) was needed
to enforce smoothness, which needed extra hyperparameter
tuning. Moreover, if part of a trajectory is in collision and the
corresponding waypoints are moved, then an already smooth
trajectory might become non-smooth, so a balance between
the two costs needs to be accounted for.

In turn, in this work, we propose using a B-spline
parametrization instead [93]. There are several properties
of B-splines that are interesting for our application. As B-
splines are smooth and have continuous derivatives, if part
of the trajectory that is in collision is moved, then the
overall trajectory remains smooth. This representation has a
locality property, which means that modifying control points
only affects neighbor trajectory segments. Additionally, as
denoising is computationally expensive due to the iterative
denoising process, a lower-dimensional parametrization with
fewer parameters than H × d is desirable. In B-splines, the

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 8

−1 0 1
q1

−1

0

1

q 2

(a) Control points and curve

0 5
−1.00

1.00

jo
in

t
1

q

0 5
0.00

0.67
q̇

0 5
−1.12

1.12
q̈

0 5
−0.89

0.89

jo
in

t
2

0 5
t [s]

0.00

0.55

0 5
−0.95

0.95

(b) Trajectories in time

Fig. 3. The figures show the resulting trajectories when using linear phase-
time scaling. In (a), the control points (blue dots) and path of a clamped 5th
order B-spline are displayed. (b) shows the trajectory in time of positions,
velocities, and accelerations for the two degrees of freedom.

parametrization is nb × d, where nb is the number of control
points, and nb ≪ H . For these reasons, we choose B-splines
as a trajectory representation.

A B-spline joint position trajectory as a function of a phase
variable s ∈ [0, 1] is defined as a linear combination of nb

basis-splines [94]

q(s) =

nb−1∑
i=0

Bu
i,p(s)wi = B(s)w, (19)

where Bu
i,p ∈ R is a basis-spline of degree p ∈ Z+ with

support between knots ui and ui+p+1 defined in a knot
vector u = [u0, . . . , um], with m ≥ nb − p − 1 and non-
decreasing entries, B(s) = [Bu

0,p(s) . . . B
u
nb−1,p(s)] ∈ R1×nb ,

wi ∈ R1×d and w = [w0 . . .wnb−1]
⊤ ∈ Rnb×d are the B-

spline control points (or coefficients). Note that with a fixed
basis Bp, the control points are the degrees of freedom
and completely define the B-spline. We learn a diffusion
model over w. The basis functions are defined recursively
with De Boor’s algorithm [94]. With s ∈ [0, 1], we limit
the knots vector to be in the same range, and to distribute
the basis functions evenly, we set subsequent knots to be
equidistant [93]

u =

 0 . . . 0︸ ︷︷ ︸
p+1 times

1

nb − p
. . .

nb − p− 1

nb − p︸ ︷︷ ︸
nb−p−1 elements

1 . . . 1︸ ︷︷ ︸
p+1 times

 , (20)

such that |u| = nb+p+1. To ensure the boundary constraints
on start and final positions, zero velocities, and accelerations
as in eq. (1), we repeat boundary knots (see eq. (20) and set
the first and last control points as [95]

w0 = w1 = w2 = qstart (21)
wnb−1 = wnb−2 = wnb−3 = qgoal. (22)

Note that if qgoal is not specified, but rather a desired end-
effector pose WHEE

goal , then the last control point wnb−1 is
generated by the diffusion model. To accelerate computations,
similarly to [93], we discretize the phase variable into ns

steps and pre-compute a matrix B ∈ Rns×nb of B-splines
basis, where ns is equivalent to H in the dense waypoint
representation. A joint position trajectory in phase-space is
given by Q = Bw ∈ Rns×d.

A trajectory in time is obtained by transforming the phase
variable. Let f be a monotonically increasing function such

that t = f(s), with f(0) = 0 and f(1) = T , where T
is the trajectory duration. Hence, we have q(t) = q(f(s)).
Therefore, the position trajectory is completely defined by the
B-spline in phase space, and with slight notation abuse, we
write q(t) ≜ q(s). Let the derivative of the phase w.r.t. time
be a function of the phase variable [93], [96]

r(s) =
ds

dt
(s) =

(
dt

ds

)−1

(s). (23)

The first and second derivatives of q w.r.t. time, velocity and
acceleration, respectively, can be computed as

q̇(t) =
dq(t)

dt
=

∂q(s)

∂s

ds

dt
=

∂q(s)

∂s
r(s) (24)

q̈(t) =
d2q(t)

dt2
=

d

dt

(
∂q(s)

∂s

)
r(s) +

∂q(s)

∂s

d

dt
r(s)

=
∂2q(s)

∂s2
(r(s))2 +

∂q(s)

∂s

∂r(s)

∂s
r(s)

These expressions compute the trajectory in time using the
phase variable and their derivative relation. For completeness,
we must compute the derivatives of B-spline curves w.r.t. the
phase variable and define the phase-time function.

The k-th order derivative ∂q(s)(k)/∂s(k) is also a
B-spline [95], [97], which can be written as

∂q

∂s
(s) =

nb−2∑
i=0

B′u
i,p(s)wi (25)

B′u
i,p(s) ≜ p

(
Bi,p−1(s)

ui+p − ui
− Bi+1,p−1(s)

ui+p+1 − ui+1

)
. (26)

Note that B′u
i,p is not a proper basis. Higher order derivatives

can be computed similarly ∂2q/∂s2 =
∑nb−3

i=0 B′′u
i,p(s)wi,

and the new basis matrices can be pre-computed for a fixed
number of steps ns.

One of the benefits of phase-time decoupling is being able
to speed up and slow down movements. As common in the
literature [98], we assume a linear relation, but nonlinear
functions can also be used [93]

s = f−1(t) = t/T, r(s) = 1/T,
∂r(s)

∂s
= 0

q̇(t) =
∂q(s)

∂s

1

T
, q̈(t) =

∂2q(s)

∂s2
1

T 2
.

Figure 3 illustrates the properties of the B-spline trajectory
representation in 2-dimensional example. This parametrization
allows for a low-dimensional representation of smooth trajec-
tories, which are useful for motion planning.

Other trajectory representations The definition in eq. (19)
encompasses other types of movement primitives by modi-
fying the basis functions, such as Bézier curves [99], Prob-
abilistic Movement Primitives (ProMP) [98] or Probabilistic
Dynamic Movement Primitives (ProDMP) [64]. However,
some properties of B-splines are suited to our tasks. Unlike
other spline methods such as Bézier curves, the B-spline has
a local property instead of the global property [99]. This
property can be important because the collision cost is local in
gradient-based optimization. By moving control points locally,
we ensure that only the part of the trajectory that is in collision

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 9

is affected. Compared to ProMPs and ProDMPs, B-spline
trajectories lie within the convex hull defined by the control
points, which allows for the definition of constraints on the
coefficients instead of constraints on the whole trajectory.
Moreover, commonly, these movement primitives are defined
by individual basis functions with support in R, such as an
exponential kernel, making it difficult to set boundary condi-
tions for position, velocity, and acceleration [96]. Establishing
these constraints is easier with B-splines due to the basis being
defined over closed intervals determined by the knots vector.

F. Implementation Details

For learning, we assume having a dataset of pairs of
C contexts and NC (possibly) multimodal trajectories per
context D = {{(cj , τjk)}NC

k=1}Cj=1. Following section III-C,
we learn a prior over trajectories by learning the conditioned
denoising model ϵθ(wi, i, c), where wi ∈ Rnb×d are the
control points of a B-spline. To ensure zero velocities and
accelerations at the boundaries, the first and last control
points are fixed according to eqs. (21) and (22). Hence, the
diffusion model uses the inner control points of size nb−6, or
nb − 5 if the end-effector goal pose is used, meaning the last
joint configuration is not fixed. The conditioning variable c
consists of the current (start) joint position, and if a goal joint
position is defined, c = [qstart, qgoal], otherwise, if a desired
end-effector goal is provided, then c = [qstart,

WHEE
goal]. The

end-effector pose input to the network consists of the position
concatenated with a flattened rotation matrix. We separate
these two conditioning cases because the latter option is more
natural for humans to specify. For instance, in a pick-and-
place task, we want the manipulated object to be placed in
a certain pose and might not care too much about the final
joint positions. Moreover, by specifying a task space pose,
we might get multiple robot configurations that achieve the
same end-effector pose, which gives the user the freedom to
decide which configuration to choose. However, if the user
has access to an inverse kinematics solver, for instance, to
bias the solutions to a neutral configuration, then she can use
conditioning with goal joint positions. Nevertheless, with our
framework, biasing the solution could also be achieved by
adding another cost function.

[52] proposed a temporal U-Net architecture with
1-dimensional convolutions to encode local relations between
states and actions, acting as a low-pass filter that prevents
jumps between neighboring states. Due to its success in
modeling trajectories, we adapt it and replace states with
B-spline control points and extend this network architecture to
include a conditioning variable, along with the diffusion step
index, using Feature-wise Linear Modulation (FiLM) [100]
(see fig. 2). Additionally, all data is normalized to [−1, 1].

For sampling, we tested both DDPM and DDIM algorithms.
In DDIM, the number of steps |M | is commonly selected
linearly from {1, . . . , N}. With this schedule, several steps
closer to N add too much noise to samples during the
denoising process. We can skip those first steps by choosing
quadratically distributed steps, which means the denoising
process jumps from larger indexes to ones closer to 0, leading

to fewer denoising steps. Moreover, we use the deterministic
version of DDIM with γ = 0, which slightly prevents the
risk of adding noise to a trajectory that is already collision-
free. During inference, cost guidance is computed w.r.t. the
τi at denoising step i. However, for higher noise levels, the
trajectory is still quite noisy, and this gradient produces little
effect. Hence, we only apply the cost gradients on the last icost
steps of the denoising process.

We run our algorithm by sampling and optimizing a batch of
trajectories in parallel. Therefore, to sample many trajectories,
evaluate their costs, and compute gradients in our framework,
we maximize parallelization by implementing all components
in PyTorch [101] by leveraging GPU utilization. Although a
batch of trajectories is used for planning, in the real world,
only one trajectory can be executed. Choosing this trajectory
is task-dependent and a user choice. For tasks where the
context includes reaching a desired end-effector pose, one
could choose the trajectory corresponding to the lowest end-
effector pose error, and for other tasks, one could use the
minimum length trajectory or other combinations.

G. Motion Planning Costs
In this section, we describe the motion planning costs used.

The unconstrained cost function from eq. (2) is computed with
the trajectory time-integral costs and can be converted into an
integral in phase-space with a change of variables

C(τ) =
∑
j

λj

∫ T

0

Cj(τ (t))dt =
∑
j

λj

∫ 1

0

Cj(τ (s))r(s)
−1ds

(27)

where the integral is approximated by discretizing the phase
variable into ns segments (section III-E).

The costs we consider are computed in joint and task
space, and the total derivative w.r.t. the B-spline trajectory
parametrization w (the control points) is computed using the
chain rule, e.g., for joint position costs

dCj(q)

dw
=

∂Cj(q)

∂q

dq(s)

dw
, (28)

where Cj ∈ R, ∂C(q)/∂q ∈ R1×d, and for B-splines
dq/dw = B ∈ Rd×nb×d, where the basis matrix is repeated
along the degrees-of-freedom to match dimensions. If Cj is a
task space cost, let Xm = FKm(q) ∈ SE(3) be the pose of a
link m on the robot arm computed with forward kinematics,
and consider a cost Cj(Xm). Then we have

∂Cj(q)

∂q
=

∂Cj(Xm)

∂Xm

∂Xm(q)

∂q
,

where ∂Cj(Xm)/∂Xm ∈ R1×6 ∈ se(3) is a vector in the Lie
algebra of SE(3), and

∂Xm(q)/∂q ≜ Jm(q) =

[
Jp
m(q)

Jo
m(q)

]
∈ R6×d (29)

is the forward kinematics geometric Jacobian at link m, for
position p and orientation o. This formulation is important
because we do not need to use automatic differentiation for
gradient computations, and make use of the library The-
seus [102] to compute geometric Jacobians and Lie algebra

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 10

quantities without backpropagation through the computational
graph. This separation exploits the structure of the Jacobian of
kinematic chains, allowing faster and more stable computation,
as well as the separation of position and orientation costs.
Moreover, due to the B-spline linear parametrization, gradient
computation can be easily parallelized in the GPU.

Velocity cost. We minimize the joint space velocity trajectory
using a squared penalty, which promotes straight paths by
using a squared penalty on the velocity trajectories

Cvel(τ (s)) =
1

2
∥q′(s)∥22,

where q′(s) is the first-order derivative of q w.r.t. s.

Acceleration cost. To prevent sharp turns in the robot trajec-
tory, we maximize smoothness by using a squared penalty on
the acceleration trajectories

Cacc(τ (s)) =
1

2
∥q′′(s)∥22,

where q′′(s) is the second-order derivative of q w.r.t. s.

Task cost. In several manipulation tasks, such as pick-and-
place or pouring, it is much more intuitive to specify a desired
end-effector goal pose instead of a goal joint position. Hence,
we minimize the end-effector pose error obtained at the last
joint position (s = 1) with

Ctask(τ (s))|s=1 = dSE(3)
(
WHEE

goal , FKEE(q(1))
)
.

dSE(3) defines the distance between two elements of
SE(3). Given two poses (homogeneous transformations)
T1 = [R1,p1] ∈ SE(3) and T2 = [R2,p2] ∈ SE(3), con-
sisting of a translational and rotational part, we choose

dSE(3)(T1,T2) =
1

2
∥p1 − p2∥22 +

1

2
∥LogMap(R⊤

1 R2)∥22,

where LogMap(·) is the operator that maps an element of the
Lie group SO(3) to the vector representation of its tangent
space at the identity element, the Lie algebra so(3) [103].
With the Jacobian decomposition from eq. (29), we can map
the derivatives of dSE(3) w.r.t. position and orientation task
space errors to the joint space.

Collision costs. The task-space signed distance
function of an environment SDF(x) is the

Fig. 4. Visualization of the Franka Emika Panda
finite collision spheres model (right) used for
faster collision cost computations.

smallest signed
Euclidean distance
between a point
in space x ∈ R3

and the closest
surface (negative if
inside an obstacle,
and positive
otherwise). Given
an environment
with obstacles, we
precompute and
store the SDF using a fine voxel grid representation and
project a continuous point x to the nearest point in the grid.
The SDF representation is a common assumption in motion

planning [2], [3], which can be obtained fast in the real world
using newer software modules [104]. Also, if a new object
is added to the scene, and we know its SDF, the resulting
SDF is the minimum between the environment and the new
object SDF. Similarly, we can precompute the SDF gradient
∇xSDF(x), which has L2-norm equal to 1. This gradient
indicates a direction to push the robot out of collision when
the SDF(x) < 0. To compute robot collisions, we represent
it with S spheres along its body B (see fig. 4), allowing for
faster computation of the SDF between the robot and the
environment compared to using a full mesh. We consider two
types of collisions: with the environment and self collisions.
The environment collision cost is defined as

Ccoll-env(τ (s)) =

∫
B
Cenv(xm(q(s)))dm ≈

S−1∑
m=0

Cenv(xm)

with Cenv(xm) = ReLU(−SDF(xm) + rm + ϵ) , where xm ∈
R3 is the position of the mth sphere center computed with
forward kinematics at configuration q(s) and rm its radius. To
prevent (and control) the robot passing too close to objects,
we use a safety margin ϵ ≥ 0 and activate the collision cost
only if the robot is inside the safety margin.

The self-collision is similarly implemented, except the cost
is computed between selected pairs of links

Cself(τ (s)) = max
i,j∈Sc

(ReLU (−∥xi − xj∥+ ri + rj + ϵ)) ,

where Sc is the set containing all pairs of spheres of centers
xi and xj , and radius ri and rj , considered for self-collision.

Joint limits. Joint limits in position, velocity, and acceleration
are enforced by computing the L2-norm joint violations, with
a small margin ϵ ≥ 0 on the d degrees-of-freedom

Climits(τ (s)) =
∑

lim∈{pos, vel, acc}

d−1∑
i=0

Clim(τd(s))

Clim(τd(s)) =
1
2∥τd,min(s) + ϵ− τd(s)∥22 if τd(s) < τd,min(s) + ϵ
1
2∥τd,max(s)− ϵ− τd(s)∥22 if τd(s) > τd,max(s)− ϵ

0 else

where τd(s) can be one of the partial derivatives w.r.t. s,
(qd(s), q

′
d(s), q

′′
d (s)).

When the constraints are in phase space, the minimum,
and maximum limits are phase-dependent due to the de-
pendency on r(s) (eq. (23)). For positions, this plays no
role since qmax(s) = qmax ∀s. However, for velocities we
have q′

max(s) = q̇maxr(s)
−1, with q̇max the maximum specified

joint velocity. The acceleration limit follows similarly. With
a linear phase-time relation we have q′

max(s) = q̇maxT and
q′′

max(s) = q̈maxT
2.

Algorithms 1 and 2 summarizes the procedures for learning
and planning with MPD, respectively.

IV. EXPERIMENTAL EVALUATION

To understand the benefits of MPD, we construct experi-
ments to answer the following questions:

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 11

Algorithm 1: Motion Planning Diffusion – Learning
Input: Collision-free trajectories dataset D, B-spline
parameters b (knots, degree, number of basis), denoising
function ϵθ , noise schedule terms ᾱi, learning rate γ

1 while not converged do
2 c, τ0 ∼ D ▷ sample a batch of contexts and

trajectories
3 w0 = fit-B-spline(b, τ0) ▷ fit a B-spline to the

trajectory and get control points
▷ compute the denoising loss function

4 ϵ ∼ N (0, I) , i ∼ U(1, N), wi =
√
ᾱiw0 +

√
1− ᾱiϵ

5 L(θ) = ∥ϵ− ϵθ(wi, i, c)∥22
6 θ = θ − γ∇θL(θ) ▷ gradient optimization step

Output: optimized θ

Algorithm 2: Motion Planning Diffusion – Planning

1 (DDPM version. For DDIM we adapt the posterior mean
update with eq. (18))

Input: Pre-trained denoising model ϵθ , noise schedule terms
(αi, ᾱi, σi), start joint position qstart and goal end-effector
pose WHEE

goal , B-spline basis matrix B, motion planning
costs Cj and temperatures λj , prior temperature λprior, cost
gradient start index icost, inner gradient parameters (steps M ,
step size γ, maximum step δ)

2 c = [qstart,
WHEE

goal] ▷ build the conditioning variable
3 wN ∼ N (0, I) ▷ sample noisy control points
4 for i = N, . . . , 1 do
5 if i > icost then λprior=1

▷ compute the diffusion prior mean eq. (6)

6 µi(wi, i, c) =
1√
αi

(
wi − 1−αi√

1−ᾱi
λpriorϵθ(wi, i, c)

)
7 if i < icost then

▷ inner gradient steps eq. (15)
8 µ0

i = µi

9 for k = 1, . . . ,M do
▷ compute B-spline trajectories
eqs. (19), (24) and (25)

10 τ = (q, q′, q′′) = (Bµk
i ,B

′µk
i ,B

′′µk
i)

▷ compute costs gradient eqs. (27)
and (28)

11 g = −
∑

j λj∇µk
i
Cj(τ)

▷ Clip and apply the gradient

12 µk
i = µk−1

i + γg
13 ∆µ = clip(|µk

i − µ0
i |,−δ, δ)

14 µk
i = µ0

i +∆µ

15 else
16 µM

i = µi

▷ sample from the posterior distribution

17 wi−1 = µM
i +Σiz, z ∼ N (0, I)

▷ compute B-spline trajectories
18 τ0 = (q0, q

′
0, q

′′
0) = (Bw0,B

′w0,B
′′w0)

Output: batch of trajectories τ0

Q1) Can MPD learn highly-multimodal collision-free trajec-
tory distributions?

Q2) How does MPD compare to other generative models?
Q3) Is cost guidance during the denoising process necessary?
Q4) What are the impacts of the B-spline parametrization?
Q5) Can we encode trajectory priors from human demonstra-

tions and adapt them at test time?

A. Environments, Tasks and Datasets

We consider a set of tasks that are representative of the
challenges faced in robot motion planning, from simple to
complex, including a 2D point mass navigating an environment
with simple obstacles, a 2D point mass navigating a narrow
passage, a 2-link planar robot, a 4-link planar robot, and a
7-dof robot arm manipulator in two settings: one illustrative
environment with collision spheres; and a warehouse environ-
ment with a table and two shelves. The latter aims to motivate
the applicability of our method in a real-world task, such as
shelf rearrangements in distribution facilities, where shelves
are static, but at deployment new objects can be placed on the
table or shelves. The tasks are displayed in fig. 5, with naming
convention [Environment]-[Robot]. The goal is to move the
robot (without collisions) from start to goal configurations –
a desired joint position or an end-effector pose.

For each task, we generate a dataset of collision-free paths
with the OMPL library Python bindings [105], along with
PyBullet [106] to setup the environment and perform collision
checking. We randomly sample multiple contexts and use
RRT Connect [5] to generate paths, which are afterward short-
cutted and smoothed. Moreover, we generate an additional
path by reverse-connecting the goal to the start configuration.
Alternatively, if we know the task requires goal poses to be
located in some regions of the workspace, we can specify the
goal pose and use inverse kinematics to obtain the goal joint
configuration. For example, in the EnvWarehouse-RobotPanda
task, the goal pose is located on top of the table or on the
shelves, and we sample paths from any initial configuration
to those goal poses. There are two reasons for using RRT
Connect to generate data. First, because it is faster than
optimal planners like RRT∗, and since we optimize these paths
further using defined cost functions, we trade optimality for
speed. Second, it is probabilistically complete, and its vertices
cover all the configuration-free space (Corollary 1 of [5]),
thus finding multiple modes for reaching the goal from the
start configuration. The number of paths, which equals the
number of contexts, generated per environment can be found
in table II. Since we are planning in joint space, the number of
points needed to cover the whole space increases exponentially
with the number of joints. Thus, a sufficient amount of data
is needed to counter the curse of dimensionality. E.g., for
the discretization of 100 points per joint, a 4-dof robot arm
requires 1004 = 100M points to cover the discretized space.
When training the diffusion model prior, we sample a context
and path from the dataset and fit a B-spline to the path
using the splprep function from the SciPy library [107].
The number of B-spline control points is a hyperparameter
and is chosen so the path almost does not collide with the
environment. Note that we do not need to be 100% collision-
free, as collision-avoidance costs are used during optimization.

Choosing the number of control points for the B-spline
and the denoising network size is a trade-off between model
expressivity and computational cost. The hyperparameters for
training are detailed in appendix A. The loss function in eq. (7)
is optimized using mini-batch gradient descent with the Adam
optimizer [108] and a learning rate 3× 10−4.

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 12

(a) EnvSimple2D-RobotPointMass2D
(b) EnvNarrowPassageDense2D-
RobotPointMass2D (c) EnvPlanar2Link-RobotPlanar2Link (d) EnvPlanar4Link-RobotPlanar4Link (e) EnvSpheres3D-RobotPanda (f) EnvWarehouse-RobotPanda

Fig. 5. The environments used for the motion planning experiments, with different robot models and increasing complexity. In 2D tasks the robots are
depicted in blue (as a dot for RobotPointMass2D). The bottom row shows the tasks with additional obstacles (in red), which are not present during training.

Generalization is tested on contexts not seen during training
and in the presence of new obstacles (see fig. 5), which assess
the method’s ability to exploit the prior knowledge to generate
collision-free paths in unseen scenarios. The hyperparameters
for inference are detailed in appendix B.

B. Baselines

We compare MPD against the following baselines:

• To compare the drawbacks of using an uninformed prior,
we use a Gaussian Process (GP) prior that connects
the start and goal configurations and optimizes the cost
function using gradient descent. We name this baseline
GPprior+Cost, and it is essentially CHOMP [2]. When
the context includes the goal end-effector pose, we use a
goal joint position computed with inverse kinematics.

• To assess the benefits of using a diffusion model, we use
a baseline that learns a Conditional Variational Autoen-
coder (CVAE) [109] to model the trajectory distribution.
It shares the same U-Net architecture as the denoising
function ϵθ, but at the lowest level of the U-Net the
embedding is projected into a 32-dimensional latent space
that encodes the mean and standard deviation of a Gaus-
sian distribution. The optimized loss function is a sum of
L2-norm of the predicted and ground-truth trajectory and
the KL-divergence between the latent space posterior and
a standard Gaussian distribution weighted by β = 0.1.

• We use a baseline named [Prior]+Cost to compare MPD
against sampling first from the prior and then optimizing
the cost function. The [Prior] is the diffusion (Dprior) or
the CVAE model.

All baselines use the B-spline parametrization. For a similar
comparison, we use the same number of cost function opti-
mization steps in all baselines. To accelerate sampling from the
diffusion model, we use DDIM with 15 steps and a quadratic
step schedule. All methods are implemented with PyTorch, and
the experiments were conducted on a machine with an AMD
EPYC 7453 28-Core Processor and NVIDIA RTX 3090.

C. Metrics

We report the following average metrics. Success rate is
1 if at least one of the trajectories in the batch is not in
collision and inside joint limits, and 0 otherwise. Fraction of
valid trajectories is the percentage of generated trajectories
that are collision-free and inside the joint limits. Diversity is
measured by the Vendi score [110] with the similarity kernel
k(a, b) = exp

(
−∥a− b∥22

)
[111], for the dense interpolation

of two trajectories a and b. A higher Vendi score means more
diverse trajectories. Error pos. and Error ori. are the position
and orientation errors, respectively, between the end-effector
goal pose and the one at the end of the generated trajectory.
The last four metrics are reported only for valid trajectories.

D. General Results in Simulation

In this experiment, we report the results using all motion
planning costs. Here, we want to evaluate how the methods
perform in terms of collisions and reaching the desired end-
effector goal poses. Therefore, we use a large time duration
of 10 seconds to prevent optimization over velocities and
accelerations. We sample 100 contexts and optimize 100
trajectories per context. The results are displayed in fig. 6.

To answer Q1, we observe the results under training en-
vironment since they show how well the generative priors
model the data distribution. They show that the diffusion-
based models (Dprior, Dprior+Cost, MPD) obtain success rates
that match or surpass the baselines while keeping a high
diversity in generated trajectories. When comparing CVAE and
Dprior, their success rate and validity fraction are close, but
the diversity score is higher for the diffusion-based models, in
particular for higher-dimensional environments (using Robot-
Panda). For instance, in the EnvWarehouse-RobotPanda, both
CVAE and Dprior achieve 97% mean success rate, but Dprior
shows more mean variability (50.9 vs. 60.3). Moreover, Dprior
achieves smaller mean errors in the desired end-effector goal
position and orientation (7.4cm vs. 5.2cm, 10.5◦ vs. 6.7◦),
which due to model approximations are not 0. These errors
are improved during cost optimization. Both diffusion-based

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 13

0

50

100

Success rate [%]

0

50

100

Fraction Valid [%]

0

16

33

Diversity
Training environment

0

50

100

Success rate [%]

0

50

100

Fraction Valid [%]

0

16

33

Diversity
Additional objects

EnvSimple2D-RobotPointMass2D

0

50

100

Success rate [%]

0

50

100

Fraction Valid [%]

0

10

20

Diversity

0

50

100

Success rate [%]

0

50

100

Fraction Valid [%]

0

10

20

Diversity

EnvNarrowPassageDense2D-RobotPointMass2D

0

50

100

Success rate [%]

0

50

100

Fraction Valid [%]

0

12

24

Diversity

0

50

100

Success rate [%]

0

50

100

Fraction Valid [%]

0

12

24

Diversity

EnvPlanar2Link-RobotPlanar2Link

0

50

100

Success rate [%]

0

50

100

Fraction Valid [%]

0

50

100

Diversity

0

3

6

Error pos. [cm]

0

7

13

Error ori. [∘]

0

50

100

Success rate [%]

0

50

100

Fraction Valid [%]

0

50

100

Diversity

0

3

6

Error pos. [cm]

0

7

13

Error ori. [∘]

EnvPlanar4Link-RobotPlanar4Link

0

50

100

Success rate [%]

0

50

100

Fraction Valid [%]

0

50

101

Diversity

0

12

24

Error pos. [cm]

0

13

26

Error ori. [∘]

0

50

100

Success rate [%]

0

50

100

Fraction Valid [%]

0

50

101

Diversity

0

12

24

Error pos. [cm]

0

13

26

Error ori. [∘]

EnvSpheres3D-RobotPanda

0

50

100

Success rate [%]

0

50

100

Fraction Valid [%]

0

51

102

Diversity

0

8

16

Error pos. [cm]

0

15

30

Error ori. [∘]

0

50

100

Success rate [%]

0

50

100

Fraction Valid [%]

0

51

102

Diversity

0

8

16

Error pos. [cm]

0

15

30

Error ori. [∘]

EnvWarehouse-RobotPanda

CVAE Dprior GPprior+Cost CVAE+Cost Dprior+Cost MPD

Fig. 6. Performance metrics for different algorithms on the tasks from fig. 5. The results report the swarm plot of sampling 100 contexts from the test set
and optimizing 100 trajectories per context. The cross represents the mean value. The columns under training environment show the results without additional
objects. In 2D environments, the errors in end-effector position and orientation are always 0 since a joint goal is provided.

models, Dprior+Cost and MPD, achieve similar mean position
and orientation errors, e.g., in this task, 2.00cm and 1.1◦.

To answer Q2, we look at the results when using newer
obstacles in the scene under additional objects columns. The
success rate and validity fraction drop for all methods, in
comparison to the training environment, which is expected,
in particular for the prior methods, CVAE and Dprior, which
do not have knowledge of the new obstacles. For instance,
in the EnvNarrowPassageDense2D-RobotPointMass2D task,
Dprior’s mean success rate dropped from 95% to 8%. This
is a task where an informed prior is particularly useful since
traversing from the top to the bottom of the environment
needs to be done through a very small passage. We focus now
on the higher-dimensional task EnvWarehouse-RobotPanda. In

the presence of new obstacles, all methods that perform cost
optimization improve the success rate and validity fraction
in comparison to using only the prior. For example, MPD
increases the mean validity fraction of Dprior from 18.4 to
73.5%, which is the largest among all methods for this task.
Moreover, MPD also shows more mean diversity in the valid
trajectories in comparison to baselines that first sample from
the prior and then optimize the cost (66.0 for Dprior+Cost vs.
74.8 for MPD). Note that these results are more pronounced
for the additional objects tasks, and a discussion for why
this happens is found in section IV-E. When comparing MPD
with an uninformed prior GPprior+Cost, we observe a mean
success rate increase from 67.8% to 96.0%, which supports the
claim that the diffusion prior is useful to guide the trajectories

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 14

0.0 0.1 0.2 0.3 0.4 0.5
Time [s]

0.057s 0.498s

MPD computation time breakdown (total)

Generator Gradients Overhead

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Time [s]

0.0138s 0.0109s 0.0106s

Gradient computation time breakdown (one step)

Collision Objects
EE Goal Pose
Joint Space Acceleration

FK and Jacobians
Joint Limits

Collision Self
Joint Space Velocity

Fig. 7. Computation times breakdown for sampling 100 trajectories with
MPD in the EnvSpheres3D-RobotPanda environment. (Top) MPD total infer-
ence time and breakdown per generator and gradient computations. (Bottom)
Breakdown for the computation of one gradient step.

RRTC + Cost MPD-1 MPD-10 MPD-100
0

1

2

3

Co
m

pu
ta

tio
n

tim
e

[s
]

Success rate
100% 48% 85% 97%

RRTC + Cost MPD-1 MPD-10 MPD-100

2.5

5.0

7.5

10.0

12.5

15.0

Pa
th

 le
ng

th
 [r

ad
]

Fig. 8. (Left) computation time and success rate, and (right) shortest path
lengths results in the EnvSpheres3D-RobotPanda task (additional objects)
across 100 contexts. We compare one RRT Connect sample with cost
optimization (RRTC + Cost), and MPD with increasing batches (1, 10, 100).

through collision-free regions. In terms of diversity, we expect
the GPprior to provide the largest value since this is an
uninformed prior. MPD’s diversity is the closest to the GPprior
one or slightly larger for the EnvWarehouse-RobotPanda task.
These results show that MPD produces a higher percentage of
collision-free trajectories (and inside joint limits) while being
diverse. It is also important to note the effect of optimizing the
task cost. Methods that optimize this cost produce trajectories
resulting in end-effector pose errors much smaller than the
ones obtained just sampling from the priors. E.g., in the
EnvWarehouse-RobotPanda task, the end-effector mean error
in orientation drops from 7.1 to 1.2 between Dprior and MPD.

The optimization time is highly implementation-dependent
(and on CPU/GPU hardware versions). We parallelize all
cost computations using vectorized operations in PyTorch,
but computing the costs is still done sequentially in Python.
Typically, a disadvantage of diffusion models is their slow
sampling speed, but by using DDIM we reduce the number
of sampling steps, thus achieving faster inference without a
significant performance drop. In fig. 7, we show the com-
putation time breakdown for MPD in the most complex
environment (EnvSpheres3D-RobotPanda), using MPD with
15 DDIM steps and 4 intermediate gradient steps, which in
total takes approximately 0.56s. The diffusion sampling alone
takes 0.057s (≈ 3.8ms per denoising network pass). The
costly part is the gradient computation, which is similar for all
methods. Therefore, the only difference between the baselines,
is diffusion taking 0.057s more.

Figure 1 presented a motivation for initializations in
optimization-based planning methods. In our previous
work [24], the experiments showed that (as expected) a
sampling-based prior achieves 100% success rates, but with
more computation time (hence, we do not include it here in
the main baselines). In this work, we consider sampling one

0 2 4
2.5
0.0
2.5

q 0

Position

0 2 4
2
0
2

Velocity

0 2 4
10

0
10

Acceleration

0 2 4
2.5
0.0
2.5

q 1

0 2 4
2
0
2

0 2 4
10

0
10

0 2 4
2.5
0.0
2.5

q 2

0 2 4
2
0
2

0 2 4
10

0
10

0 2 4
2.5
0.0
2.5

q 3

0 2 4
Time [s]

2
0
2

0 2 4
10

0
10

Fig. 9. (Top) Task-space trajectories generated by MPD in the
EnvPlanar4Link-RobotPlanar4Link task. The reference frame shown is the
desired end-effector pose. The orange line shows the end-effector trajectories
from the start (left) to the goal (right). Notice how the model generates
multimodal goal joint positions for the same desired end-effector goal pose.
(Bottom) Joint trajectories in time, where orange are collision-free and within
joint limits (depicted by the dashed lines), and others are in black.

trajectory using RRTConnect, since parallel sampling incurs
too much computation time as it is not as easy to parallelize.
We use the same implementation as described in section IV-A.
The question we aim to answer is whether MPD has a benefit
over first running a sampling-based planner and then solving
the optimization problem from eq. (1) (we used the same
number of steps as for MPD). For this experiment, we chose
the EnvSpheres3D-RobotPanda task with additional objects
because it is the hardest task we considered (due to narrow
passages). Figure 8 shows the results obtained when planning
100 contexts. We observe that sampling one trajectory with
RRTConnect uses more computation time than sampling 100
with a learned diffusion model. MPD’s success rate increases
with the batch size, while computation time remains almost
constant. The boxplot on the right side also shows that MPD
produces trajectories with shorter lengths and less variance.
This experiment shows that offloading sampling-based planner
computations and compressing them into a trajectory diffusion
model leads to faster and better planning results.

Figure 9 shows an example of a planning task in the
EnvPlanar4Link-RobotPlanar4Link environment, using a tra-
jectory duration of 5 seconds. Given a goal end-effector pose,
the model generates multimodal trajectories in joint space,
which are collision-free and within joint limits. The rightmost
figure on the top row shows that final joint configurations
achieve the same end-effector pose. We note that the diffu-
sion model was trained using one trajectory per context, but
when tested in a new context not seen during training, the
model generates multimodal trajectories, which we attribute
to the capacity of the denoising network to generalize to new
contexts and model multimodal distributions quite well.

To show that our model is transferable from the digital
twin to a real-world scenario, we execute MPD by replicating
the EnvWarehouse-RobotPanda environment and adding addi-
tional objects to the scene, whose pose we obtain through a

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 15

Fig. 10. Example of multimodal trajectories executed in the warehouse
environment using MPD. Starting from the same joint configuration, the task
is to reach an end-effector pose on the table while avoiding collisions with
the environment. The orange lines depict the end-effector trajectories, and the
overlayed images show the last frame on the trajectory. Our model generates
multiple goal robot configurations for similar desired end-effector poses.

(a) Demonstrations (b) Dprior (c) Dprior + Cost

(d) MPD

i = N MPD denoising process i = 0

Fig. 11. The figures illustrate the benefits of sampling with MPD instead
of first sampling from the prior and then optimizing the cost function. (a)
The robot is a 2D point mass in an environment without any obstacles, and
demonstration trajectories are obtained by sampling from a Gaussian Process
prior. At inference, an obstacle (in red) is inserted into the environment. (b)
Samples from the learned diffusion prior. (c) Results of first sampling from
the prior and then optimizing the collision cost function. (d) Samples from the
posterior distribution generated with MPD. The second row illustrates how
MPD’s denoising process moves from Gaussian noise to clean trajectories
while avoiding the red obstacle. Trajectories that are in collision with the red
obstacles are shown in black, and collision-free trajectories in orange.

marker-based system. Figure 10 shows an example of how
MPD generates multimodal trajectories with different joint
goal configurations for similar end-effector poses.

E. MPD vs. Diffusion Prior and Cost Optimization

In this section, we answer Q3. One important aspect when
using cost-guided diffusion in the context of motion planning
is to understand in what situations can sampling from the
denoising posterior distribution eq. (8) be beneficial, compared
to first sampling from the diffusion prior and then optimizing
the cost function starting from the proposed samples. In fig. 11
we show a simple example to motivate this difference. We
consider a 2D point mass in an environment without any
obstacle (fig. 11a), generate a small set of demonstrations with
a Gaussian Process trajectory, and learn a trajectory diffusion

0 20 40
0.00

0.05

0.10

EnvSimple2D
RobotPointMass2D

20 40
0.00

0.05

0.10

EnvNarrowPassageDense2D
RobotPointMass2D

25 50 75
0.00

0.05

EnvPlanar2Link
RobotPlanar2Link

0 100
0.000

0.025

0.050

EnvPlanar4Link
RobotPlanar4Link

50 100 150
0.00

0.02

0.04

EnvSpheres3D
RobotPanda

25 50 75
0.00

0.02

0.04

EnvWarehouse
RobotPandaDe

ns
ity

Smoothness [rad/s2]

B-Spline Waypoints
Fig. 12. KDE plots of the smoothness distribution of all contexts in all tasks
with additional objects (lower values mean smoother trajectories).

(a) B-spline

0 5 10
1
0
1

q 0

Position

0 5 10
0.00

0.25
Velocity

0 5 10

0.5
0.0

Acceleration

0 5 10
1
0
1

q 1

0 5 10
Time [s]

0.2
0.0
0.2

0 5 10
0.5
0.0
0.5

(b) Waypoints

0 5 10
1
0
1

q 0

Position

0 5 10
0.00

0.25

Velocity

0 5 10
2

0

Acceleration

0 5 10
1
0
1

q 1

0 5 10
Time [s]

0.00

0.25

0 5 10
1
0
1

Fig. 13. MPD results in the EnvSimple2D-RobotPointMass2D task using
different trajectory parameterizations. Trajectories in orange are collision-
free, and black in collision. (a) The first row shows the generated trajectories
using the B-spline parametrization, while (b) the second one is generated
with waypoints. By inspecting the trajectories’ evolution, we observe jumps
in the acceleration profile due to using a few waypoints. At the same time,
the B-spline parametrization ensures smoothness in velocity and acceleration
profiles. The blue dots in the environment plots show the control points or
waypoints of one trajectory.

prior. At inference we add a new obstacle, the red square, and
do optimization using the object collision cost. The figures
show two aspects of MPD. First, while sampling from the
diffusion prior and then optimizing the cost fails to provide
collision-free trajectories (fig. 11c), MPD can obtain a larger
percentage of those (fig. 11d). This phenomenon happens
because once a large portion of the trajectory is in collision
with the obstacle, it becomes more difficult to remove it from
collision. Second, in fig. 11d, we notice how trajectory samples
from MPD evolve during the denoising process. The evolution
shows that sampling from the posterior distribution moves
the samples towards regions of the configuration space where
the posterior has higher probability density, thus generating
samples that are collision-free but close to the prior distribu-
tion. Therefore, the benefits of sampling from the posterior
are more diverse and collision-free trajectories, which can be
observed in fig. 6 by comparing Dprior+Cost and MPD results,
especially in the environments with additional objects.

F. Impact of the B-spline Parametrization

One of this work’s contributions is performing diffusion
in the space of B-spline coefficients instead of waypoints.
Hence, to answer Q4, we compare both representations. The
benefits have been detailed in section III-E, but perhaps the

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 16

main one is generating smooth trajectories. As the velocity
and acceleration of a linear waypoint trajectory representation
are computed with central finite differences, they are constant
between waypoints and lead to large jumps. There are two
ways to get smoother trajectories with this representation.
First, we can increase the number of waypoints, as commonly
done in optimization-based algorithms. Second, after running
the denoising process, we can do extra optimization steps to
smoothen and optimize the trajectory to remain collision-free
and within joint limits while minimizing the task cost. Both of
these options have drawbacks in terms of additional computa-
tions, e.g., in the first case, the denoising network needs to pro-
cess larger inputs. We performed an ablation experiment where
we replaced the B-spline with waypoints. We used the same
number of waypoints as B-spline coefficients, which guaran-
tees that the denoising network size and computations are sim-
ilar. As expected, there are no major differences across all met-
rics except for smoothness values 1, which are better (lower)
for the B-spline compared to the sparse waypoint representa-
tion. To better grasp the difference visually, fig. 12 shows the
distribution of smoothness values obtained with MPD across
all contexts and tasks. The waypoint representation consis-
tently leads to worse smoothness. Figure 13 shows a visual
comparison in the EnvSimple2D-RobotPointMass2D tasks.

B-sp
lin

e

nb=16
B-sp

lin
e

nb=32
B-sp

lin
e

nb=64

Wayp
oints

H=128

0.00

0.05

0.10

0.15

0.20

Tr
aj

ec
to

ry
 s

am
pl

in
g

tim
e

[s
]

0.083 0.090

0.110

0.191

Fig. 14. Computation times for
denoising a batch of 1000 trajecto-
ries with B-splines and dense Way-
points using H = 128 and d = 7
with 15 steps of DDIM.

The figures show that even
though the waypoint represen-
tation can generate valid trajec-
tories, they are not smooth, as
can be seen in the straighter
path in the environment plot
and in the velocity and acceler-
ation time profiles. These types
of trajectories are harder for a
robot controller to follow and
can lead to jerky movements.

A benefit of B-splines in
comparison to using a dense
trajectory is the faster generation time, as the denoising
function processes inputs with lower dimensions. To generate
trajectories with H points, we can sample from a model that
outputs this trajectory size, or we can sample nb < H control
points of a B-spline, and then interpolate the trajectory to
H using eq. (19). Figure 14 shows the computation times
when generating a batch of trajectories with B-splines for an
increasing number of control points, resulting from sampling
the diffusion model and interpolating with eq. (19), and sam-
pling waypoint trajectories with H = 128. We consider only
denoising times and interpolation (whose time is minimal),
since the computation of costs/gradients only depends on
the number of dense points H , and is the same for B-
splines or dense waypoint representations. The results show
the computational benefit of performing diffusion with lower-
dimensional representations, instead of dense trajectories.

1Smoothness is measured as the sum of accelerations along the trajectory.

TABLE I
PERFORMANCE METRICS FOR A REAL-WORLD MOTION PLANNING TASK

IN THE ENVWAREHOUSE-ROBOTPANDA ENVIRONMENT WITH
ADDITIONAL OBJECTS USING DIFFUSION-BASED MODELS.

Algorithms Success rate [%] Fraction valid [%] Diversity
Dprior 0.0 − −
Dprior+Cost 100.0 37.0 27.95
MPD 100.0 78.0 59.50

Fig. 15. (Top) Human demonstrations via kinesthetic teaching for a pick-and-
place task in the EnvWarehouse-RobotPanda environment. The end-effector
trajectories are depicted in orange. (Bottom) Overlay of several demonstra-
tions. The robot configurations are shown at the end of the demonstration.

G. Learning and Adapting from Human Demonstrations

Learning the prior distribution on trajectories is agnostic to
the expert demonstrations. Previously, we assumed that trajec-
tories would be generated by a sampling-based path planner.
However, in real-world tasks, it is sometimes desirable and
easier for a human to provide demonstrations via kinesthetic
teaching of what movement they would like the robot to
execute. Therefore, to answer Q5, in this experiment, we learn
the trajectory distribution directly from human demonstrations,
showing that MPD can be used in this scenario as well. Using
the EnvWarehouse-RobotPanda environment, we consider the
task of moving one item (a tea box) from several locations in
the small to the big shelf and letting a user perform multiple
demonstrations from random start and goal poses by moving
the robot in gravity compensation with kinesthetic teaching
from regions on the small shelf to the big shelf, generating
approximately 100 trajectories. These are augmented using
small noise values to perform a total of approximately 4k
trajectories. Examples of human-demonstrated trajectories are
shown in fig. 15. The diffusion prior model is then trained on
joint space trajectories similarly and with the same hyperpa-
rameters as the simulation experiments.

For these experiments, we only consider diffusion-based
methods. We tested MPD by placing additional objects in
the scene (cereal and tea boxes) (see fig. 16b), and computed
the environment’s signed distance function using the updated
object poses, estimated with a marker-based system. For
inference, we use the same hyperparameters as the simulation
experiments to generate trajectories from the current robot’s
joint position to a desired end-effector goal pose, which we
assume to be determined by a higher-level task planner.

The relevant metrics and results across different contexts
are found in table I. The diffusion prior fails to obtain any
collision-free trajectory since the prior trajectory distribution

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 17

(a) Diffusion prior (b) MPD

Fig. 16. (a) As the demonstrations did not include the objects placed on the
table, the diffusion prior failed to obtain a collision-free trajectory and crashed
against the obstacle. (b) By using the collision-avoidance cost during posterior
sampling, MPD solutions can stay close to the human demonstrations (see
fig. 15) while avoiding collisions with the obstacles and reaching the desired
end-effector pose.

passes through the objects, as shown in an example in fig. 16a.
Both Dprior+Cost and MPD achieved a 100% success rate
while finding different modes for solving the task. Figure 16b
shows two valid trajectories obtained with MPD after placing
the additional objects in different locations. These trajectories
are collision-free and close to the demonstrations from fig. 15.

V. LIMITATIONS AND FUTURE WORK

In this section, we present some limitations of MPD and
leave proposals for future work.

To incorporate first-order gradients while sampling from the
posterior distribution, we use the approach from classifier-
guided diffusion. Instead, we can use a projection step at each
denoising step, such that the sample lies on some manifold
(for instance, ensuring safety constraints) [112]. However, the
projection can be computationally expensive.

In this work, we kept the trajectory duration fixed, since
optimizing it during the denoising process is not trivial, as
the phase-time derivative would constantly change. Thus, the
joint velocity and acceleration limits are not constant in phase
space. A research direction would be to optimize the trajectory
duration, possibly using a separate B-spline curve to represent
the phase-time derivative from eq. (23) [93].

The current inference speed highly depends on the current
Python implementation. One common appointed disadvantage
of diffusion models is that they are slow to sample due to the
number of denoising steps. However, in our problem, much
computation time is used for the cost function gradients. Even
though single-cost computation is not slow (done at ≈ 100Hz)
and parallelizable, the costs must be computed sequentially
due to the Python GIL. Using other programming frameworks,
such as JAX [113], which uses JIT compilation, might be an
alternative to improve speed further.

We considered environments that do not undergo major
structural changes. These are common across several scenar-
ios, such as warehouses, where shelves are not constantly
moved, but new obstacles can appear. This work can be
extended with an additional context variable that encodes
the current environment. However, for proper generalization,
this would require a large amount of data to be collected
to cover a large possibility of arrangements across many
environments [73]. Instead of generalizing, our work focuses
on specializing in a single environment (e.g., as in [114]) and
showing the properties of diffusion for motion planning.

VI. CONCLUSION

In this article, we proposed Motion Planning Diffusion
(MPD), an algorithm that uses diffusion for learning-based
motion planning tasks. A novelty in our approach is to
parametrize the trajectory using B-spline coefficients and
model the denoising network in this weight space. Com-
pared to a waypoint representation, using the same number
of coefficients, this parametrization ensures smoothness and
processing of smaller inputs. During training, the diffusion
model learns a distribution over control points obtained by
fitting a B-spline to paths obtained from a sampling-based
planner or human demonstrations. At inference time, given
a motion planning cost function to optimize, which includes
avoiding object collisions, promoting joint limits, and reaching
an end-effector goal pose, we propose using planning-as-
inference to obtain a distribution of trajectories that balances
the prior distribution and the cost likelihood. We do this by
sampling the denoising posterior distribution using cost-guided
diffusion. Therefore, the generated samples are strongly biased
toward prior solutions, which are more useful than a uniformed
prior, such as a straight-line trajectory in configuration space.
To show generalization, we add additional objects to the
environments used during training, leading to adaptation to
new environments.

Our experimental results show that diffusion models are
desirable priors for encoding trajectory distributions because
they model multimodality quite well, and blending sampling
and optimization is beneficial in generating collision-free
trajectories. We empirically show and provide intuition on why
sampling from the posterior is beneficial compared to sampling
from the prior and then optimize the cost function using those
samples as initialization. Along with learning from paths gen-
erated in simulation, we also learn a real-world pick-and-place
task from human trajectory demonstrations via kinesthetic
teaching. Across all simulated and real-world tasks, MPD
either matches or surpasses the evaluated baselines, showing
it can generate a higher percentage of valid trajectories while
keeping a higher diversity in the generated samples.

ACKNOWLEDGMENTS

This work was funded by the German Federal Ministry
of Education and Research projects IKIDA (01IS20045)
and Software Campus project ROBOSTRUCT (01S23067),
and by the German Research Foundation project MET-
RIC4IMITATION (PE 2315/11-1) and supported by the Foun-
dation for Polish Science (FNP).

APPENDIX A
HYPERPARAMETERS TRAINING

Table II shows the hyperparameters used for training the
diffusion model in each task. We generate one trajectory per
context (start and goal configuration), so the dataset size equals
the total number of contexts and trajectories. The number of
control points is task-dependent and chosen such that after
fitting a 5th order B-spline, we obtain over 99% of collision-
free paths with a minimal collision rate. The U-Net input dim
is the number of dimensions the control points are projected

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 18

TABLE II
HYPERPARAMETERS FOR TRAINING MPD.

Task Dataset B-spline UNet UNet dim Context Batch Optimization
size control points input dim multiplier out dim size steps

EnvSimple2D-RobotPointMass2D 10k 22 32 (1, 2, 4) 32 128 2M
EnvNarrowPassageDense2D-RobotPointMass2D 10k 30 32 (1, 2, 4) 32 128 2M
EnvPlanar2Link-RobotPlanar2Link 10k 22 32 (1, 2, 4) 32 128 2M
EnvPlanar4Link-RobotPlanar4Link 100k 22 32 (1, 2, 4, 8) 128 512 3M
EnvSpheres3D-RobotPanda 1M 30 32 (1, 2, 4, 8) 128 512 3M
EnvWarehouse-RobotPanda 500k 22 32 (1, 2, 4, 8) 128 512 3M

at the network input. The number of entries in the U-Net dim
multiplier is the U-Net depth (layers) (3 or 4, depending on the
task), while the numbers represent the channels in each layer
of the U-Net, which are multiplied by the input dimension.
Context out dim is context network output size. We use a fixed
number of N = 100 diffusion steps for all tasks. The context
and the denoising networks’ parameters are optimized using
mini-batch gradient descent with the Adam optimizer [108]
and a learning rate 3× 10−4. The 2D models took approxi-
mately 12 hours to train, and the more complex ones 24 hours
(these can be improved by early stopping). Large batch sizes
are beneficial when training diffusion because if the dataset
has D points, the model is trained for O optimization steps
with a batch size B, then each data point should be seen
roughly OB/D times (approximately the number of epochs).
The diffusion loss function eq. (7) includes an expectation over
the N diffusion time steps. Therefore, the pair of data (control
points, diffusion step) is roughly seen OB/(DN) times, which
motivates using a larger batch size and a larger number of
optimization steps than other generative models. The CVAE
baseline model is trained with the same hyperparameters.

APPENDIX B
HYPERPARAMETERS INFERENCE

TABLE III
MOTION PLANNING COST WEIGHTS (EQ. (2)).

Costs Collision Joint limits Task Velocity Acceleration
Weights 0.9 0.5 0.5 0.2 0.2

We use DDIM for sampling from the diffusion model with
15 steps and a quadratic noise schedule to focus more time
steps in lower noise regions. Cost guidance is activated at the
last icost = 3 steps of denoising, the number of intermediate
gradient steps is set to M = 4, and λprior = 0.25 (see
algorithm 2), amounting to 12 cost gradient steps. The gradient
weight is γ = 1.0 and δ = 0.15 (note that the update is done
in the unit-normalized control points space). We found that
good values for icost to be approximately 1/3 (or less) of the
total denoising steps, and λprior in [0.25, 0.5]. M and icost are a
tradeoff between using more cost guidance vs. more denoising
steps from the prior. If used for sampling within the training
environments (without additional objects), M can be lowered.
The cost weights reflect the emphasis put on each cost and are
task-dependent, but not algorithm-dependent. These are shown
in table III. The trajectory is interpolated to 128 points using
a B-spline or waypoint parametrization to evaluate the costs
and compute gradients on the dense trajectory representation.

We did not vary the task duration and left its optimization for
future work. Therefore, in section IV-D we use 10s (to report
collision-free results), and 5s for the experiment in fig. 9 (to
show the effect of joint limits costs). In the real-world tasks,
we kept the duration at 6s to safely operate the robot.

REFERENCES

[1] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[2] N. Ratliff, M. Zucker, et al., “Chomp: Gradient optimization tech-
niques for efficient motion planning,” in IEEE International Confer-
ence on Robotics and Automation, 2009.

[3] M. Mukadam, J. Dong, et al., “Continuous-time gaussian process
motion planning via probabilistic inference,” Int. J. Robotics Res.,
vol. 37, no. 11, 2018.

[4] J. Schulman, J. Ho, et al., “Finding locally optimal, collision-free
trajectories with sequential convex optimization,” in Robotics: Science
and Systems IX, 2013.

[5] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in IEEE ICRA, 2000.

[6] J. E. Leu, G. Zhang, et al., “Efficient robot motion planning via
sampling and optimization,” in 2021 American Control Conference,
ACC 2021, New Orleans, LA, USA, May 25-28, 2021, IEEE, 2021.

[7] A. D. Dragan, G. J. Gordon, et al., “Learning from experience in
manipulation planning: Setting the right goals,” in Robotics Research
: The 15th International Symposium ISRR, H. I. Christensen and O.
Khatib, Eds. Cham: Springer International Publishing, 2017.

[8] T. S. Lembono, “Memory of motion for initializing optimization in
robotics,” en, Ph.D. dissertation, EPFL, Lausanne, 2022.

[9] T. S. Lembono, A. Paolillo, et al., “Memory of motion for warm-
starting trajectory optimization,” IEEE Robotics Autom. Lett., vol. 5,
no. 2, 2020.

[10] D. Koert, G. Maeda, et al., “Demonstration based trajectory optimiza-
tion for generalizable robot motions,” in IEEE-RAS Humanoids, 2016.

[11] M. A. Rana, M. Mukadam, et al., “Towards robust skill generalization:
Unifying learning from demonstration and motion planning,” in CoRL,
PMLR, 2017.

[12] K. P. Murphy, Probabilistic Machine Learning: An introduction. MIT
Press, 2022.

[13] O. Arenz, M. Zhong, et al., “Efficient gradient-free variational infer-
ence using policy search,” in Proceedings of the 35th International
Conference on Machine Learning, vol. 80, PMLR, 2018.

[14] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
2nd International Conference on Learning Representations, 2014.

[15] I. Goodfellow, J. Pouget-Abadie, et al., “Generative adversarial nets,”
in Advances in Neural Information Processing Systems, vol. 27,
Curran Associates, Inc., 2014.

[16] Y. Lecun, S. Chopra, et al., “A tutorial on energy-based learning,”
English (US), in Predicting structured data. MIT Press, 2006.

[17] J. Ho, A. Jain, et al., “Denoising diffusion probabilistic models,” in
NeurIPS, Curran Associates Inc., 2020.

[18] Y. Song, J. Sohl-Dickstein, et al., “Score-based generative modeling
through stochastic differential equations,” in International Conference
on Learning Representations, 2021.

[19] M. Arjovsky, S. Chintala, et al., “Wasserstein generative adversarial
networks,” in Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, vol. 70, PMLR, 2017.

[20] P. Florence, C. Lynch, et al., “Implicit behavioral cloning,” Conference
on Robot Learning (CoRL), 2021.

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 19

[21] R. Bayat, “A study on sample diversity in generative models: Gans
vs. diffusion models,” in The First Tiny Papers Track at ICLR,
OpenReview.net, 2023.

[22] T. Osa, “Multimodal trajectory optimization for motion planning,” Int.
J. Robotics Res., vol. 39, no. 8, 2020.

[23] P. Dhariwal and A. Q. Nichol, “Diffusion models beat gans on image
synthesis,” in NeurIPS, 2021.

[24] J. Carvalho, A. T. Le, et al., “Motion planning diffusion: Learning
and planning of robot motions with diffusion models,” in IROS, 2023.

[25] L. Kavraki, P. Svestka, et al., “Probabilistic roadmaps for path plan-
ning in high-dimensional configuration spaces,” IEEE Transactions on
Robotics and Automation, 1996.

[26] S. M. Lavalle, Rapidly-exploring random trees: A new tool for path
planning, 1998.

[27] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, 2011.

[28] J. D. Gammell, S. S. Srinivasa, et al., “Informed rrt*: Optimal
sampling-based path planning focused via direct sampling of an
admissible ellipsoidal heuristic,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2014.

[29] J. D. Gammell, T. D. Barfoot, et al., “Batch informed trees (bit*):
Informed asymptotically optimal anytime search,” The International
Journal of Robotics Research, vol. 39, no. 5, 2020.

[30] M. P. Strub and J. D. Gammell, “Adaptively informed trees (ait*): Fast
asymptotically optimal path planning through adaptive heuristics,” in
2020 IEEE International Conference on Robotics and Automation,
ICRA 2020, Paris, France, May 31 - August 31, 2020, IEEE, 2020.

[31] A. A. Ravankar, A. A. Ravankar, et al., “Path smoothing techniques
in robot navigation: State-of-the-art, current and future challenges,”
Sensors, vol. 18, no. 9, 2018.

[32] E. Theodorou, J. Buchli, et al., “A generalized path integral control
approach to reinforcement learning,” J. Mach. Learn. Res., vol. 11,
Dec. 2010.

[33] M. Kalakrishnan, S. Chitta, et al., “Stomp: Stochastic trajectory
optimization for motion planning,” in IEEE International Conference
on Robotics and Automation, 2011.

[34] J. Urain, A. Le, et al., “Learning implicit priors for motion optimiza-
tion,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2022.

[35] L. Petrović, I. Marković, et al., “Mixtures of gaussian processes for
robot motion planning using stochastic trajectory optimization,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2022.

[36] A. T. Le, G. Chalvatzaki, et al., “Accelerating motion planning via
optimal transport,” in Advances in Neural Information Processing
Systems, 2023.

[37] M. Stolle and C. G. Atkeson, “Policies based on trajectory li-
braries,” in Proceedings of the 2006 IEEE International Conference
on Robotics and Automation, IEEE, 2006.

[38] C. Liu and C. G. Atkeson, “Standing balance control using a trajectory
library,” in 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IEEE, 2009.

[39] N. Mansard, A. DelPrete, et al., “Using a memory of motion to
efficiently warm-start a nonlinear predictive controller,” in 2018 IEEE
International Conference on Robotics and Automation, ICRA 2018,
Brisbane, Australia, May 21-25, 2018, IEEE, 2018.

[40] D. Forte, A. Gams, et al., “On-line motion synthesis and adaptation
using a trajectory database,” Robotics Auton. Syst., vol. 60, no. 10,
2012.

[41] R. Lampariello, D. Nguyen-Tuong, et al., “Trajectory planning for
optimal robot catching in real-time,” in IEEE International Conference
on Robotics and Automation, IEEE, 2011.

[42] T. Power and D. Berenson, “Variational inference mpc using normal-
izing flows and out-of-distribution projection,” Robotics: Science and
Systems 2022., 2022.

[43] T. Osa, J. Pajarinen, et al., “An algorithmic perspective on imitation
learning,” Found. Trends Robotics, vol. 7, no. 1-2, 2018.

[44] J. Peters, K. Mülling, et al., “Relative entropy policy search,” in AAAI,
AAAI Press, 2010.

[45] A. Graikos, N. Malkin, et al., “Diffusion models as plug-and-play
priors,” in Advances in Neural Information Processing Systems, 2022.

[46] I. Kapelyukh, V. Vosylius, et al., Dall-e-bot: Introducing web-scale
diffusion models to robotics, 2022.

[47] A. Ramesh et al., Hierarchical text-conditional image generation with
clip latents, 2022.

[48] W. Liu, T. Hermans, et al., Structdiffusion: Object-centric diffusion
for semantic rearrangement of novel objects, 2022.

[49] J. Urain, N. Funk, et al., “Se(3)-diffusionfields: Learning smooth cost
functions for joint grasp and motion optimization through diffusion,”
in IEEE ICRA, 2023.

[50] Z. Weng, H. Lu, et al., “Dexdiffuser: Generating dexterous grasps
with diffusion models,” IEEE Robotics and Automation Letters, 2024.

[51] Z. Zhang, L. Zhou, et al., “Dexgrasp-diffusion: Diffusion-based uni-
fied functional grasp synthesis pipeline for multi-dexterous robotic
hands,” CoRR, vol. abs/2407.09899, 2024.

[52] M. Janner, Y. Du, et al., “Planning with diffusion for flexible behavior
synthesis,” in ICML, 2022.

[53] C. Chi, S. Feng, et al., “Diffusion policy: Visuomotor policy learning
via action diffusion,” in Robotics: Science and Systems XIX, Daegu,
Republic of Korea, July 10-14, 2023, 2023.

[54] M. Reuss, M. Li, et al., “Goal-conditioned imitation learning using
score-based diffusion policies,” in Robotics: Science and Systems XIX,
Daegu, Republic of Korea, July 10-14, 2023, 2023.

[55] Y. Ze, G. Zhang, et al., “3d diffusion policy: Generalizable visuomotor
policy learning via simple 3d representations,” in Proceedings of
Robotics: Science and Systems (RSS), 2024.

[56] T.-W. Ke, N. Gkanatsios, et al., “3d diffuser actor: Policy diffusion
with 3d scene representations,” in Conference on Robot Learning,
PMLR, 2025, pp. 1949–1974.

[57] Q. Feng, H. Li, et al., “Language-guided object-centric diffusion
policy for collision-aware robotic manipulation,” in International
Conference on Robotics and Automation (ICRA), 2025.

[58] C. Hao, K. Lin, et al., “Language-guided manipulation with diffusion
policies and constrained inpainting,” CoRR, vol. abs/2406.09767,
2024.

[59] K. Mizuta and K. Leung, “Cobl-diffusion: Diffusion-based conditional
robot planning in dynamic environments using control barrier and
lyapunov functions,” CoRR, vol. abs/2406.05309, 2024.

[60] D. Wang, S. Hart, et al., “Equivariant diffusion policy,” in Conference
on Robot Learning, PMLR, 2025, pp. 48–69.

[61] J. Yang, Z. Cao, et al., “Equibot: Sim (3)-equivariant diffusion policy
for generalizable and data efficient learning,” in CoRL 2024 Workshop
on Whole-body Control and Bimanual Manipulation: Applications in
Humanoids and Beyond.

[62] Z. Huang, Y. Lin, et al., “Subgoal diffuser: Coarse-to-fine subgoal
generation to guide model predictive control for robot manipulation,”
in IEEE International Conference on Robotics and Automation, IEEE,
2024.

[63] P. M. Scheikl, N. Schreiber, et al., “Movement primitive diffusion:
Learning gentle robotic manipulation of deformable objects,” IEEE
Robotics Autom. Lett., vol. 9, no. 6, 2024.

[64] G. Li, Z. Jin, et al., “Prodmp: A unified perspective on dynamic
and probabilistic movement primitives,” IEEE Robotics Autom. Lett.,
vol. 8, no. 4, 2023.

[65] K. Saha, V. R. Mandadi, et al., “EDMP: ensemble-of-costs-guided
diffusion for motion planning,” in IEEE International Conference on
Robotics and Automation, IEEE, 2024.

[66] T. Power, R. Soltani-Zarrin, et al., “Sampling constrained trajectories
using composable diffusion models,” in IROS 2023 Workshop on
Differentiable Probabilistic Robotics: Emerging Perspectives on Robot
Learning, 2023.

[67] W. Xiao, T.-H. Wang, et al., “Safediffuser: Safe planning with diffu-
sion probabilistic models,” in The Thirteenth International Conference
on Learning Representations.

[68] A. Dastider, H. Fang, et al., “Apex: Ambidextrous dual-arm robotic
manipulation using collision-free generative diffusion models,” in
2024 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2024, pp. 9526–9533.

[69] J. Carvalho, M. Baierl, et al., “Conditioned score-based models
for learning collision-free trajectory generation,” in NeurIPS 2022
Workshop on Score-Based Methods, 2022.

[70] Y. Luo, C. Sun, et al., “Potential based diffusion motion planning,”
in International Conference on Machine Learning, OpenReview.net,
2024.

[71] S. Huang, Z. Wang, et al., Diffusion-based generation, optimization,
and planning in 3d scenes, 2023.

[72] H. Huang, B. Sundaralingam, et al., “Diffusionseeder: Seeding motion
optimization with diffusion for rapid motion planning,” in 8th Annual
Conference on Robot Learning, 2024.

[73] A. Fishman, A. Murali, et al., “Motion policy networks,” in Proceed-
ings of the 6th Conference on Robot Learning (CoRL), 2022.

[74] S. Teng, X. Hu, et al., “Motion planning for autonomous driving:
The state of the art and future perspectives,” IEEE Transactions on
Intelligent Vehicles, vol. 8, no. 6, 2023.

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 20

[75] J. Lu, K. Wong, et al., “Scenecontrol: Diffusion for controllable traffic
scene generation,” in IEEE International Conference on Robotics and
Automation, IEEE, 2024.

[76] K. Kondo, A. Tagliabue, et al., “CGD: constraint-guided diffusion
policies for UAV trajectory planning,” CoRR, vol. abs/2405.01758,
2024.

[77] B. Yang, H. Su, et al., “Diffusion-es: Gradient-free planning with
diffusion for autonomous and instruction-guided driving,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2024.

[78] J. Liu, M. Stamatopoulou, et al., “Dipper: Diffusion-based 2d path
planner applied on legged robots,” in IEEE International Conference
on Robotics and Automation, IEEE, 2024.

[79] M. Stamatopoulou, J. Liu, et al., “Dippest: Diffusion-based path
planner for synthesizing trajectories applied on quadruped robots,” in
2024 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2024, pp. 7787–7793.

[80] J. Urain, A. Mandlekar, et al., Deep generative models in robotics: A
survey on learning from multimodal demonstrations, 2024.

[81] M. Zucker, N. Ratliff, et al., “Chomp: Covariant hamiltonian opti-
mization for motion planning,” The International Journal of Robotics
Research, vol. 32, no. 9-10, 2013.

[82] H. Attias, “Planning by probabilistic inference,” in Proceedings of the
Ninth International Workshop on Artificial Intelligence and Statistics,
vol. R4, PMLR, 2003.

[83] M. Toussaint, “Robot trajectory optimization using approximate in-
ference,” in ICML, Association for Computing Machinery, 2009.

[84] H. Yu and Y. Chen, “A gaussian variational inference approach to
motion planning,” IEEE Robotics Autom. Lett., vol. 8, no. 5, 2023.

[85] Y. Song and S. Ermon, “Generative modeling by estimating gradients
of the data distribution,” in NeurIPS, 2019.

[86] A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion proba-
bilistic models,” in ICML, PMLR, 2021.

[87] J. Sohl-Dickstein, E. A. Weiss, et al., “Deep unsupervised learning
using nonequilibrium thermodynamics,” in ICML, JMLR.org, 2015.

[88] C. Luo, Understanding diffusion models: A unified perspective, 2022.
[89] A. Ajay, Y. Du, et al., “Is conditional generative modeling all you

need for decision making?” In The Eleventh International Conference
on Learning Representations, OpenReview.net, 2023.

[90] J. Ma, T. Hu, et al., “Elucidating the design space of classifier-
guided diffusion generation,” in International Conference on Learning
Representations, OpenReview.net, 2024.

[91] Z. Zhong, D. Rempe, et al., “Guided conditional diffusion for control-
lable traffic simulation,” in IEEE International Conference on Robotics
and Automation, IEEE, 2023.

[92] J. Song, C. Meng, et al., “Denoising diffusion implicit models,”
in International Conference on Learning Representations, OpenRe-
view.net, 2021.

[93] P. Kicki, P. Liu, et al., “Fast kinodynamic planning on the constraint
manifold with deep neural networks,” IEEE Trans. Robotics, vol. 40,
2024.

[94] C. de Boor, “Package for calculating with b-splines,” SIAM Journal
on Numerical Analysis, vol. 14, no. 3, 1977.

[95] C.-K. Shene, Derivatives of a B-spline Curve — pages.mtu.edu, https:
/ / pages . mtu . edu / ∼shene / COURSES / cs3621 / NOTES / spline / B -
spline/bspline-derv.html, [Accessed 24-09-2024].

[96] P. Kicki, D. Tateo, et al., “Bridging the gap between learning-to-plan,
motion primitives and safe reinforcement learning,” in 8th Annual
Conference on Robot Learning, 2024.

[97] L. A. Piegl and W. Tiller, The NURBS Book. Springer, 1995.
[98] A. Paraschos, C. Daniel, et al., “Using probabilistic movement prim-

itives in robotics,” Auton. Robots, vol. 42, no. 3, 2018.
[99] W. Tiller, “A unified and elegant derivation of bézier, b-spline, and

other CAGD concepts: Bézier and b-spline techniques,” Comput.
Aided Des., vol. 36, no. 1, 2004.

[100] E. Perez, F. Strub, et al., “Film: Visual reasoning with a general condi-
tioning layer,” in Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, AAAI Press, 2018.

[101] A. Paszke et al., “Pytorch: An imperative style, high-performance
deep learning library,” in NeurIPS, Curran Associates, Inc., 2019.

[102] L. Pineda, T. Fan, et al., “Theseus: A library for differentiable non-
linear optimization,” in Advances in Neural Information Processing
Systems, 2022.

[103] J. Sola, J. Deray, et al., “A micro lie theory for state estimation in
robotics,” arXiv preprint arXiv:1812.01537, 2018.

[104] A. Millane, H. Oleynikova, et al., “Nvblox: Gpu-accelerated in-
cremental signed distance field mapping,” in IEEE International
Conference on Robotics and Automation, IEEE, 2024.

[105] I. A. Sucan, M. Moll, et al., “The open motion planning library,”
IEEE Robotics Autom. Mag., vol. 19, no. 4, 2012.

[106] E. Coumans, “Bullet physics simulation,” in Special Interest Group
on Computer Graphics and Interactive Techniques Conference, SIG-
GRAPH, ACM, 2015.

[107] P. Virtanen, R. Gommers, et al., “Scipy 1.0: Fundamental algorithms
for scientific computing in python,” Nature methods, vol. 17, no. 3,
pp. 261–272, 2020.

[108] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in International Conference on Learning Representations, 2015.

[109] K. Sohn, H. Lee, et al., “Learning structured output representation
using deep conditional generative models,” in Advances in Neural
Information Processing Systems, 2015.

[110] D. Friedman and A. B. Dieng, “The vendi score: A diversity evaluation
metric for machine learning,” Trans. Mach. Learn. Res., 2023.

[111] A. Li, Z. Ding, et al., Diffusolve: Diffusion-based solver for non-
convex trajectory optimization, 2024.

[112] J. K. Christopher, S. Baek, et al., “Constrained synthesis with pro-
jected diffusion models,” in The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

[113] J. Bradbury, R. Frostig, et al., JAX: Composable transformations of
Python+NumPy programs, version 0.3.13, 2018.

[114] M. J. Bency, A. H. Qureshi, et al., “Neural path planning: Fixed
time, near-optimal path generation via oracle imitation,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, IEEE,
2019.

BIOGRAPHIES

João Carvalho is a Postdoctoral Researcher at the
Intelligent Autonomous Systems Lab of the Techni-
cal University of Darmstadt, where he obtained his
Ph.D. in January 2025. He previously obtained his
M.Sc. degree in Computer Science from the Univer-
sity of Freiburg. His research interests are centered
around learning approaches for robot manipulation,
from generative models for robot motion planning,
imitation learning, and grasping.

An Thai Le is a Ph.D. candidate at the Intelligent
Autonomous Systems Lab of the Technical Univer-
sity of Darmstadt. He obtained his M.Sc. degree
from the University of Stuttgart (Germany). His
research interests are related to scaling planning
methods to long-horizon, high-dimensional state-
space, number of plans, and number of agents, using
batch planning methods.

Piotr Kicki is a post-doc in the robotics team at
IDEAS and an assistant professor at the Institute
of Robotics and Machine Intelligence at Poznan
University of Technology. He received his B.Eng.
and M.Sc. degrees in automatic control and robotics
from Poznan University of Technology, Poland in
2018 and 2019, respectively. He completed his Ph.D.
from the same university in 2024. His primary
research interests center on the application of ma-
chine learning to improve robot motion planning and
control.

https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-derv.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-derv.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-derv.html

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 21

Dorothea Koert is an Independent Research Group
Leader of the interdisciplinary BMBF junior re-
search group IKIDA, which started in October 2020.
She completed her Ph.D. from the Technical Uni-
versity of Darmstadt in February 2020. In 2019
she was awarded the AI-Newcomer award by the
German Society for Computer Science (GI). During
her Ph.D. she has worked on imitation learning and
interactive reinforcement learning, for autonomous
and semi-autonomous acquisition of motion skill
libraries in human-robot collaboration.

Jan Peters is a full professor (W3) for Intelligent
Autonomous Systems at the Computer Science De-
partment of the Technical University of Darmstadt,
department head of the research department on
Systems AI for Robot Learning (SAIROL) at the
German Research Center for Artificial Intelligence,
and a founding research faculty member of The
Hessian Center for Artificial Intelligence. He has
received the Dick Volz Best 2007 US Ph.D. Thesis
Runner-Up Award, RSS - Early Career Spotlight,
INNS Young Investigator Award, and IEEE Robotics

& Automation Society’s Early Career Award, as well as numerous best paper
awards. He received an ERC Starting Grant and was appointed an IEEE fellow,
AIAA fellow, and ELLIS fellow.

	Introduction
	Related Work
	Path and motion planning
	Learning priors for optimization-based motion planning
	Diffusion models in robotics and motion planning

	Robot Motion Planning with Diffusion Models
	Optimization-based Motion Planning
	Motion Planning as Inference
	Diffusion Models for Trajectory Priors
	Blending Sampling and Optimization
	Trajectory Parametrization
	Implementation Details
	Motion Planning Costs

	Experimental Evaluation
	Environments, Tasks and Datasets
	Baselines
	Metrics
	General Results in Simulation
	MPD vs. Diffusion Prior and Cost Optimization
	Impact of the B-spline Parametrization
	Learning and Adapting from Human Demonstrations

	Limitations and Future Work
	Conclusion
	Appendix A: Hyperparameters Training
	Appendix B: Hyperparameters Inference
	Biographies
	João Carvalho
	An Thai Le
	Piotr Kicki
	Dorothea Koert
	Jan Peters

