
1

Fast and Robust
Visuomotor Riemannian Flow Matching Policy

Haoran Ding1, Noémie Jaquier2, Jan Peters3, Leonel Rozo1

Abstract—Diffusion-based visuomotor policies excel at learning
complex robotic tasks by effectively combining visual data
with high-dimensional, multi-modal action distributions. How-
ever, diffusion models often suffer from slow inference due to
costly denoising processes or require complex sequential training
arising from recent distilling approaches. This paper introduces
Riemannian Flow Matching Policy (RFMP), a model that inherits
the easy training and fast inference capabilities of flow matching
(FM). Moreover, RFMP inherently incorporates geometric con-
straints commonly found in realistic robotic applications, as the
robot state resides on a Riemannian manifold. To enhance the
robustness of RFMP, we propose Stable RFMP (SRFMP), which
leverages LaSalle’s invariance principle to equip the dynamics
of FM with stability to the support of a target Riemannian
distribution. Rigorous evaluation on ten simulated and real-
world tasks show that RFMP successfully learns and synthesizes
complex sensorimotor policies on Euclidean and Riemannian
spaces with efficient training and inference phases, outperforming
Diffusion Policies and Consistency Policies.

Index Terms—Learning from demonstrations; Learning and
adaptive systems; Deep learning in robotics and automation;
Visuomotor policies; Riemannian flow matching

I. INTRODUCTION

DEEP generative models are revolutionizing robot skill
learning due to their ability to handle high-dimensional

multimodal action distributions and interface them with per-
ception networks, enabling robots to learn sophisticated senso-
rimotor policies [1]. In particular, diffusion-based models such
as diffusion policies (DP) [2]–[7] exhibit exceptional perfor-
mance in imitation learning for a large variety of simulated
and real-world robotic tasks, demonstrating a superior ability
to learn multimodal action distributions compared to previous
behavior cloning methods [8]–[10]. Nevertheless, these models
are characterized by an expensive inference process as they
often require to solve a stochastic differential equation, thus
hindering their use in certain robotic settings [11], e.g., for
highly reactive motion policies.

For instance, DP [2], typically based on a Denoising
Diffusion Probabilistic Model (DDPM) [12], requires ap-
proximately 100 denoising steps to generate an action. This
translates to roughly 1 second on a standard GPU. Even
faster approaches such as Denoising Diffusion Implicit Models

1Bosch Center for Artificial Intelligence. Renningen, Germany.
leonel.rozo@de.bosch.com

2Division of Robotics, Perception, and Learning, KTH Royal Institute of
Technology, Stockholm, Sweden. jaquier@kth.se

3 Computer Science Department of the Technische Universität Darmstadt,
Darmstadt, Germany. peters@ias.tu-darmstadt.de

This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

Fig. 1. Flows of the RFMP (top) and SRFMP (bottom) at times
t = {0.0, 1.0, 1.5}. The policies are learned from pick-and-place demonstra-
tion (black) and conditioned on visual observations. Note that the flow of
SRFMP is stable to the target distribution at t > 1.0, enhancing the policy
robustness and inference time.

(DDIM) [13] still need 10 denoising steps, i.e., 0.1 second,
per action [2]. Consistency policy [3] aims to accelerate the
inference process by training a student model to mimic a DP
teacher with larger denoising steps. Despite providing a more
computationally-efficient inference, the CP training requires
more computational resources and might be unstable due to
the sequential training of the two models. Importantly, training
these models becomes more computationally demanding when
manipulating data with geometric constraints, e.g., robot end-
effector orientations, as the computation of the score function
of the diffusion process is not as simple as in the Euclidean
case [14]. Furthermore, the inference process also incurs
increasing computational complexity.

To overcome these limitations, we propose to learn visuo-
motor robot skills via a Riemannian flow matching policy
(RFMP). Compared to DP, RFMP builds on another kind
of generative model: Flow Matching (FM) [15], [16]. Intu-
itively, FM gradually transforms a simple prior distribution
into a complex target distribution via a vector field, which is
represented by a simple function. The beauty of FM lies in
its simplicity, as the resulting flow, defined by an ordinary
differential equation (ODE), is much easier to train and
much faster to evaluate compared to the stochastic differential
equations of diffusion models. However, as many visuomotor
policies are represented in the robot’s operational space, action
representations must include both end-effector position and
orientation. Thus, the policy must consider that orientations

ar
X

iv
:2

41
2.

10
85

5v
3

 [
cs

.R
O

]
 7

 A
ug

 2
02

5

mailto:leonel.rozo@de.bosch.com
mailto:jaquier@kth.se
mailto:peters@ias.tu-darmstadt.de
https://arxiv.org/abs/2412.10855v3

2

lie on either the S3 hypersphere or the SO(3) Lie group,
depending on the chosen parametrization. To properly handle
such data, we leverage Riemannian flow matching (RFM) [16],
an extension of flow matching that accounts for the geometric
constraints of data lying on Riemannian manifolds. In our
previous work [17], we introduced the idea of leveraging flow
matching in robot imitation learning and presented RFMP,
which capitalizes on the easy training and fast inference of FM
methods to learn and synthesize end-effector pose trajectories.
However, our initial evaluation was limited to simple proof-
of-concept experiments on the LASA dataset [18].

In this paper, we demonstrate the effectiveness of RFMP
to learn complex real-world visuomotor policies and present
a systematic evaluation of the performance of RFMP on both
simulated and real-world manipulation tasks. Moreover, we
propose Stable Riemannian Flow Matching Policy (SRFMP)
to enhance the robustness of RFMP, as RFMP performance
can be sensitive to the ODE integration horizon during in-
ference (see Figures 1 and 2). SRFMP builds on stable
flow matching (SFM) [19], [20], which leverages LaSalle’s
invariance principle [21] to equip the dynamics of FM with
stability to the support of the target distribution. Unlike SFM,
which is limited to Euclidean spaces, SRFMP generalizes this
concept to Riemannian manifolds, guaranteeing the stability
of the RFM dynamics to the support of a Riemannian target
distribution. We systematically evaluate RFMP and SRFMP
across 10 tasks in both simulation and real-world settings,
with policies conditioned on both state and visual observa-
tions. Our experiments demonstrate that RFMP and SRFMP
inherit the advantages from FM models, achieving comparable
performance to DP with fewer evaluation steps (i.e., faster
inference) and significantly shorter training times. Moreover,
under the same training epochs, our methods outperform both
DP and CP. Notably, SRFMP requires fewer ODE steps than
RFMP to achieve an equivalent performance, resulting in even
faster inference times.

In summary, beyond demonstrating the effectiveness of our
early work on simulated and real robotic tasks, the main
contributions of this article are threefold: (1) We introduce
Stable Riemannian Flow Matching (SRFM) as an extension of
SFM [20] to incorporate stability into RFM; (2) We propose
stable Riemannian flow matching policy (SRFMP), which
combines the easy training and fast inference of RFMP with
stability guarantees to a Riemannian target action distribu-
tion; (3) We systematically evaluate both RFMP and SRFMP
across 10 tasks from simulated benchmarks and real settings.
Supplementary material is available on the paper website
https://sites.google.com/view/rfmp.

II. RELATED WORK

As the literature on robot policy learning is vast, we here
focus on approaches that design robot policies based on flow-
based generative models.

Normalizing Flows are arguably the first broadly-used
generative models in robot policy learning [22]. They were
commonly employed as diffeomorphisms for learning stable
dynamical systems in Euclidean spaces [23]–[25], with ex-
tensions to Lie groups [26] and Riemannian manifolds [27],

Fig. 2. RFMP performance when extending inference time beyond t = 1 on
the Euclidean PUSHT and Robomimic SQUARE tasks.

similarly addressed in this paper. The main drawback of
normalizing flows is their slow training, as the associated ODE
needs to be integrated to calculate the model log-likelihood.
Moreover, none of the foregoing works learned sensorimotor
policies based on visual observations via imitation learning.

Diffusion Models [28] recently became state-of-art in
imitation learning due to their ability to learn multi-modal
and high-dimensional action distributions. They have been
primarily employed to learn motion planners [29], and
complex control policies [2], [4], [30]. Recent extensions
use 3D visual representations from sparse point clouds [6],
and employ equivariant networks for learning policies that,
by design, are invariant to changes in scale, rotation, and
translation [7]. However, a major drawback of diffusion
models is their slow inference process. In [2], DP requires 10
to 100 denoising steps, i.e., 0.1 to 1 second on a standard GPU,
to generate each action. Consistency models (CM) [31] arise as
a potential solution to overcome this drawback [3], [32], [33].
CM distills a student model from a pretrained diffusion model
(i.e., a teacher), enabling faster inference by establishing
direct connections between points along the probability path.
Nevertheless, this sequential training process increases the
overall complexity and time of the whole training phase.

Flow Matching [15] essentially trains a normalizing flow by
regressing a conditional vector field instead of maximizing the
likelihood of the model, thus avoiding to simulate the ODE
of the flow. This leads to a significantly simplified training
procedure compared to classical normalizing flows. Moreover,
FM builds on simpler probability transfer paths than diffusion
models, thus facilitating faster inference. Tong et al. [34]
showed that several types of FM models can be obtained
according to the choice of conditional vector field and source
distributions, some of them leading to straighter probability
paths, which ultimately result in faster inference. Rectified
flows [35] is a similar simulation-free approach that designs
the vector field by regressing against straight-line paths, thus
speeding up inference. Note that rectified flows are a special
case of FM, in which a Dirac distribution is associated to
the probability path [34]. Due to their easy training and
fast inference, FM models quickly became one of the de-
facto generative models in machine learning and have been
employed in a plethora of different applications [36]–[41].

In our previous work [17], we proposed to leverage RFM
to learn sensorimotor robot policies represented by end-
effector pose trajectories on Riemannian manifolds. Building
on a similar idea, subsequent works have used FM along
with an equivariant transformer to learn SE(3)-equivariant

https://sites.google.com/view/rfmp

3

policies [42], for multi-support manipulation tasks with a
humanoid robot [43], and for robot imitation learning with
point cloud observations [44]. In this paper, we build
upon our previous work, Riemannian Flow Matching Policy
(RFMP) [17], to enable the learning of complex visuomotor
policies on Riemannian manifolds. Unlike the aforementioned
approaches, our work focuses on providing a fast and robust
RFMP inference process. We achieve this by constructing the
FM vector field using LaSalle’s invariance principle, which
not only enhances inference robustness with stability guaran-
tees but also preserves the easy training and fast inference
capabilities of RFMP.

III. BACKGROUND

In this section, we provide a short background on Rie-
mannian manifolds, and an overview of the flow matching
framework with its extension to Riemannian manifolds.

A. Riemannian Manifolds

A smooth manifold M can be intuitively understood as a
d-dimensional surface that locally, but not globally, resembles
the Euclidean space Rd [45], [46]. The geometric structure
of the manifold is described via the so-called charts, which
are diffeomorphic maps between parts of M and R. The
collection of these charts is called an atlas. The smooth
structure of M allows us to compute derivatives of curves
on the manifolds, which are tangent vectors to M at a
given point x. For each point x ∈ M, the set of tangent
vectors u of all curves that pass through x forms the tangent
space TxM. The tangent space spans a d-dimensional affine
subspace of Rd, where d is the manifold dimension. The col-
lections of all tangent spaces of M forms the tangent bundle
T M =

⋃
x∈M{(x,u)|u ∈ TxM}, which can be thought as

the union of all tangent spaces paired with their corresponding
points on M.

Riemannian manifolds are smooth manifolds equipped with
a smoothly-varying metric g, which is a family of inner
products gx : TxM × TxM → R. The norm associated
with the metric is denoted as ∥v∥gx with v ∈ TxM, and
the distance between two vectors u,v ∈ TxM is defined
as the norm ∥u − v∥gx . With this metric, we can then
define the length of curves on M. The shortest curve on M
connecting any two points x,y ∈ M is called a geodesic.
Intuitively, geodesics can be seen as the generalization of
straight lines to Riemannian manifolds. To operate with Rie-
mannian manifolds, a common way is to exploit its Euclidean
tangent spaces TxM and back-and-forth maps between M
and TxM, i.e., the exponential and logarithmic maps. Specif-
ically, the exponential map Expx(u) : TxM → M maps
a point u on the tangent space of x to a point y ∈ M,
so that the geodesic distance between y = Expx(u) and
x satisfies dg(x,y) = ∥u∥gx . The inverse operation is the
logarithmic map Logx(y) : M → TxM, which projects
a point y ∈ M to the tangent space TxM of x. Finally,
when optimizing functions of manifold-valued parameters, we
need to compute the Riemannian gradient. Specifically, the
Riemannian gradient of a scalar function f : M → R at

x ∈ M is a vector in the tangent space TxM [47], [48]. It
is obtained via the identification Luf(x) = ⟨∇xf(x),u⟩x,
where Luf(x) denotes the directional derivative of f in the
direction u ∈ TxM, and ⟨·, ·⟩x is the Riemannian inner
product on TxM.

B. Flow Matching

Continuous normalizing flows (CNF) [49] form a class
of deep generative models that transform a simple proba-
bility distribution into a more complex one. The continuous
transformation of the samples is parametrized by an ODE,
which describes the flow of the samples over time. Training
CNF is achieved via maximum likelihood estimation, and thus
involves solving (a.k.a. simulating) inverse ODEs, which is
computationally expensive. Instead, flow matching (FM) [15]
is a simulation-free generative model that efficiently trains
CNF by directly mimicking a target vector field.

1) Euclidean Flow Matching: FM [15] reshapes a simple
prior distribution p into a (more complicated) target distribu-
tion q via a probability density path pt that satisfies p0 = p
and p1 = q. The path pt is generated by push-forwarding p0
along a flow ψt as,

pt = [ψt]∗p0, (1)

where the push-forward operator ∗ is defined as,

[ψt]∗p0(x) = p0(ψ
−1
t (x)) det

(
∂ψ−1

t (x)

∂x

)
. (2)

The flow ψt is defined via a vector field ut : [0, 1]× Rd → Rd

by solving the ODE,

dψt(x)

dt
= ut(ψt(x)), with ψ0(x) = x. (3)

Assuming that both the vector field ut(x) and probability
density path pt are known, one can regress a parametrized
vector field vt(x;θ) : [0, 1]×Rd → Rd to some target vector
field ut, which leads to the FM loss function,

ℓFM(θ) = Et,pt(x)∥vt(x;θ)− ut(x)∥22, (4)

where θ are the learnable parameters, t ∼ U [0, 1], and
x ∼ pt(x). However, the loss (4) is intractable since we
actually do not have prior knowledge about ut and pt. Instead,
Lipman et al. [15] proposed to learn a conditional vector field
ut(x|x1) with x1 as a conditioning variable. This conditional
vector field generates the conditional probability density path
pt(x|x1), which is related to the marginal probability path via
pt(x) =

∫
pt(x|x1)q(x1)dx1, with q being the unknown data

distribution. After reparametrization, this leads to the tractable
conditional flow matching (CFM) loss function,

ℓCFM(θ) = Et,q(x1),p(x0)∥vt(xt;θ)− ut(xt|x1)∥22, (5)

where xt = ψt(x0|x1) denotes the conditional flow. Note
that optimizing the CFM loss (5) is equivalent to optimizing
the FM loss (4) as they have identical gradients [15]. The
problem therefore boils down to design a conditional vector
field ut(xt|x1) that generates a probability path pt satisfying
the boundary conditions p0 = p, q = p1. Intuitively, ut(xt|x1)

4

should move a randomly-sampled point at t = 0 to a datapoint
at t = 1. Lipman et al. [15] proposed the Gaussian CFM,
which defines a probability path from a zero-mean normal
distribution to a Gaussian distribution centered at x1 via the
conditional vector field,

ut(xt|x1) = x1 − (1− σ)x0, (6)

which leads to the flow xt = ψt(x0|x1) = (1−(1−σ)t)x0+
tx1. Note that a more general version of CFM is proposed by
Tong et al. [34].

Finally, the inference process of CFM is straightforward
and consists of the following steps: (1) Get a sample from p0;
and (2) Query the learned vector field vt(x;θ) to solve the
ODE (3) with off-the-shelf solvers, e.g., based on the Euler
method [50].

2) Riemannian Flow Matching: In many robotics settings,
data lies on Riemannian manifolds [51], [52]. For example,
various tasks involve the rotation of the robot’s end-effector.
Therefore, the corresponding part of the state representa-
tion lies either on the Riemannian hypersphere S3 or the
SO(3) group, depending on the choice of parametrization. To
guarantee that the FM generative process satisfies manifold
constraints, Chen and Lipman [16] extended CFM to Rieman-
nian manifolds. The Riemannian conditional flow matching
(RCFM) considers that the flow ψt evolves on a Riemannian
manifold M. Thus, for each point x ∈ M, the vector field
associated to the flow ψt at this point lies on the tangent space
of x, i.e., ut(x) ∈ TxM. The RCFM loss function resembles
that of the CFM model but it is computed with respect to the
Riemannian metric gx as follows,

ℓRCFM = Et,q(x1),p(x0)∥vt(xt;θ)− ut(xt|x1)∥2gxt
. (7)

As in the Euclidean case, we need to design the flow ψt,
its corresponding conditional vector field ut(xt|x1), and
choose the base distribution. Following [16], [36], the most
straightforward strategy is to exploit geodesic paths to design
the flow ψt. For simple Riemannian manifolds such as the
hypersphere, the hyperbolic manifold, and some matrix Lie
groups, geodesics can be computed via closed-form solutions.
We can then leverage the geodesic flow given by,

xt = Expx1
(tLogx1

(x0)), t ∈ [0, 1]. (8)

The conditional vector field can then be calculated as the time
derivative of xt, i.e., ut(xt|x1) = ẋt. Notice that ut boils
down to the conditional vector field (6) with σ = 0 when
M = Rd. Chen and Lipman [16] also provide a general for-
mulation of ut(xt|x1) for cases where closed-form geodesics
are not available. The prior distribution p0 can be chosen as
a uniform distribution on the manifold [16], [36], or as a
Riemannian [53] or wrapped Gaussian [16], [54] distribution
on M. During inference, we solve the corresponding RCFM’s
ODE on the Riemannian manifold M via projection-based
methods. Specifically, at each step, the integration is performed
in the tangent space TxM and the resulting vector is projected
onto the Riemannian manifold M with the exponential map.

C. Flow Matching vs. Diffusion and Consistency Models

Diffusion Policy (DP) [2] is primarily trained based on
DDPM [12], which performs iterative denoising from an initial
noise sample xK , where K denotes the total number of
denoising steps. The denoising process follows,

xk−1 = αt

(
xk − γϵθ(xk, k) +N (0, σ2I)

)
, (9)

where α, γ and σ constitute the noise schedule that governs
the denoising process, and ϵθ(xk, k) is the noise prediction
network that infers the noise at the k-th denoising step. The
final sample x0 is the noise-free target output. The equivalent
inference process in FM is governed by,

dψt(x)

dt
= vt(ψt(x);θ), with ψ0(x) = x, (10)

where vt(ψt(x);θ) is the learned vector field that mimics
the target forward process (6). Two key differences can be
identified: (1) FM requires to solve a simple ODE, and (2)
The FM vector field induces straighter paths. Importantly,
the DP denoising framework limits its inference efficiency,
particularly in scenarios requiring faster predictions.

Consistency Policy (CP) [3] aims to speed up the inference
process of DP by leveraging a consistency model that distills
the DP as a teacher model. While CP adopts a similar denois-
ing mechanism as DP, it enhances the process by incorporating
both the current denoising step k and the target denoising step t
as inputs to the denoising network, formalized as ϵθ(xk, k, t).
However, CP involves a two-stage training process. First, a
DP teacher policy is trained. Next, a student policy is trained
to mimic the denoising process of the teacher policy. This
approach enables CP to achieve faster and more efficient
inference while retaining the performance of its teacher model,
at the cost of a more complex training process. In contrast, FM
training is simulation-free, and features a single-phase training
with a simple loss function.

IV. FAST AND ROBUST RFMP

Our goal is to leverage the RCFM framework to learn a pa-
rameterized policy πθ(a|o) that adheres to the target (expert)
policy πe(a|o), which generates a set of N demonstrations
Dn = {os,as}Ts=1, where o denotes an observation, a rep-
resents the corresponding action, and T denotes the length of
n-th trajectory. In this section, we first introduce Riemaniann
flow matching polices (RFMP) that leverage RCFM to achieve
easy training and fast inference. Second, we propose Stable
RFMP (SRFMP), an extension of RFMP that enhances its
robustness and inference speed through stability to the target
distribution.

A. Riemannian Flow Matching Policy

RFMP adapts RCFM to visuomotor robot policies by learn-
ing an observation-conditioned vector field ut(a|o). Similar
to DP [2], RFMP employs a receding horizon control strat-
egy [55], by predicting a sequence of actions over a pre-
diction horizon Tp. This strategy aims at providing temporal
consistency and smoothness on the predicted actions. This
means that the predicted action horizon vector is constructed

5

Algorithm 1: RFMP Training & Inference

1 Training
Input: Initial parameters θ, prior and target

distribution p0, p1.
Output: Learned vector field parameters θ.

2 while termination condition unsatisfied do
3 Sample flow time step t from the uniform

distribution U [0, 1].
4 Sample noise a0 ∼ p0.
5 Jointly sample action sequence a1 ∼ p1 and

corresponding observation vector o.
6 Compute conditional vector field ut(at|a1) via the

RCFM geodesic flow (8).
7 Evaluate ℓRFMP as in (11).
8 Update parameters θ.

9 Inference Step
Input: Predefined number of function evaluation N ,

learned vector field vθ, observation vector o,
prior distribution p0.

10 Sample a0 ∼ p0, and set t = 0.
11 while t ≤ 1 do
12 Integrate the learned Riemannian vector field

ξt+∆t = Expξt
(vθ(ξt,o)∆t).

13 Update time t = t+∆t.

as a = [as,as+1, . . . ,as+Tp], where ai is the action at time
step i, and Tp is the action prediction horizon. This implies
that all samples a1, drawn from the target distribution p1, have
the form of the action horizon vector a. Moreover, we define
the base distribution p0 such that samples ap0

∼ p0 are of the
form a0 = [ab, . . . ,ab] with ab sampled from an auxiliary
distribution b. This structure contributes to the smoothness of
the predicted action vector a, as the flow of all its action
components start from the same initial action ab.

In contrast to the action horizon vector, the observation
vector o is not defined on a receding horizon but is constructed
by randomly sampling only few observation vectors. Specif-
ically, RFMP follows the sampling strategy proposed in [37]
which uses: (1) A reference observation os−1 at time step
s − 1; (2) A context observation oc randomly sampled from
an observation window with horizon To, i.e., c is uniformly
sampled from [s−To, s−2]; and (3) The time gap s−c between
the context observation and reference observation. Therefore,
the observation vector is defined as o = [os−1,oc, s − c].
Notice that, when To = 2, we disregard the time gap and the
observation is o = [os−1,oc]. The aforementioned strategy
leads to the following RFMP loss function,

ℓRFMP = Et,q(a1),p(a0)∥vt(at|o;θ)− ut(at|a1)∥2gat
. (11)

Algorithm 1 summarizes the training process of RFMP. Note
that our RFMP inherits most of the training framework
of RCFM, the main difference being that the vector field
learned in RFMP is conditioned on the observation vector o.
After training RFMP, the inference process, which essentially
queries the policy πθ(a|o), boils down to the following four

steps: (1) Draw a sample a0 from the prior distribution p0;
(2) Construct the observation vector o; (3) Employ an off-
the-shelf ODE solver to integrate the learned vector field
vt(a|o;θ) from a0 along the time interval t = [0, 1], and get
the generated action sequence a = [as, ...,as+Tp]; and (4)
Execute the first Ta actions of the sequence a with Ta ≤ Tp.
This last step allows the robot to quickly react to environment
changes, while still providing smooth predicted actions.

Although RFM is theoretically designed to match a time-
dependent vector field defined over the time horizon t ∈ [0, 1],
we observed that, in practice, its inference performance often
improves when evaluating trajectories slightly beyond t = 1.
To investigate this phenomenon, we conduct experiments
on two tasks: The Euclidean PUSH-T task from [2] and
the SQUARE task from the Robomimic robotic manipulation
benchmark [10]. As shown in Figure 2, RFMP performance
improves when the ODE integration horizon slightly exceeds
t = 1, but it worsens and eventually gets unstable when in-
tegrating for longer time horizons. This observation motivates
the development of SRFMP introduced next, which enhances
RFMP by explicitly enforcing inference stability beyond the
unit interval using the LaSalle’s invariance principle. This
approach stabilizes the policy inference, making it robust to the
ODE integration horizon, as illustrated in Figures 1, 3 and 4.

B. Stable Riemannian Flow Matching Policy

Both CFM and RCFM train and integrate the learned vector
field vt(x|θ) within the interval t = [0, 1]. However, they
do not guarantee that the flow converges stably to the target
distribution at t = 1. Besides, the associated vector field may
even display strongly diverging behaviors when going beyond
this upper boundary [20]. The aforementioned issues may arise
due to numerical inaccuracies when training or integrating
the vector field. To solve this problem, Sprague et al. [20]
proposed Stable Autonomous Flow Matching (SFM), which
equips the dynamics of FM with stability to the support of the
target distribution. Here, we propose to improve RFMP with
SFM, which we generalize to the Riemannian case, in order to
guarantee that the flow stabilizes to the target policy at t = 1.
Our experiments show that this approach not only enhances
RFMP’s robustness but also further reduces inference time.

1) Stable Euclidean FMP: We first summarize the
Euclidean SFM [20], and then show how SFM can be
integrated into RFMP. SFM leverages the stochastic LaSalle’s
invariance principle [56], [57] — a criterion from control
theory used to characterize the asymptotic stability of
stochastic autonomous dynamical systems — to design a
stable vector field u. Sprague et al. [20, Thm 3.8] adapts this
principle to the FM setting as follows.

Theorem 1. (Stochastic LaSalle’s Invariance Principle) If
there exists a time-independent vector field u, a flow ψ
generated by u, and a positive scalar function H such that,

LuH(x) = ∇xH(x)u(x) ≤ 0, (12)

where LuH(x) is the directional derivative of the scalar
function H in the direction u and ∇xH is the gradient of

6

Fig. 3. Flows of the RFM (top) and SRFM (bottom) trained on the L-shape
LASA dataset projected on the sphere manifold. Orange points represent the
training dataset, while blue points are sampled from the generated probability
path at different times t = {0.0, 1.0, 1.5} across the three columns.

the function H , then,

lim
t→∞

ψ(x, t) ∈ {x ∈ X |LuH(x) = 0},

almost surely with x ∼ p(x, 0).

Intuitively, Theorem 1 provides conditions for convergence
to an invariant set even when LuH(x) is not strictly negative,
therefore accounting for stochastic fluctuations in the system.
Theorem 1 notably holds if u(x) is a gradient field of H , i.e.,
if u(x) = −∇xH(x)⊤. In this case, the problem of finding
a stable vector field boils down to defining an appropriate
scalar function H . As LaSalle’s invariance principle requires
an autonomous, a.k.a time-independent, vector field, Sprague
et al. [20] augment the FM state space x with an additional
dimension τ , called temperature or pseudo time, so that the
SFM augmented state space becomes ξ = [x, τ]. The pair
(H, ξ) is then defined so that it satisfies (12) as,

H(ξ|ξ1) =
1

2
(ξ − ξ1)

⊤A(ξ − ξ1), (13)

u(ξ|ξ1) = −∇ξH(ξ|ξ1)⊤ = −A(ξ − ξ1), (14)

where A is a positive-define matrix. To simplify the
calculation, A is set as the diagonal matrix,

A =

[
λxI 0
0 λτ

]
, (15)

with λx, λτ ∈ R. The vector field u and corresponding stable
flow ψt are then given as,

u(ξt|ξ1) =

[
ux(xt|x1)

uτ (τt|τ1)

]
=

[
−λx(xt − x1)

−λτ (τt − τ1)

]
, (16)

ψt(ξ0|ξ1) =

[
ψt(x0|x1)

ψt(τ0|τ1)

]
=

[
x1 + e−λxt(x0 − x1)

τ1 + e−λτ t(τ0 − τ1)

]
.

(17)
The parameters τ1 and τ0 define the range of the τ flow,
while the parameters λx and λτ determine its convergence.
Specifically, the flow converges faster for higher values of λx
and λτ . Moreover, the ratio between λx/λτ determines the

Fig. 4. Flows of the RFM (top) and SRFM (bottom) on the SPD man-
ifold S2

++. Orange points represent the training dataset, while blue points
correspond to sampled from the generated probability path at different times
t = {0.0, 1.0, 1.5} across the three columns.

relative rate of convergence of the spatial and pseudo-time
parts of the flow. We ablate the influence of λx and λτ on
SRFMP in Section V-B.

We integrate SFM to RFMP by regressing an observation-
conditioned vector field v(ξ|o;θ) to a stable target vector
field u(ξt|ξ1), where ξ = [as, ...,as+Tp , τ] is the augmented
prediction horizon vector, and o is the observation vector.

2) Stable Riemannian FMP: Next, we introduce our ex-
tension, stable Riemannian flow matching (SRFM), which
generalizes SFM [20] to Riemannian manifolds. Similarly as
SFM, we define a time-invariant vector field u by augmenting
the state space with the pseudo-time state τ , so that ξ = [x, τ].
Notice that, in this case, x ∈ M and thus ξ lies on the product
of Riemannian manifolds M × R. Importantly, Theorem 1
also holds for Riemannian autonomous systems, in which case
∇xH(x) denotes the Riemannian gradient of the positive
scalar function H . We formulate H so that the pair (H, ξ)
satisfies (12) as,

H(ξ|ξ1) =
1

2
Logξ1

(ξ)⊤ALogξ1
(ξ), (18)

which leads to the Riemannian vector field,

u(ξ|ξ1) = −∇ξH(ξ|ξ1)⊤ = −ALogξ1
(ξ). (19)

By setting the positive-definite matrix A as in (15), we obtain
the Riemannian vector field,

u(ξt|ξ1) =

[
ux(xt|x1)

uτ (τt|τ1)

]
=

[
−λxLogx1

(xt)

−λτ (τt − τ1)

]
, (20)

which generates the stable Riemannian flow,

ψt(ξ0|ξ1) =

[
ψt(x0|x1)

ψt(τ0|τ1)

]
=

[
Expx1

(
e−λxtLogx1

(x0)
)

τ1 + e−λτ t(τ0 − τ1)

]
.

(21)
The parameters λx and λτ have the same influence as in
the Euclidean case. Notice that the spatial part of the stable
flow (21) closely resembles the geodesic flow (8) proposed
in [16]. Figures 3 and 4 show examples of learned RFM
and SRFM flows at times t = {0, 1, 1.5} on the sphere

7

Algorithm 2: SRFMP Training & Inference

1 Training
Input: Initial parameters θ, prior and target

distributions p0, p1.
Output: Learned vector field parameters θ.

2 while termination condition unsatisfied do
3 Sample flow time step t from an uniform

distribution U [0, 1].
4 Sample noise a0 ∼ p0.
5 Jointly sample action sequence a1 ∼ p1 and

corresponding observation vector o.
6 Form the vectors ξ1 = [a1, τ1] and ξ0 = [a0, τ0].
7 Compute conditional vector field ut(ξt|ξ1)

via (14).
8 Evaluate the loss ℓSRFMP as defined in (22).
9 Update parameters θ.

10 Inference Step
Input: Predefined number of function evaluation N ,

learned vector field vθ, observation vector o,
prior distribution p0.

11 Sample a0 ∼ p0, and set k = 1, t = 0, ξ0 = [a0, τ0].
12 while k ≤ N do
13 if k = 1 then
14 ∆t = 1

λx

15 else
16 ∆t = ε ≤ 1

λx

17 Integrate the learned Riemannian vector field
ξt+∆t = Expξt

(vθ(ξt,o)∆t).
18 Update time t = t+∆t.
19 Update iteration k = k + 1.

and symmetric positive-definite (SPD) matrices manifold. The
RFM flow diverges from the target distribution at time t > 1,
while the SRFM flow is stable and adheres to the target
distribution for t ≥ 1.

Finally, the process to induce this stable behavior into the
RFMP flow involves two main changes: (1) We define an
augmented action horizon vector ξ =

[
as, . . . ,as+Tp , τ

]
,

and; (2) We regress the observation-conditioned Riemannian
vector field v(ξ|o;θ) against the stable Riemannian vector
field u(ξ|ξ1) defined in (19), where o denotes the observation
vector. The model is then trained to minimize the SRFMP loss,

ℓSRFMP = Et,q(a1),p(a0)∥v(ξt|o;θ)− u(ξt|ξ1)∥2gat
. (22)

This approach, hereinafter referred to as stable Riemannian
flow matching policy (SRFMP), is summarized in Algorithm 2.
The learned SRFMP vector field drives the flow to converge to
the target distribution within a certain time horizon, ensuring
that it remains within this distribution, as illustrated by the
bottom row of Figures 1, 3, and 4 . In contrast, the RFMP
vector field may drift the flow away from the target distribution
at t > 1 (see the top row of Figures 1, 3, and 4). There-
fore, SRFMPs provide flexibility and increased robustness
in designing the generation process, while RFMPs are more
sensitive to the integration process.

3) Solving the SRFMP ODE: As previously discussed,
querying SRFMP policies involves integrating the learned
vector field along the time interval t = [0, T] with time
boundary T . To do so, we use the projected Euler method,
which integrates the vector field on the tangent space for one
Euler step and then projects the resulting vector onto the man-
ifold M. Assuming an Euclidean setting and that v(ξ|o;θ) is
perfectly learned, this corresponds to recursively applying,

xt+1 = xt + vx(xt|o;θ)∆t ≈ xt + λx(x1 − xt)∆t, (23)

with time step ∆t and vx following the same partitioning as
ux in (20). The time step ∆t is typically set as ∆t = T/N ,
where N is the total number of ODE steps. Here we propose
to leverage the structure of SRFMP to choose the time step
∆t in order to further speed up the inference time of RFMP.
Specifically, we observe that the recursion (23) leads to,

xt = (1− λx∆t)
n(x0 − x1) + x1, (24)

after n time steps. It is easy to see that xt converges to x1

after a single time step when setting ∆t = 1/λx.
In the Riemannian case, assuming that v(ξ|o;θ) approxi-

mately equals the Riemannian vector field (20), we obtain,

xt+1 = Expxt
(vx(x|o;θ)∆t) ≈ Expxt

(
λxLogxt

(x1)∆t
)
.

(25)
Similarly, it is easy to see that the Riemannian flow converges
to x1 after a single time step for ∆t = 1/λx. Importantly,
this strategy assumes that the learned vector field is perfectly
learned and thus equals the target vector field. However, this is
often not the case in practice. However, our experiments show
that the flow obtained solving the SRFMP ODE with a single
time step ∆t = 1/λx generally leads to the target distribution.
In practice, we set ∆t to 1/λx for the first time step, and to
a smaller value afterwards for refining the flow.

V. EXPERIMENTS

We thoroughly evaluate the performance of RFMP and
SRFMP on a set of eight simulation settings and two real-
world tasks. The simulated benchmarks are: (1) The PUSH-T
task from [2]; (2) A SPHERE PUSH-T task, which we introduce
as a Riemannian benchmark; (3)-(7) Five tasks (LIFT, CAN,
SQUARE, TOOL HANG, and TRANSPORT) from the large-
scale robot manipulation benchmark Robomimic [10]; and (8)
the FRANKA KITCHEN benchmark [58] featuring complex,
long-horizon tasks. The real-world robot tasks correspond to:
(1) A PICK & PLACE task; and (2) A MUG FLIPPING task.
Collectively, these ten tasks serve as a benchmark to evaluate
(1) the performance, (2) the training time, and (3) the inference
time of RFMP and SRFMP with respect to state-of-the-art
generative policies, i.e., DP and extensions thereof.

A. Implementation Details

To establish a consistent experimental framework, we first
introduce the neural network architectures employed in RFMP
and SRFMP across all tasks. We then describe the considered
baselines, and our overall evaluation methodology.

8

TABLE I
HYPERPARAMETERS FOR ALL EXPERIMENTS: RESOLUTION OF ORIGINAL AND CROPPED IMAGE, NUMBER OF PARAMETERS FOR THE LEARNED VECTOR

FIELD (VF) USING RFMP AND SRFMP, NUMBER OF RESNET PARAMETERS, TRAINING EPOCHS, AND BATCH SIZE.

Experiment Image res. Crop res. RFMP VF # params SRFMP VF # params ResNet # params Epochs Batch size
PUSH-T Tasks
Euclidean PUSH-T 96× 96 84× 84 8.0× 107 8.14× 107 1.12× 107 300 256
SPHERE PUSH-T 100× 100 84× 84 8.0× 107 8.14× 107 1.12× 107 300 256
State-based simulation tasks
Robomimic LIFT N.A. N.A. 6.58× 107 6.68× 107 N.A. 50 256
Robomimic CAN N.A. N.A. 6.58× 107 6.68× 107 N.A. 50 256
Robomimic SQUARE N.A. N.A. 6.58× 107 6.68× 107 N.A. 50 512
Robomimic TOOL HANG N.A. N.A. 6.58× 107 6.68× 107 N.A. 100 512
FRANKA KITCHEN N.A. N.A. 6.69× 107 6.89× 107 N.A. 500 128
Vision-based simulation tasks
Robomimic LIFT 2× 84× 84 2× 76× 76 9.48× 107 9.69× 107 2× 1.12× 107 100 256
Robomimic CAN 2× 84× 84 2× 76× 76 9.48× 107 9.69× 107 2× 1.12× 107 100 256
Robomimic SQUARE 2× 84× 84 2× 76× 76 9.48× 107 9.69× 107 2× 1.12× 107 100 512
Robomimic TRANSPORT 4× 84× 84 4× 76× 76 1.24× 108 1.27× 108 4× 1.12× 107 200 256
Real-world experiments
PICK & PLACE 320× 240 288× 216 2.51× 107 2.66× 107 1.12× 107 300 256
MUG FLIPPING 320× 240 256× 192 2.51× 107 2.66× 107 1.12× 107 300 256

1) RFMP and SRFMP Implementation: Our RFMP im-
plementation builds on the RFM framework from Chen and
Lipman [16]. We parameterize the vector field vt(a|o;θ) using
the UNet architecture employed in DP [2], which consists of
3 layers with downsampling dimensions of (256, 512, 1024)
and (128, 256, 512) for simulated and real-world tasks. Each
layer employs a 1-dimensional convolutional residual network
as proposed in [29]. We implement a Feature-wise Linear
Modulation (FiLM) [59] to incorporate the observation con-
dition vector o and time step t into the UNet. Instead of
directly feeding the FM time step t as a conditional variable,
we first project it into a higher-dimensional space using a
sinusoidal embedding module, similarly to DP. For tasks
with image-based observations, we leverage the same vision
perception backbone as in DP [2]. Namely, we use a standard
ResNet-18 in which we replace: (1) the global average pooling
with a spatial softmax pooling, and (2) BatchNorm with
GroupNorm. Our SRFMP implementation builds on the SFM
framework [20]. We implement the same UNet as RFMP to
represent vx by replacing the time step t by the temperature
parameter τ . We introduce an additional Multi-Layer Percep-
tron (MLP) to learn vτ . As for t in RFMP, we employed a
sinusoidal embedding for the input τ . The boundaries τ0 and
τ1 are set to 0 and 1 in all experiments.

We implement different prior distributions for different
tasks. For the Euclidean PUSH-T and the Robomimic tasks, the
action space is Rd and we thus define the prior distribution as
a Euclidean Gaussian distribution for both RFMP and SRFMP.
For the SPHERE PUSH-T, the action space is the hypersphere
S2. In this case, we test two types of Riemannian prior distri-
bution, namely a spherical uniform distribution, and a wrapped
Gaussian distribution [54], [60], illustrated in Figure 5. For the
FRANKA KITCHEN benchmark, we define the action space as
the product of manifolds M = R3 × S3 × R2, whose com-
ponents represent the end-effector position, the end-effector
orientation (encoded as quaternions), and the gripper fingers
position. Regarding the real robot tasks, the action space is
defined similarly as the product of manifolds M = R3 ×
S3×R1, whose components represent the position, orientation

Fig. 5. 2D visualization of prior distributions on the sphere: wrapped
Gaussian distribution (left) and sphere uniform distribution (right). The sphere
Gaussian distribution is obtained by first sampling from a Euclidean Gaussian
distribution on a tangent space of the sphere (the red points), followed by the
exponential map, which projects the samples onto the sphere manifold Sd

(blue points). The spherical uniform distribution is computed by normalizing
samples from a zero-mean Euclidean Gaussian distribution.

(encoded as quaternions), and opening of the gripper. For the
FRANKA KITCHEN benchmark and the real robot tasks, the
Euclidean and hypersphere parts employ Euclidean Gaussian
distributions and a wrapped Gaussian distribution, respectively.
Notice that this choice of prior distributions follows common
practice in flow matching literature, where Gaussian and
uniform priors are widely adopted due to their simplicity and
effectiveness [16]. While more sophisticated approaches could
be explored, e.g., using Gaussian Process as prior distribu-
tions [61], or learning task-dependent priors as in D-Flow [62],
the choice depends on the problem at hand. We focus here on
standard priors to maintain simplicity and consistency across
tasks, while isolating their impact on our framework.

For all experiments, we optimize the network parameters
of RFMP and SRFMP using AdamW [63] with a learning
rate of η = 1× 10−4 and weight decay of wd = 0.001
based on an exponential moving averaging (EMA) framework
on the weights [64] with a decay of wEMA = 0.999. We
set the SRFMP parameters as λx = λτ = 2.5. Table I
summarizes the image resolution, number of parameters, and
number of training epochs used in each experiment. Note that
the policies predicts a sequence of actions a over a given

9

Fig. 6. Simulation benchmarks. Top row: Euclidean PUSH-T [2], SPHERE PUSH-T, and five Robomimic tasks [10]: LIFT, CAN, SQUARE, TOOL HANG,
TRANSPORT. Bottom row: Tasks of the Franka kitchen benchmarks, i.e., open microwave, put kettle on top burner, switch on the light, slide cabinet.

time horizon Tp. Therefore, the total action space corresponds
to the Cartesian product of manifolds computed over the
prediction horizon defined for each task. Table II reports
the total task dimensionality dim(a) as a function of the
action space dimension dim(as) and the prediction horizon
Tp for all experiments considered in the paper. Notably, the
FRANKA KITCHEN benchmark involves learning a policy that
predicts a 1944-dimensional action sequence, enabling us to
test the scalability of our method in high-dimensional, long-
horizon settings. We use an action horizon Ta=Tp/2, and an
observation horizon To=2 for all tasks.

2) Baselines: In [2], DP is trained using either Denoising
Diffusion Probabilistic Model (DDPM) [12] or Denoising
Diffusion Implicit Model (DDIM) [13]. In this paper, we
prioritize faster inference and thus employ DDIM-based DP
for all our experiments. We train DDIM with 100 denoising
steps. The prior distribution is a standard Gaussian distribution
unless explicitly mentioned. During training we use the same
noise scheduler as in [2], the optimizer AdamW with the same
learning rate and weight decay as for RFMP and SRFMP. Note
that DP does not handle data on Riemannian manifolds, and
thus does not guarantee that the resulting trajectories lie on the
manifold of interest for tasks with Riemannian action spaces,
e.g., the SPHERE PUSH-T, the FRANKA KITCHEN benchmark,
and the real-world robot experiments. In these cases, we post-
process the trajectories obtained during inference and project
them on the manifold. In the case of the hypersphere manifold,
the projection corresponds to a unit-norm normalization.

We also compare RFMP and SRFMP against CP [3] on the
Robomimic tasks with vision-based observations. For a fair
comparison, we retrained CP from scratch using the code pro-
vided in [3]. We pretrain the DP teacher policy for 100 epochs
and subsequently distilled the student policy for another 100
epochs, following the CP training procedure [3]. Notice that
this increases the total training time, effectively doubling the
number of epochs, compared to RFMP, SRFMP, and DP. The
neural network architecture used in DP and CP to model the
diffusion noise is identical to the one used in RFMP and
SRFMP. This isolates the influence of the learning algorithm,
eliminating the architectural aspects as confounding factors.

3) Evaluation methodology: We evaluate all policies using
three key metrics: (1) The performance, computed as the

TABLE II
PREDICTION HORIZON AND ACTION SPACE DIMENSIONALITY.

Task Tp dim(as) dim(a)
Euclidean PUSH-T 16 2 32
SPHERE PUSH-T 16 2 32
Robomimic tasks 16 7 112
FRANKA KITCHEN 216 9 1944
Real-world experiments 16 7 112

average task-depending score across all trials, with 50 trials
for each simulated task, and 10 trials for each real-world task;
(2) The number of training epochs; and (3) The inference
time. To provide a consistent measure of inference time across
RFMP, SRFMP, and DP, we report it in terms of the number of
function evaluations (NFE), which is proportional to the infer-
ence process time. Given that each function evaluation takes
approximately the same time across all methods, inference
time comparisons can be made directly based on NFE. For
example, in real-world tasks, with an NFE of 2, DP requires
around 0.0075s, while RFMP and SRFMP take approximately
0.0108s and 0.0113s, respectively. When NFE is increased to
5, DP takes around 0.0175s, while RFMP and SRFMP require
about 0.021s and 0.0212s.

B. Push-T Tasks

We first consider two simple PUSH-T tasks, namely the
Euclidean PUSH-T proposed in [2], which was adapted from
the Block Pushing task [8], and the SPHERE PUSH-T TASK,
which we introduce shortly. The goal of the Euclidean PUSH-T
task, illustrated in Figure 6, is to push a gray T-shaped
object to the designated green target area with a blue circular
agent. The agent’s movement is constrained by a light gray
square boundary. Each observation o is composed of the
96 × 96 RGB image of the current scene and the agent’s
state information. We introduce the SPHERE PUSH-T task,
visualized in Figure 6, to evaluate the performance of our
models on the sphere manifold. Its environment is obtained by
projecting the Euclidean PUSH-T environment on one half of
a 2-dimensional sphere S2 of radius of 1. This is achieved by
projecting the environment, normalized to a range [−1.5, 1.5],
from the plane z = 1 to the sphere via a stereographic
projection. The target area, the T-shaped object, and the agent

10

TABLE III
EUCLIDEAN PUSH-T: IMPACT OF NFE ON POLICIES.

NFEPolicy
1 3 5 10

RFMP 0.848 0.855 0.923 0.891
SRFMP 0.875 0.851 0.837 0.856

DP 0.109 0.79 0.838 0.862

TABLE IV
RFMP HYPERPARAMETERS ABLATION ON EUCLIDEAN PUSH-T.

Parameter Values Success rate
NFE 1 3 5 10 100

To

2 0.848 0.855 0.923 0.891 0.91
8 0.195 0.16 0.154 0.168 0.179
16 0.135 0.143 0.14 0.133 0.135
8 0.754 0.835 0.827 0.839 0.85
16 0.848 0.855 0.923 0.891 0.91Tp

32 0.799 0.906 0.878 0.929 0.93

η
1× 10−4 0.848 0.855 0.923 0.891 0.91
5× 10−5 0.797 0.863 0.843 0.897 0.889
1× 10−5 0.641 0.771 0.805 0.88 0.841
0.001 0.848 0.855 0.923 0.891 0.91
0.005 0.846 0.882 0.875 0.866 0.856wd

0.01 0.868 0.831 0.842 0.927 0.853

then lie and evolve on the sphere. As in the Euclidean case,
each observation o is composed of the 96 × 96 RGB image
of the current scene and the agent’s state information on the
manifold. All models (i.e., RFMP, SRFMP, DP) are trained
for 300 epochs in both settings. During testing, we choose the
best validation epoch and roll out 500 steps in the environment
with an early stop rule terminating the execution when the
coverage area is over 95% of the green target area. The score
for both Euclidean and Sphere Push-T tasks is the maximum
coverage ratio during execution. The tests are performed with
50 different initial states not present in the training set.

1) Euclidean Push-T: First, we evaluate the performance of
RFMP and SRFMP in the Euclidean case for different number
of function evaluations in the testing phase. The models are
trained with the default parameters described in Section V-A1.
Table III shows the success rate of RFMP and SRFMP for dif-
ferent NFEs. We observe that both RFMP and SRFMP achieve
similar success rates overall. While SRFMP demonstrates
superior performance with a single NFE, RFMP achieves
higher success rates with more NFEs. We hypothesize that this
behavior arises from the fact that, due to the equality λx = λτ ,
the SRFMP conditional probability path resembles the optimal
transport map between the prior and target distributions as
in [15]. This, along with the stability framework of SRFMP,
allows us to automatically choose the time step during infer-
ence via (24), which enhances convergence in a single step.
When comparing our approaches with DP, we observe that DP
performs drastically worse than both RFMP and SRFMP for
a single NFE, achieving a score of only 10.9%. Nevertheless,
the performance of DP improves when increasing the NFE
and matches that of our approaches for 10 NFE.

Next, we ablate the action prediction horizon Tp, obser-
vation horizon To, learning rate η, and weight decay wd

for RFMP and SRFMP. We consider 3 different values for
each, while setting the other hyperparameters to their default
values, and test the resulting models with 5 different NFE. For

TABLE V
SRFMP HYPERPARAMETERS ABLATION ON EUCLIDEAN PUSH-T.

Parameter Values Success rate
NFE 1 3 5 10

To

2 0.875 0.851 0.837 0.856
8 0.124 0.139 0.147 0.13
16 0.145 0.138 0.149 0.144
8 0.816 0.726 0.592 0.318
16 0.875 0.851 0.837 0.856Tp

32 0.852 0.861 0.881 0.829

η
1.0× 10−4 0.875 0.851 0.837 0.856
5× 10−5 0.754 0.621 0.456 0.334
1× 10−5 0.602 0.56 0.443 0.288
0.001 0.875 0.851 0.837 0.856
0.005 0.837 0.826 0.826 0.684wd

0.01 0.733 0.75 0.768 0.571

λx λτ

1 0.2 0.74 0.614 0.494 0.457
1 1 0.85 0.777 0.608 0.416
1 6 0.87 0.768 0.753 0.812

2.5 0.2 0.832 0.392 0.576 0.549
2.5 2.5 0.875 0.851 0.837 0.856
2.5 15 0.832 0.799 0.789 0.807
5 1 0.796 0.741 0.614 0.513
5 5 0.845 0.825 0.797 0.642
5 30 0.822 0.830 0.772 0.743

7.5 1.5 0.799 0.685 0.442 0.456
7.5 7.5 0.787 0.8 0.809 0.633
7.5 45 0.782 0.817 0.844 0.814

SRFMP, we additionally ablate the parameters λx and λτ for 3
different ratios λx/λτ and 4 values for each ratio. Each setup
is tested with 50 seeds, resulting in a total of 2250 and 4000
experiments for RFMP and SRFMP. The results are reported
in Tables IV and V, respectively. We observe that a short
observation horizon To = 2 leads to the best performance for
both models. This is consistent with the task, as the current and
previous images accurately provide the required information
for the next pushing action, while the actions associated
with past images rapidly become outdated. Moreover, we
observe that an action prediction horizon Tp = 16 leads to
the highest score. We hypothesize that this horizon allows
the model to maintain temporal consistency, while providing
frequent enough updates of the actions according to the current
observations. Concerning SRFMP, we find that λx=λτ =2.5
leads to the highest success rates. Interestingly, this choice
leads to the ratio λx/λτ = 1, in which case the flow of
x follows the Gaussian CFM (6) of [15] with σ → 0 for
τ = [0, 1], see [20, Cor 4.12]. In the next experiments, we
use the default parameters resulting from our ablations, i.e.,
Tp=16, To=2, η=1×10−4, wd=0.001, and λx=λτ =2.5.

2) Sphere Push-T: Next, we test the ability of RFMP
and SRFMP to generate motions on non-Euclidean manifolds
with the SPHERE PUSH-T task. We evaluate two types of
Riemannian prior distributions for RFMP and SRFMP, namely
a spherical uniform distribution and wrapped Gaussian distri-
bution (see Figure 5). We additionally consider a Euclidean
Gaussian distribution for DP. Notice that the actions gen-
erated by DP are normalized in a post-processing step to
ensure that they belong to the sphere. The corresponding
performance are reported in Table VI. Our results indicate
that the choice of prior distribution significantly impacts
the performance of both RFMP and SRFMP. Specifically,
we observe that RFMP and SRFMP with a uniform sphere

11

TABLE VI
IMPACT OF THE PRIOR DISTRIBUTION ON SPHERE PUSH-T TASK.

NFEPolicy
1 3 5 10

RFMP sphere uniform 0.871 0.746 0.77 0.817
RFMP sphere Gaussian 0.587 0.724 0.748 0.733
SRFMP sphere uniform 0.772 0.736 0.796 0.829
SRFMP sphere Gaussian 0.707 0.706 0.735 0.707

DP sphere uniform 0.274 0.261 0.235 0.197
DP sphere Gaussian 0.170 0.162 0.231 0.227

DP euclidean Gaussian 0.227 0.796 0.813 0.885

TABLE VII
INFLUENCE OF INTEGRATION TIME ON RFMP AND SRFMP.

Euclidean PUSH-T t = 1.0 t = 1.2 t = 1.6
RFMP 0.855 0.492 0.191

SRFMP 0.862 0.851 0.829
Sphere PUSH-T t = 1.0 t = 1.2 t = 1.6

RFMP 0.736 0.574 0.264
SRFMP 0.727 0.736 0.685

distribution consistently outperform their counterparts with
wrapped Gaussian distribution. We hypothesize that RFMP
or SRFMP benefit from having samples that are close to
the data support, which leads to simpler vector fields to
learn. In other words, uniform distribution provides more
samples around the data distribution, which potentially lead
to simpler vector fields. DP exhibit poor performance with
sphere-based prior distributions, suggesting its ineffectiveness
in handling such priors. Instead, DP’s performance drastically
improves when using a Euclidean Gaussian distribution and
higher NFE. Note that this high performance does not scale
to higher dimensional settings as already evident in the real-
world experiments reported in Section V-E, where the effect
of ignoring the geometry of the parameters exacerbates, which
is a known issue when naively operating with Riemannian
data [65]. Importantly, SRFMP is consistently more robust
to NFE and achieves high performance with a single NFE,
leading to shorter inference times for similar performance
compared to RFMP and DP.

3) Influence of Integration Time Boundary: We further
assess the robustness of SRFMP to varying time boundaries
on the PUSH-T tasks by increasing the time boundary during
inference. The performance of both RFMP and SRFMP is
summarized in Table VII with result presented for NFE = 3
under the time boundaries t = 1 and t = 1.2, as well as for
NFE = 4 under the time boundaries t=1.6. Our results show
that the performance of RFMP is highly sensitive to the time
boundary, gradually declining as the boundary increases. In
contrast, SRFMP demonstrates remarkable robustness, with
minimal variation across different time boundaries. As illus-
trated in Figure 7, the quality of action series generated by
RFMP noticeably deteriorates with increasing time boundaries,
whereas SRFMP consistently delivers high-quality action se-
ries regardless of the time boundary.

C. Robomimic Benchmark

Next, we evaluate RFMP and SRFMP on the well-known
Robomimic robotic manipulation benchmark [10]. This bench-
mark consists of five tasks with varying difficulty levels for

Fig. 7. Action series generated by RFMP (first and third rows) and SRFMP
(second and fourth rows) trained on the PUSH-T tasks at integration times
t = {0.8, 1.2, 1.6}.

which it provides two types of demonstrations, namely pro-
ficient human (PH) high-quality teleoperated demonstrations,
and mixed human (MH) demonstrations. Each demonstration
contains multi-modal observations, including state informa-
tion, images, and depth data. We report results on five tasks
(LIFT, CAN, SQUARE, TOOL HANG, and TRANSPORT) from
the Robomimic dataset with 200 PH demonstrations for train-
ing for both state- and vision-based observations. Note that
the difficulty of the selected tasks becomes progressively more
challenging. The score of each of the 50 trials is determined
by whether the task is completed successfully after a given
number of steps (300 for LIFT, 500 for CAN and SQUARE, 700
for TOOL HANG, and 500 for TRANSPORT). The performance
is then the percentage of successful trials.

1) State-based Observations: We first assess the training
efficiency of RFMP and SRFMP and compare it against DP
by analyzing their performance at different training stages.
Figure 8 shows the success rate of the three policies as
a function of the number of training epochs for the tasks
LIFT, CAN, SQUARE, and TOOL HANG. All policies are
evaluated with 3 NFE for LIFT, CAN, and SQUARE, and
with 10 NFE for TOOL HANG. We observe that RFMP
and SRFMP consistently outperform DP across all tasks,
requiring fewer training epochs to achieve comparable or
superior performance. For the easier tasks (LIFT and CAN),

12

TABLE VIII
SUCCESS RATE AS A FUNCTION OF DIFFERENT NFE VALUES ON THE STATE-BASED ROBOMIMIC TASKS.

LIFT
NFE 1 2 3 5 10

RFMP 0.992 ± 0.010 0.992 ± 0.010 0.992 ± 0.010 0.992 ± 0.010 0.992 ± 0.010
SRFMP 1.000 ± 0.000 0.992 ± 0.010 0.992 ± 0.010 0.996 ± 0.008 1.000 ± 0.000

DP 0.008 ± 0.010 0.756 ± 0.034 0.948 ± 0.016 0.956 ± 0.015 0.976 ± 0.015
CAN

NFE 1 2 3 5 10
RFMP 0.976 ± 0.023 0.996 ± 0.008 0.996 ± 0.008 0.996 ± 0.008 0.996 ± 0.008

SRFMP 0.980 ± 0.022 0.980 ± 0.013 0.996 ± 0.008 0.992 ± 0.010 0.968 ± 0.020
DP 0.004 ± 0.008 0.340 ± 0.013 0.836 ± 0.020 0.924 ± 0.015 0.908 ± 0.010

SQUARE
NFE 1 2 3 5 10

RFMP 0.792 ± 0.027 0.848 ± 0.020 0.920 ± 0.018 0.896 ± 0.041 0.912 ± 0.016
SRFMP 0.776 ± 0.029 0.800 ± 0.052 0.828 ± 0.016 0.824 ± 0.008 0.848 ± 0.030

DP 0.012 ± 0.010 0.384 ± 0.023 0.628 ± 0.016 0.672 ± 0.020 0.684 ± 0.015
TOOL HANG

NFE 1 2 3 5 10
RFMP 0.152 ± 0.020 0.316 ± 0.023 0.368 ± 0.032 0.572 ± 0.027 0.716 ± 0.023

SRFMP 0.240 ± 0.028 0.224 ± 0.020 0.308 ± 0.020 0.516 ± 0.023 0.568 ± 0.035
DP 0.000 ± 0.000 0.008 ± 0.010 0.008 ± 0.010 0.092 ± 0.024 0.092 ± 0.016

Fig. 8. Success rate (mean and standard deviation) on Robomimic tasks with
state-based observations at different checkpoints. The models performance of
LIFT, CAN, and SQUARE tasks is checked every 10 epochs throughout the
50-epoch training process using 3 NFE. For the TOOL HANG task, the models
are trained over 100 epochs and checked every 20 epochs using 10 NFE.

both RFMP and SRFMP achieve high performance after just
20 training epochs, while the success rate of DP remains
low after 50 epochs. This trend persists in the harder tasks
(SQUARE and TOOL HANG), with RFMP and SRFMP
reaching high success rates significantly faster than DP.

Next, we evaluate the performance of the policies for
different NFE in the testing phase. For RFMP and SRFMP,
we use the 50-epoch models for LIFT, CAN, and SQUARE,
and the 100-epoch models for TOOL HANG. DP is further
trained for a total of 300 epochs and we select the model at the
best validation epoch. The results are reported in Table VIII.
RFMP and SRFMP outperform DP for all tasks and all NFE,

even though DP was trained for more epochs. Moreover, we
observe that RFMP and SRFMP are generally more robust to
low NFE than DP. They achieve 100% success rate at almost
all NFE values for the easier LIFT and CAN tasks, while DP’s
performance drastically drops for 1 and 2 NFE. We observe
a similar trend for the SQUARE task, where the performance
of RFMP and SRFMP slightly improves when increasing the
NFE. The performance of all models drops for TOOL HANG,
which is the most complex of the four considered tasks. In this
case, the performance of RFMP and SRFMP is limited for low
NFE values and improves for higher NFE. DP performs poorly
for all considered NFE values. Table IX reports the jerkiness
as a measure of the smoothness of the trajectories generated
by the different policies. We observe that RFMP and SRFMP
produce arguably smoother trajectories than DP for low NFE,
as indicated by the lower jerkiness values. The smoothness
of the trajectories becomes comparable for higher NFE. In
summary, both RFMP and SRFMP achieve high success rates
and smooth action predictions with low NFE, enabling faster
inference without compromising task completion.

2) Vision-based Observations: Next, we assess our models
performance when the vector field is conditioned on visual
observations. We consider the tasks LIFT, CAN, SQUARE,
and TRANSPORT with the same policy settings and networks
(see Table I)1. Each observation os corresponds to a visual
embedding derived from camera images. For LIFT, CAN,
and SQUARE, we use one over-the-shoulder and one in-hand
camera. For TRANSPORT, which involves bimanual manipu-
lation, we use two in-hand cameras and two over-the-shoulder
cameras. We train the models for a total 100 epochs for LIFT,
CAN, and SQUARE and for 200 epochs for TRANSPORT and
use the best-performing checkpoint for evaluation.

The performance of different policies is reported in Ta-
ble XI. RFMP and SRFMP consistently outperform DP and
CP on all tasks, regardless of the NFE. As for the previous
experiments, our models are remarkably robust to changes
in NFE compared to DP. Importantly, SRFMP consistently
outperforms RFMP for 1 and 2 NFE. Regarding CAN and
SQUARE tasks, SRFMP with 1 NFE achieved performance on

1Note that we omit TOOL HANG due to its significant computational cost.

13

TABLE IX
JERKINESS OF PREDICTED ROBOT TRAJECTORIES FOR DIFFERENT NFE ON THE ROBOMIMIC TASKS WITH STATE-BASED OBSERVATIONS. ALL VALUES

ARE EXPRESSED IN THOUSANDS, WHERE THE LOWER THE SMOOTHER THE PREDICTION.

LIFT
NFE 1 2 3 5 10

RFMP 9.97 ± 1.23 8.80 ± 0.19 9.06 ± 0.08 8.96 ± 0.08 8.49 ± 0.21
SRFMP 10.32 ± 0.41 9.90 ± 031 8.00 ± 0.14 9.39 ± 0.23 9.03 ± 0.19

DP 329.20 ± 47.44 13.96 ± 0.89 8.06 ± 0.42 7.48 ± 0.13 5.9 ± 0.23
CAN

NFE 1 2 3 5 10
RFMP 7.88 ± 0.14 6.38 ± 0.40 6.37 ± 0.17 6.40 ± 0.07 7.10 ± 1.30

SRFMP 7.64 ± 0.23 7.63 ± 0.18 6.69 ± 0.27 6.98 ± 0.13 6.94 ± 0.08
DP 526.00 ± 65.50 18.98 ± 2.82 6.68 ± 0.25 6.28 ± 0.35 6.22 ± 0.16

SQUARE
NFE 1 2 3 5 10

RFMP 9.14 ± 0.19 6.22 ± 0.29 5.54 ± 0.24 5.17 ± 0.16 4.36 ± 0.30
SRFMP 9.16 ± 0.31 9.43 ± 0.16 7.28 ± 0.97 7.70 ± 0.50 7.74 ± 0.26

DP 548.20 ± 54.77 20.26 ± 2.47 7.24 ± 0.54 10.02 ± 2.64 7.62 ± 1.44
TOOL HANG

NFE 1 2 3 5 10
RFMP 4.49 ± 0.35 4.26 ± 0.19 4.65 ± 0.32 5.07 ± 0.19 4.66 ± 0.31

SRFMP 5.24 ± 0.18 5.10 ± 0.20 5.23 ± 0.38 5.62 ± 0.42 5.62 ± 0.40
DP 699.40 ± 90.91 9.52 ± 0.30 8.79 ± 1.51 7.12 ± 1.94 6.96 ± 1.35

TABLE X
TRAINING TIME (IN SECONDS) PER EPOCH ON ROBOMIMIC VISION-BASED

LIFT AND SQUARE.

Task RFMP SRFMP DP CP
LIFT 17.49± 0.03 17.63± 0.15 16.07± 0.20 31.44± 0.27

SQUARE 57.62± 0.30 56.67± 0.18 53.16± 0.16 102.86± 0.61

par with RFMP using 3 NFE. This efficiency gain showcases
the benefits of enhancing the policies with stability to the target
distribution for reducing their inference time.

In contrast to CP, RFMP and SRFMP rely on a simple,
single-stage training pipeline, thus featuring easier and faster
training in addition to fast inference. The training time per
epoch of each policy on task LIFT and SQUARE tasks is
summarized in Table X. All experiments were conducted on an
NVIDIA RTX 4060Ti GPU using the same batch size across
policies. The result indicate that RFMP, SRFMP, and DP have
comparable per-epoch training times. In contrast, CP requires
approximately twice as much time per epoch, primarily due
to its training procedure involving distillation from a teacher
policy. When accounting for the additional time required to
pretrain DP the total training time per epoch for CP becomes
roughly three times that of the other methods.

D. Franka Kitchen Benchmark

We evaluate the capability of RFMP and SRFMP in han-
dling more complex, long-horizon manipulation tasks on the
widely-used FRANKA KITCHEN benchmark [58]. We use the
dataset from [66], which comprises 19 expert demonstrations
totaling 4209 time steps and involves a sequential execution
of four tasks: open the microwave, put the kettle on the top
burner, switch on the light and slide the cabinet. The original
dataset considers actions in Euclidean space as joint angular
velocities. To evaluate the performance of our Riemannian
policy framework, we instead consider end-effector trajectories
obtained from joint configurations via forward kinematics.
Therefore, each data point is composed of the end-effector
position and orientation (as a unit quaternion), and the gripper

state. Consequently, the predicted action sequence lies on the
product of manifolds R3 × S3 × R2.

Each model is trained for 500 epochs with a batch size of
32, and evaluated using the best validation checkpoint over 50
test episodes with randomized initial states. The performance
of different policies is reported in Table XII. SRFMP ex-
hibits consistently high performance across all NFE, indicating
strong robustness, and significantly outperforms RFMP and
DP. The low success rate of RFMP and DP is due to the fact
that their trajectories often exhibit local inaccuracies, leading
to failing at least one subtask. This is then reported as a failure
for the long-horizon task, leading to low success rates overall.
In contrast, the trajectories produced by SRFMP are more
precise, leading to the successful completion of all subtasks.

E. Real Robotic Experiments

Finally, we evaluate RFMP and SRFMP on two real-world
tasks, namely PICK & PLACE and MUG FLIPPING, with a
7-DoF robotic manipulator.

1) Experimental Setup: Figures 9-11 show our experimen-
tal setup. The tasks are performed on a Franka Emika Panda
robot arm. We collect the demonstrations via a teleoperation
system made of two robot twins. Demonstrations are collected
by an expert guiding the source robot. The target robot reads
the end-effector pose of the source robot and reproduces it via
a Cartesian impedance controller. The demonstration data was
smoothed to mitigate the noise arising from the teleoperation
setup. Each observation os is composed of the end-effector po-
sition and of the image embedding obtained from the ResNet
vision backbone that processes the images from an over-
the-shoulder camera. The policies are trained to generate 8-
dimensional actions composed of the position, orientation, and
gripper state lying on the product of manifolds R3 ×S3 ×R.

2) Pick & Place: The goal of this task is to test the ability
of RFMP and SRFMP to learn Euclidean policies in real-world
settings. The task consists of approaching and picking up a
white mug, and place it on a pink plate, as shown in Figure 10.
Note that the robot end-effector points downwards during the
entire task, so that its orientation remains almost constant.

14

TABLE XI
SUCCESS RATE AS A FUNCTION OF NFE ON VISION-BASED ROBOMIMIC TASKS.

Task LIFT CAN SQUARE TRANSPORT
NFE 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

RFMP 1 1 1 1 1 0.78 0.82 0.9 0.96 0.94 0.56 0.74 0.9 0.9 0.9 0.6 0.82 0.78 0.78 0.8
SRFMP 1 1 1 1 1 0.88 0.88 0.9 0.9 0.86 0.86 0.82 0.9 0.88 0.9 0.8 0.82 0.82 0.78 0.78

DP 0 0.7 0.96 0.98 0.98 0 0.38 0.66 0.68 0.66 0 0.04 0.16 0.26 0.12 0 0.54 0.66 0.78 0.82
CP 0.5 0.44 0.46 0.46 0.4 0.82 0.82 0.84 0.84 0.82 0.32 0.52 0.54 0.48 0.52 0.4 0.36 0.44 0.38 0.36

TABLE XII
SUCCESS RATE AS A FUNCTION OF NFE ON THE FRANKA KITCHEN

BENCHMARK.

NFEPolicy 1 2 3 5 10
RFMP 0.04 0.08 0.12 0.14 0.14

SRFMP 1 1 1 1 1
DP 0 0 0 0.02 0.02

Fig. 9. Robotic experimental setup consisting of two Franka Emika Panda
robot arms and an over-the-shoulder camera (Realsense d435). The left arm
is the target robot, while the right one acts as the source. During the teaching
phase, a human expert controls the source arm to teleoperate the target robot.
During testing, only the target arm is operational.

We collect 100 demonstrations where the white mug is
randomly placed on the yellow mat, while the pink plate
position and end-effector initial position are slightly varied.
We split our demonstration data to use 90 demonstrations for
training and 10 for validation. All models are trained for 300
epochs with the same training hyperparameters as reported
in Table I. As in previous experiments, we use the best-
performing checkpoints of each model for evaluation.

During testing, we systematically place the white mug at
10 different locations on a semi-grid covering the surface of
the yellow sponge. We evaluate the performance of RFMP,
SRFMP, and DP as a function of different NFE values, under
two metrics: Success rate and prediction smoothness. Fig-
ure 12 shows the increased robustness of RFMP and SRFMP
to NFE compared to DP. Notably, DP requires more NFEs
to achieve a success rate competitive to RFMP and SRFMP,
which display high performance with only 2 NFE. Moreover,
DP generated highly jerky predictions when using 2 NFE.
In contrast, RFMP and SRFMP consistently retrieve smooth
trajectories, regardless of the NFE.

Notice that the experiments involved natural variations in
background and lighting conditions, further exposing the poli-
cies to realistic sensor noise. These slight variations in back-

Fig. 10. PICK & PLACE: First, the robot end-effector approaches and grasps
the white mug. Then, it lifts the mug and places it upright on the pink plate.

Fig. 11. MUG FLIPPING: The robot rotates its end-effector to align with the
white mug’s orientation and subsequently grasps it. It then place the mug
upright on the blue plate.

ground and lighting conditions (e.g., cloudy and sunny days),
had minimal impact on the policies performance. However,
consistent failures were observed when the mug was initially
positioned on the right side of the yellow mat, where the robot
often obstructs the external camera view when approaching
the mug. A multi-camera setting may improve performance
on such occlusion cases.

3) Mug Flipping: In this task, a white mug is initially
positioned horizontally on a yellow sponge, as shown in
Figure 11. The task consists of two stages: First, the robot
locates the white mug and grasps it by rotating its end-
effector to align with the mug orientation. The robot then
places the mug upright on the blue plate. Note that this task
demands the robot to execute elaborated rotation trajectories
for both grasping and placing. For this task, we collect 50
demonstrations with the white mug randomly positioned and
rotated on the left side of a yellow sponge. Note that we use
only the left side as the task requires the robot to operate near
its workspace limits, which are prohibitive when the mug is
placed on the right side. Furthermore, the end-effector initial
pose was also slightly varied across the demonstrations. The
policy hyperparameters for this task are provided in Table I.

Figure 12 shows the results of evaluating the different
considered policies using the same two metrics as the PICK &
PLACE task, namely success rate and trajectory smoothness.
Both RFMP and SRFMP are significantly more robust to
different NFE in terms of success rate when compared to
DP. While the smoothness of RFMP and SRFMP is slightly
affected by NFE in this particular task, both methods still
outperform DP in this regard. Similarly to the PICK & PLACE,

15

Fig. 12. Success rate and predicted actions jerkiness as a function of NFE
on the PICK & PLACE and MUG FLIPPING tasks.

slight variations on lightning and background had a negligible
effect on the performance of the tested policies.

F. Experiments Summary

We conducted comprehensive evaluations across diverse
benchmarks in simulation, namely the Euclidean and SPHERE
PUSH-T tasks, the Robomimic benchmark under both state-
and vision-based observation, the long-horizon FRANKA
KITCHEN benchmark, as well as two real-world manipulation
tasks. These tasks display various action spaces with different
types of geometric constraints. While the Euclidean PUSH-T
and Robomimic tasks are defined on standard Euclidean spaces
— a special type of Riemannian manifolds — the SPHERE
PUSH-T task involves an action space constrained to the
hypersphere S2, and both the FRANKA KITCHEN and real-
world experiments operate on product Euclidean and sphere
manifolds, accounting for position, orientation, and gripper
state. Through their Riemannian formulation, RFMP and
SRFMP are designed to naturally handle Euclidean and non-
Euclidean action spaces, thus satisfying constraints such as
the unit-norm of quaternions. It is important to emphasize
that the Riemannian formulation is necessary not only to
handle geometric constraints but also to guarantee stability in
SRFMP. Naive approximations, e.g., unit-norm normalization
as a post-processing step for quaternions, would break the
stability guarantees in SRFMP.

Our findings from both simulated and real-world tasks show
that RFMP and SRFMP offer significant advantages over DP.
In particular, RFMP and SRFMP achieve faster inference
by using fewer NFE without compromising success rates
regardless of the observation type. This translates into highly-
robust visuomotor policies. Importantly, these advantages do
not come at the cost of elaborated training strategies like
those used in consistency-based models. In fact, our models

outperformed CP, while being notably easier and more efficient
to train. Regarding the difference between SRFMP and RFMP,
the results did not show significant performance gains in terms
of success rate and prediction smoothness, at the exception of
the long-horizon task of the FRANKA KITCHEN benchmark,
where SRFMP significantly outperformed RFMP and DP.
Nevertheless, SRFMP shows to be easier to train, achieving
higher success rate than RFMP for fewer training epochs (e.g.,
in LIFT, CAN, SQUARE tasks).

VI. CONCLUSION

This paper introduced Stable Riemannian Flow Matching
Policy (SRFMP), a novel framework that combines the easy
training of flow matching with stability-based robustness prop-
erties for visuomotor policy learning. SRFMP builds on our
extension of stable flow matching to Riemannian manifolds,
providing stable convergence of the learned flow to the support
of Riemannian target distributions. Our simulated and real-
world experiments show that both our previous work on
RFMP and its stable counterpart SRFMP outperform diffu-
sion policies and distillation-based extensions, while offering
advantages in terms of inference speed, ease of training,
and robust performance even with limited NFEs and train-
ing epochs. Future work will focus on exploring equivariant
policy structures to potentially reduce the number of required
demonstrations and to improve generalization. Additionally,
we aim to investigate multi-modal perception backbones for
tackling contact-rich tasks.

REFERENCES

[1] J. Urain, A. Mandlekar, Y. Du, M. Shafiullah, D. Xu, K. Fragkiadaki,
G. Chalvatzaki, and J. Peters, “Deep generative models in robotics: A
survey on learning from multimodal demonstrations,” arXiv preprint
arXiv:2408.04380, 2024.

[2] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion policy: Visuomotor policy learning via action diffusion,” in
Robotics: Science and Systems (R:SS), 2023.

[3] A. Prasad, K. Lin, J. Wu, L. Zhou, and J. Bohg, “Consistency policy: Ac-
celerated visuomotor policies via consistency distillation,” in Robotics:
Science and Systems (R:SS), 2024.

[4] M. Reuss, M. Li, X. Jia, and R. Lioutikov, “Goal-conditioned imitation
learning using score-based diffusion policies,” in Robotics: Science and
Systems (R:SS), 2023.

[5] S.-F. Chen, H.-C. Wang, M.-H. Hsu, C.-M. Lai, and S.-H. Sun, “Dif-
fusion model-augmented behavioral cloning,” in Intl. Conf. on Machine
Learning (ICML), 2024.

[6] Y. Ze, G. Zhang, K. Zhang, C. Hu, M. Wang, and H. Xu, “3D
diffusion policy: Generalizable visuomotor policy learning via simple
3D representations,” in Robotics: Science and Systems (R:SS), 2024.

[7] J. Yang, Z. Cao, C. Deng, R. Antonova, S. Song, and J. Bohg, “Equibot:
SIM(3)-equivariant diffusion policy for generalizable and data efficient
learning,” in Conference on Robot Learning (CoRL), 2024.

[8] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs,
A. Wong, J. Lee, I. Mordatch, and J. Tompson, “Implicit behavioral
cloning,” in Conference on Robot Learning (CoRL), 2022.

[9] N. M. Shafiullah, Z. Cui, A. A. Altanzaya, and L. Pinto, “Behavior
transformers: Cloning k modes with one stone,” in Neural Information
Processing Systems (NeurIPS), 2022.

[10] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni,
L. Fei-Fei, S. Savarese, Y. Zhu, and R. Martı́n-Martı́n, “What matters
in learning from offline human demonstrations for robot manipulation,”
in Conference on Robot Learning (CoRL), 2022.

[11] C. Luo, “Understanding diffusion models: A unified perspective,” arXiv
preprint arXiv2208.11970, 2022.

[12] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
in Neural Information Processing Systems (NeurIPS), vol. 33, 2020, pp.
6840–6851.

16

[13] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,”
in Intl. Conf. on Learning Representations (ICLR), 2020.

[14] C.-W. Huang, M. Aghajohari, J. Bose, P. Panangaden, and A. Courville,
“Riemannian diffusion models,” in Neural Information Processing Sys-
tems (NeurIPS), 2022.

[15] Y. Lipman, R. T. Chen, H. Ben-Hamu, M. Nickel, and M. Le, “Flow
matching for generative modeling,” in Intl. Conf. on Learning Repre-
sentations (ICLR), 2022.

[16] R. T. Chen and Y. Lipman, “Riemannian flow matching on general
geometries,” in Intl. Conf. on Learning Representations (ICLR), 2023.

[17] M. Braun, N. Jaquier, L. Rozo, and T. Asfour, “Riemannian flow
matching policy for robot motion learning,” in IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems (IROS), 2024, pp. 5144–5151.

[18] A. Lemme, Y. Meirovitch, M. Khansari-Zadeh, T. Flash, A. Billard,
and J. J. Steil, “Open-source benchmarking for learned reaching motion
generation in robotics,” Paladyn, Journal of Behavioral Robotics, vol. 6,
no. 1, 2015.

[19] C. I. Sprague, A. Elofsson, and H. Azizpour, “Stable autonomous flow
matching,” arXiv preprint arXiv2402.05774, 2024.

[20] ——, “Incorporating stability into flow matching,” in ICML Workshop
on Structured Probabilistic Inference & Generative Modeling, 2024.

[21] J. LaSalle, “Some extensions of Liapunov’s second method,” IRE
Transactions on Circuit Theory, vol. 7, no. 4, pp. 520–527, 1960.

[22] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and
B. Lakshminarayanan, “Normalizing flows for probabilistic modeling
and inference,” Journal of Machine Learning Research, vol. 22, no. 57,
pp. 1–64, 2021.

[23] M. A. Rana, A. Li, D. Fox, B. Boots, F. Ramos, and N. Ratliff,
“Euclideanizing flows: Diffeomorphic reduction for learning stable
dynamical systems,” in Learning for Dynamics and Control (L4DC).
PMLR, 2020, pp. 630–639.

[24] S. A. Khader, H. Yin, P. Falco, and D. Kragic, “Learning stable
normalizing-flow control for robotic manipulation,” in IEEE Intl. Conf.
on Robotics and Automation (ICRA), 2021, pp. 1644–1650.

[25] J. Urain, M. Ginesi, D. Tateo, and J. Peters, “Imitationflow: Learning
deep stable stochastic dynamic systems by normalizing flows,” in
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2020,
pp. 5231–5237.

[26] J. Urain, D. Tateo, and J. Peters, “Learning stable vector fields on
lie groups,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp.
12 569–12 576, 2022.

[27] J. Zhang, H. Beik Mohammadi, and L. Rozo, “Learning Riemannian
stable dynamical systems via diffeomorphisms,” in Conference on Robot
Learning (CoRL), 2022.

[28] L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang,
B. Cui, and M.-H. Yang, “Diffusion models: A comprehensive survey
of methods and applications,” ACM Comput. Surv., vol. 56, no. 4, 2023.

[29] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine, “Planning with
diffusion for flexible behavior synthesis,” in Intl. Conf. on Machine
Learning (ICML), 2022.

[30] Z. Wang, J. J. Hunt, and M. Zhou, “Diffusion policies as an expres-
sive policy class for offline reinforcement learning,” in Intl. Conf. on
Learning Representations (ICLR), 2023.

[31] Y. Song, P. Dhariwal, M. Chen, and I. Sutskever, “Consistency models,”
in Intl. Conf. on Machine Learning (ICML), 2023.

[32] G. Lu, Z. Gao, T. Chen, W. Dai, Z. Wang, and Y. Tang, “Manicm: Real-
time 3d diffusion policy via consistency model for robotic manipulation,”
arXiv preprint arXiv:2406.01586, 2024.

[33] Z. Wang, Z. Li, A. Mandlekar, Z. Xu, J. Fan, Y. Narang, L. Fan,
Y. Zhu, Y. Balaji, M. Zhou et al., “One-step diffusion policy: Fast
visuomotor policies via diffusion distillation,” in Intl. Conf. on Learning
Representations (ICLR), 2025.

[34] A. Tong, K. Fatras, N. Malkin, G. Huguet, Y. Zhang, J. Rector-
Brooks, G. Wolf, and Y. Bengio, “Improving and generalizing flow-
based generative models with minibatch optimal transport,” Trans. on
Machine Learning Research (TMLR), 2024.

[35] X. Liu, C. Gong, and Q. Liu, “Flow straight and fast: Learning to
generate and transfer data with rectified flow,” in Intl. Conf. on Learning
Representations (ICLR), 2022.

[36] A. J. Bose, T. Akhound-Sadegh, K. Fatras, G. Huguet, J. Rector-Brooks,
C.-H. Liu, A. C. Nica, M. Korablyov, M. Bronstein, and A. Tong,
“SE(3)-stochastic flow matching for protein backbone generation,” in
Intl. Conf. on Learning Representations (ICLR), 2023.

[37] A. Davtyan, S. Sameni, and P. Favaro, “Efficient video prediction via
sparsely conditioned flow matching,” in Intl. Conf. on Computer Vision
(ICCV), 2023, pp. 23 263–23 274.

[38] V. T. Hu, W. Yin, P. Ma, Y. Chen, B. Fernando, Y. M. Asano, E. Gavves,
P. Mettes, B. Ommer, and C. G. M. Snoek, “Motion flow matching for
human motion synthesis and editing,” arXiv preprint arXiv:2312.08895,
2023.

[39] X. Zhang, Y. Pu, Y. Kawamura, A. Loza, Y. Bengio, D. L. Shung, and
A. Tong, “Trajectory flow matching with applications to clinical time
series modeling,” in Neural Information Processing Systems (NeurIPS),
2024.

[40] H. Lin, O. Zhang, H. Zhao, D. Jiang, L. Wu, Z. Liu, Y. Huang, and S. Z.
Li, “PPFlow: Target-aware peptide design with torsional flow matching,”
in Intl. Conf. on Machine Learning (ICML), 2024.

[41] A. H. Liu, M. Le, A. Vyas, B. Shi, A. Tjandra, and W.-N. Hsu,
“Generative pre-training for speech with flow matching,” in Intl. Conf.
on Learning Representations (ICLR), 2024.

[42] N. Funk, J. Urain, J. Carvalho, V. Prasad, G. Chalvatzaki, and J. Peters,
“Actionflow: Efficient, accurate, and fast policies with spatially symmet-
ric flow matching,” in R:SS workshop: Structural Priors as Inductive
Biases for Learning Robot Dynamics, 2024.

[43] Q. Rouxel, A. Ferrari, S. Ivaldi, and J.-B. Mouret, “Flow matching
imitation learning for multi-support manipulation,” in IEEE/RAS Intl.
Conf. on Humanoid Robots (Humanoids), 2024, pp. 528–535.

[44] E. Chisari, N. Heppert, M. Argus, T. Welschehold, T. Brox, and
A. Valada, “Learning robotic manipulation policies from point clouds
with conditional flow matching,” in Conference on Robot Learning
(CoRL), 2024.

[45] M. do Carmo, Riemannian Geometry. Birkhäuser Basel, 1992.
[46] J. M. Lee, Introduction to Riemannian manifolds. Springer, 2018, vol. 2.
[47] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on

Matrix Manifolds. Princeton University Press, 2007.
[48] N. Boumal, An introduction to optimization on smooth manifolds.

Cambridge University Press, 2023.
[49] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neu-

ral ordinary differential equations,” in Neural Information Processing
Systems (NeurIPS), 2018.

[50] K. Atkinson, An introduction to numerical analysis. John wiley & sons,
1991.

[51] J. M. Selig, Geometric fundamentals of robotics. Springer Science &
Business Media, 2007.

[52] F. Merat, “Introduction to robotics: Mechanics and control,” IEEE
Journal on Robotics and Automation, vol. 3, no. 2, pp. 166–166, 1987.

[53] X. Pennec, “Intrinsic statistics on Riemannian manifolds: Basic tools for
geometric measurements,” Journal of Mathematical Imaging and Vision,
vol. 25, pp. 127–154, 2006.

[54] F. Galaz-Garcia, M. Papamichalis, K. Turnbull, S. Lunagomez, and
E. Airoldi, “Wrapped distributions on homogeneous Riemannian mani-
folds,” arXiv preprint arXiv:2204.09790, 2022.

[55] D. Q. Mayne and H. Michalska, “Receding horizon control of nonlinear
systems,” in IEEE Conference on Decision and Control (CDC), 1988,
pp. 464–465.

[56] J. P. La Salle, “An invariance principle in the theory of stability,” Tech.
Rep., 1966.

[57] X. Mao, “Stochastic versions of the LaSalle theorem,” Journal of
differential equations, vol. 153, no. 1, pp. 175–195, 1999.

[58] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4RL: Datasets
for deep data-driven reinforcement learning,” 2020.

[59] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville, “Film:
Visual reasoning with a general conditioning layer,” in AAAI Conf. on
Artificial Intelligence, vol. 32, no. 1, 2018.

[60] K. V. Mardia and P. E. Jupp, Distributions on Spheres. John Wiley
and Sons, Ltd, 1999, ch. 9, pp. 159–192.

[61] M. Kollovieh, M. Lienen, D. Lüdke, L. Schwinn, and S. Günnemann,
“Flow matching with Gaussian process priors for probabilistic time
series forecasting,” in Intl. Conf. on Learning Representations (ICLR),
2025.

[62] H. Ben-Hamu, O. Puny, I. Gat, B. Karrer, U. Singer, and Y. Lipman,
“D-flow: Differentiating through flows for controlled generation,” in Intl.
Conf. on Machine Learning (ICML), 2024.

[63] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in Intl. Conf. on Learning Representations (ICLR), 2019.

[64] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approxima-
tion by averaging,” SIAM journal on control and optimization, vol. 30,
no. 4, pp. 838–855, 1992.

[65] N. Jaquier, L. Rozo, and T. Asfour, “Unraveling the single tangent space
fallacy: An analysis and clarification for applying Riemannian geometry
in robot learning,” in IEEE Intl. Conf. on Robotics and Automation
(ICRA), 2024, pp. 242–249.

17

[66] O. G. Younis, R. Perez-Vicente, J. U. Balis, W. Dudley, A. Davey,
and J. K. Terry, “Minari,” Sep. 2024. [Online]. Available: https:
//doi.org/10.5281/zenodo.13767625

Haoran Ding received the B.S. degree in Engi-
neering from Tongji University, Shanghai, China,
in 2021, and the M.Sc. degree in Computational
Engineering from the Technical University of Darm-
stadt, Germany, in 2024. During his master’s stud-
ies, he worked on the robot air hockey project at
the Intelligent Autonomous Systems (IAS) Group
and completed a one-year research internship at
the Bosch Center for Artificial Intelligence (BCAI),
where he conducted his master thesis. He is currently
pursuing a Ph.D. degree in the Robotics Department

at Mohamed bin Zayed University of Artificial Intelligence (MBZUAI), Abu
Dhabi, United Arab Emirates. His research interests include visuomotor policy
learning, generative models and imitation learning.

Noémie Jaquier is an assistant professor at the KTH
Royal Institute of Technology, where she heads the
Geometric Robot (GeoRob) Lab at the Division of
Robotics, Perception and Learning. She received a
B.Sc. degree on Microengineering, a M.Sc. degree
in Robotics and Autonomous Systems from the
Ecole Polytechnique Fédérale de Lausanne (EPFL)
in 2014 and 2016. She received her PhD degree
from EPFL in 2020 for her thesis “Robot Skills
Learning with Riemannian Manifolds: Leveraging
Geometry-awareness in Robot Learning, Optimiza-

tion and Control”. Prior to joining KTH, Noémie Jaquier was a postdoctoral
researcher in the High Performance Humanoid Technologies Lab (H²T) at the
Karlsruhe Institute of Technology (KIT) and a visiting postdoctoral scholar
at the Stanford Robotics Lab. Her research investigates data-efficient and
theoretically-sound learning algorithms that leverage differential geometry-
and physics-based inductive bias to endow robots with close-to-human learn-
ing and adaptation capabilities. Personal webpage: http://njaquier.ch.

Jan Peters is a full professor (W3) for Intelligent
Autonomous Systems at the Computer Science De-
partment of the Technische Universitaet Darmstadt
since 2011, and, at the same time, he is the dept head
of the research department on Systems AI for Robot
Learning (SAIROL) at the German Research Center
for Artificial Intelligence (Deutsches Forschungszen-
trum für Künstliche Intelligenz, DFKI) since 2022.
He is also is a founding research faculty member
of the Hessian Center for Artificial Intelligence. Jan
Peters has received the Dick Volz Best 2007 US PhD

Thesis Runner-Up Award, the Robotics: Science & Systems - Early Career
Spotlight, the INNS Young Investigator Award, and the IEEE Robotics &
Automation Society’s Early Career Award as well as numerous best paper
awards. In 2015, he received an ERC Starting Grant and in 2019, he was
appointed IEEE Fellow, in 2020 ELLIS fellow and in 2021 AAIA fellow.
Jan Peters has studied Computer Science, Electrical, Mechanical and Control
Engineering at TU Munich and FernUni Hagen in Germany, at the National
University of Singapore (NUS) and the University of Southern California
(USC). He has received four Master’s degrees in these disciplines as well as
a Computer Science PhD from USC. Jan Peters has performed research in
Germany at DLR, TU Munich and the Max Planck Institute for Biological
Cybernetics (in addition to the institutions above), in Japan at the Advanced
Telecommunication Research Center (ATR), at USC and at both NUS and
Siemens Advanced Engineering in Singapore. He has led research groups on
Machine Learning for Robotics at the Max Planck Institutes for Biological
Cybernetics (2007-2010) and Intelligent Systems (2010-2021).

Leonel Rozo is a lead research scientist at the Bosch
Center for Artificial Intelligence (BCAI), Germany.
He received a Bachelor degree in Mechatronics En-
gineering from the “Nueva Granada” Military Uni-
versity in Bogotá, Colombia in 2005, and a Master
degree in Automatic Control and Robotics from the
Polytechnical University of Catalonia, Barcelona,
Spain, in 2007. He carried out his PhD research
at the Institut de Robòtica i Informàtica Industrial
under the supervision of Prof. Carme Torras and Dr.
Pablo Jiménez, and received a Ph.D in Robotics from

the Polytechnical University of Catalonia in 2013. Prior to joining BCAI in
2018, Leonel Rozo led the Learning and Interaction Group at the department
of Advanced Robotics in the Italian Institute of Technology (IIT) from 2016
to 2018. He previously joined IIT in 2012, first as a research fellow and then
as postdoctoral researcher in 2013. In 2017 he was awarded an individual
Marie Skłodowska-Curie fellowship for his project proposal DRAPer. His
research has been mainly focused on exploiting machine learning techniques,
optimal control, and Riemannian manifold theory to learn robot motion skills
via human demonstrations and refinement methods such as reinforcement
learning with applications to (dual-arm) manipulation tasks and human-robot
collaboration. Personal webpage: https://leonelrozo.weebly.com.

https://doi.org/10.5281/zenodo.13767625
https://doi.org/10.5281/zenodo.13767625
http://njaquier.ch
https://leonelrozo.weebly.com

	Introduction
	Related work
	Background
	Riemannian Manifolds
	Flow Matching
	Euclidean Flow Matching
	Riemannian Flow Matching

	Flow Matching vs. Diffusion and Consistency Models

	Fast and Robust RFMP
	Riemannian Flow Matching Policy
	Stable Riemannian Flow Matching Policy
	Stable Euclidean FMP
	Stable Riemannian FMP
	Solving the SRFMP ODE

	Experiments
	Implementation Details
	RFMP and SRFMP Implementation
	Baselines
	Evaluation methodology

	Push-T Tasks
	Euclidean Push-T
	Sphere Push-T
	Influence of Integration Time Boundary

	Robomimic Benchmark
	State-based Observations
	Vision-based Observations

	Franka Kitchen Benchmark
	Real Robotic Experiments
	Experimental Setup
	Pick & Place
	Mug Flipping

	Experiments Summary

	Conclusion
	References
	Biographies
	Haoran Ding
	Noémie Jaquier
	Jan Peters
	Leonel Rozo

