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Fig. 1: We demonstrate the effectiveness of the CrossQ algorithm in combination with a Joint Target Prediction (JTP) or
Central Pattern Generator (CPG) architecture for learning omnidirectional locomotion on the MAB HoneyBadger quadruped.

Abstract— On-robot Reinforcement Learning is a promising
approach to train embodiment-aware policies for legged robots.
However, the computational constraints of real-time learning on
robots pose a significant challenge. We present a framework for
efficiently learning quadruped locomotion in just 8 minutes of
raw real-time training utilizing the sample efficiency and min-
imal computational overhead of the new off-policy algorithm
CrossQ. We investigate two control architectures: Predicting
joint target positions for agile, high-speed locomotion and Cen-
tral Pattern Generators for stable, natural gaits. While prior
work focused on learning simple forward gaits, our framework
extends on-robot learning to omnidirectional locomotion. We
demonstrate the robustness of our approach in different indoor
and outdoor environments and provide the videos and code for
our experiments at: https://nico-bohlinger.github.
io/gait_in_eight_website

I. INTRODUCTION

Legged robot locomotion has long been an important
research area in robotics, as achieving robust, agile, and
adaptable gaits in unstructured environments is a challenging
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yet essential capability for many real-world applications. Tra-
ditional model-based controllers [1], [2], while effective in
well-structured settings, often struggle to handle the inherent
uncertainties and dynamic variations encountered in real-
world terrains. In contrast, Deep Reinforcement Learning
(DRL) offers a promising paradigm that allows robots to
autonomously acquire locomotion skills directly through
interaction with the environment. In recent years, DRL has
shown remarkable success in learning complex and agile
locomotion skills for many different legged robots [3], [4],
such as high-speed running [5], [6], jumping and climbing in
parkour-like courses [7], [8], navigating through challenging
terrain [9], [10], and performing handstands and backflips
[8], [11]. However, these works rely on scaling up on-
policy DRL algorithms, mainly Proximal Policy Optimiza-
tion (PPO) [12], through thousands of parallel simulated
environments with GPU-based physics engines [13]. While a
plethora of domain randomization is necessary to zero-shot
transfer policies trained in simulation to the real world [14],
[15], this creates a significant embodiment gap between the
widely randomized and approximated dynamics of the sim-
ulated robot and the specific, nuanced dynamics of the real
robot. On-robot learning promises to bridge the embodiment
gap by learning directly on the real system. This enables the
DRL agent to be aware of its physical embodiment and the
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specific hardware constraints. It can continuously adapt to
changes, such as wear and tear, battery depletion, hardware
modifications, or environmental changes. Recent advances in
off-policy DRL have made first steps toward this paradigm by
improving the learning efficiency enough to enable training
quadruped locomotion in real-time directly on the robot [16],
[17], [18]. However, these works must simplify the learning
task to plain forward locomotion with a fixed target velocity.
They only achieve crawling gaits and rely on powerful
laptops with dedicated GPUs to run the training process
fast enough to be feasible. Our goal is to lift computational
constraints by improving the learning efficiency and update
speed with the recently proposed CrossQ DRL algorithm [19]
and extend the learning task to omnidirectional locomotion,
allowing any desired velocity in the zy-plane.
Our main contributions are as follows:

o We introduce an efficient on-robot learning framework
based on CrossQ

o We learn forward and omnidirectional locomotion while
reaching higher maximum velocities, training signifi-
cantly faster, and doubling the action frequency com-
pared to previous works.

o We investigate and compare two control architectures
based on Joint Target Prediction (JTP) and Central
Pattern Generators (CPGs), highlighting the trade-offs
between achieving aggressive, high-speed gaits and
maintaining stable, natural locomotion with high foot
clearance.

e« We provide comprehensive empirical evaluations in
simulation and in two real-world environments, demon-
strating the practical viability and effectiveness of our
framework.

II. PRELIMINARIES

In this section, we introduce the necessary background and
notational foundation for the remainder of the paper. First, we
describe the Reinforcement Learning (RL) framework and
efficient algorithms to learn in it. Then, we introduce the
quadruped robot platform used in our experiments in both
simulation and the real world.

A. Reinforcement Learning

We formulate the problem of learning on-robot locomotion
as training an RL agent that interacts with an environment
defined by a Partially Observable Markov Decision Process
(POMDP) M = (S, A,0,P,0O,R,~), where S is the state
space, A is the action space, O is the observation space, P
is the transition dynamics, O is the observation function,
R is the reward function, and ~ is the discount factor.
Due to partial observability and noisy sensors, the agent
does not have access to the true state of the environment
s € S, but instead receives observations o € @. To learn
a control policy 7(alo) that solves the POMDP, the agent
needs to explore the environment sufficiently. Therefore,
we employ the Maximum Entropy RL framework [20].
The goal is to learn a policy that maximizes the expected
discounted return while also maximizing the entropy of the

policy J(m) = Erur Do (re — aH(m(:|0s)))], where
7 = (09,a0,70,01,01,71,-..) 18 a trajectory generated by
rolling out the policy 7 in the environment and H (7 (-|ot))
and « are the entropy of the policy and the temperature
parameter, respectively.

B. Efficient model-free off-policy Reinforcement Learning

Soft Actor-Critic (SAC) [21] is a popular choice of model-
free off-policy DRL algorithms for tasks with continuous
state-action spaces. SAC is an actor-critic algorithm, formu-
lated for the Maximum Entropy RL framework. As such, it
learns a soft Q-function

Q7 (0,a) = Err 227207 (e — alog m(aglor))],

with o9 = o0 and a9 = a, which models the expected
discounted return of a policy 7 when taking action a based
on the current observation o. This is done by minimizing
the Bellman error [QF(0r,ar) — 7t — YQF (0111, ar1)]%.
Simultaneously, SAC learns a parameterized policy mg(alo),
with the objective of maximizing expected discounted return

0 = arg max Q% (0,mp(0)).

To reduce the number of environment interactions, authors
have mainly proposed to increase the Update-To-Data (UTD)
ratio, which refers to the number of gradient updates per-
formed per agent environment interaction [22], [23], [24],
[25]. Naturally, this results in increased compute costs and
wall-clock time, which can be problematic for on-robot
learning in real-time, especially on a constrained compute
budget. Previous work on on-robot learning for quadruped
locomotion has relied on the Dropout Q-Functions (DroQ)
algorithm [25] with a UTD ratio of 20 [16], [17] to achieve
sample-efficient but compute-intensive learning.

In this work, we build on the recently proposed CrossQ
algorithm [19] that is based on SAC and achieves state-
of-the-art sample efficiency while maintaining the original
UTD of 1. The authors achieve this by carefully using
Batch Normalization (BN) [26] within the critic network and
removing target networks. The main insight is to compute the
BN statistics on the joint current state-action (o, a) and next
state-action (o', a’ ~ my(0’)) distribution. In practice, this is
implemented via a joint forward pass of the current and next
state-action batches through the Q-function.

C. Quadruped platform

All experiments were performed on the HoneyBadger
4.0 quadruped robot from MAB Robotics (Figure 2), a
12DoF platform with three actuated joints per leg. The
robot measures 60 cm in length, 40 cm in width and height,
and has a mass of 12kg. Each joint is driven by a torque-
controlled, quasi-direct drive actuator with a 9:1 gear ratio
while weighing 0.5kg each. The actuators are controlled
by MAB MDS8O servo drives and deliver a nominal torque
of 9Nm and a peak of 18 Nm. Furthermore, the robot is
equipped with a dual-computer system, a VectorNav VN-100
AHRS IMU, and is powered by a 42V Li-lon battery. The
robot’s software is built on ROS 2 that enables the necessary
low-level joint control for our experiments.
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Fig. 2: MAB Robotics HoneyBadger quadruped robot in the
real world (left) and in the MuJoCo simulation (right).

III. EFFICIENT ON-ROBOT LEARNING FOR
LEGGED LOCOMOTION

We propose learning legged locomotion directly on the
HoneyBadger quadruped robot using the CrossQ algorithm
and a carefully designed learning framework. First, we define
the task setting and reward design for learning forward and
omnidirectional locomotion. Then, we introduce two control
architectures based on JTPs and CPGs to efficiently learn
agile, stable and natural gaits.

A. Locomotion tasks & reward design

We first consider the task of learning forward locomotion
only as a simplified version of the full locomotion task, since
it is commonly used in on-robot locomotion learning [16],
[17], [18]. We formulate the task as learning to track a
desired z-velocity v, € R with the robot’s trunk. The reward
function is designed to encourage the robot to move in a
straight line forward at the target velocity while keeping the
body orientation upright and minimizing energy consumption
by penalizing high torques. Ablations on the reward function
can be found in appendix C. Besides tracking a desired
velocity, we also consider training the robot to walk forward
as fast as possible and change the reward function to simply
encourage higher forward velocity while penalizing any
velocity in the y-direction. Finally, forward-only locomotion
with a fixed target velocity is a common limitation when
learning on-robot locomotion, therefore, we extend the task
to omnidirectional locomotion by considering random de-
sired velocities in the xy-plane v,, € R? Although we
omit a target yaw velocity, this setting matches the sim2real
literature in robot locomotion more closely [27] and enables
a more versatile gait. We modify the tracking reward to also
consider the y-velocity by penalizing any deviation from the
target velocity in the y-direction. Table I summarizes the
reward functions for the fixed forward, maximum forward,
and omnidirectional locomotion tasks, defined by 7yackxs
Tmax-x> aNd Ttackxy, TESpPECtively.

One of the main challenges of training RL policies directly
on a real robot is the availability of key quantities needed
in reward terms and the inherent noise in estimates of
these quantities. Unlike in simulation, where the complete
and true state of the robot is readily available, real-world
experiments must rely on state estimation techniques that
introduce significant uncertainty through sensor noise and
may not provide all the necessary information to begin with.
We limit our reward function to rely only on proprioceptive
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Fig. 3: Comparison of the linear x-velocity estimation with
only integrating the acceleration data from the IMU with a
Kalman filter, with the Kalman filter fusing of the accelera-
tions and the leg odometry, and the ground truth.

information, such as accurate torque measurements from
the joint encoders and noisy data from the onboard IMU.
The orientation of the trunk is estimated by fusing the
magnetometer and accelerometer data. For the linear velocity
of the trunk, we use a Kalman filter to fuse the acceleration
data with the averaged hip velocity inferred from a leg
odometry module that relies on the forward kinematics of the
robot. The linear velocity estimation is the most crucial part
of the robot state, as it is the main reward signal driving the
learning process, but also the most challenging to estimate
accurately due to the lack of foot contact sensors on the
robot and the integration of noisy acceleration data. Figure 3
shows that integrating only acceleration data works well after
an initial calibration but is prone to drift away from the
ground truth after a few seconds. Combining the acceleration
data with the leg odometry grounds the estimation. This
prevents significant drift in the estimates, but systematically

TABLE I: We build upon the tracking reward 7yackx from
[18] and add penalty terms for improving the gait quality
and energy efficiency. v;, vy, and v, are the x-, y-, and
combined xy-velocity of the trunk of the robot, respectively.
(R(0) " vgy), is the y component of the trunk velocity
rotated into the target direction defined by the target velocity
Ugy. 0 is the orientation and w is the angular velocity of the
trunk. 7 is the torque applied to the joints.

Reward Term

1, for vy € [Ug, 20s]
Ttrack-x 0, ) for vy € (—00, —Uz| U [40,, 00)

1- w otherwise

V.
T'max-x Vg — ‘Uy|
Ttrack-xy Ttrack-x — ‘(R(O)T Uzy) ‘
Yy

Tyaw |ewyaw[?
Tupright ‘gpitch, roll |2
Tenergy |7[?

T'total-track-x max (T irack-x — 0.17ryaw — 107upright — 0.00037energy, 0)

Ttotal-max-x max(2rmaxx — 0.17yaw — 107ypright — 0.00037energy, 0)

T'total-track-xy ma'x(rtrack-xy — 0.1ryaw — 10Tuprighl — 0.00037energy s 0)




underestimates the velocity due to the lack of foot contact
sensors, which requires the assumption that all four feet are
always in contact with the ground. In general, the learning
process is always restricted by the quality of the linear
velocity estimation and the ability of the RL algorithm to
extract useful information from the noisy and biased signal.
A motion capture system could provide a more accurate
estimate of the linear velocity [28] but is only available
in a controlled lab setting and, hence, is not suitable for
experiments in uncontrolled environments, such as outdoors.

B. Control architecture

The first control architecture that we consider is the JTP,
which is commonly used in different variations in legged
robot locomotion [13], [16], [17]. Here, the actions of the
policy ayrp € [—¢, ] are offset joint angles to a nominal
standing position ¢™™" and are clipped to a maximum
deviation of ¢. This ensures a minimal but sufficient joint
range for learning a viable gait quickly by reducing the
search space of the policy. The resulting target joint angles
qieet = grominal 4 g rp are first processed by a filter before
being tracked by a PD controller. The filter manages the
Gaussian noise used for policy exploration during the early
training phase. Without filtering, early policies exhibit unco-
ordinated, jittery movements, leading to inaccurate velocity
estimation and oscillations that hurt the learning process and
compromise the robot’s safety. Although the low-pass filter
is a common choice for smoothing trajectories [29], [16],
[17], it also reduces the system’s responsiveness to sudden
changes, thereby decreasing the robot’s potential agility and
speed. Therefore, we employ the One-Euro filter [30] as it
can significantly enhance responsiveness by balancing the
trade-off between low-pass filtering during low velocities and
no filtering after a velocity threshold. Ablations on the choice
of the filter can be found in appendix C.

The second control architecture we consider uses the CPG
framework originating from biology [31], where rhythmic
patterns are generated by neural circuits in the spinal cord
of animals. In robot locomotion, CPGs provide an intuitive
formalism to define natural gaits by generating smooth,
periodic trajectories for the robot’s feet [32], [33], [34]. We
configure a CPG to generate a stable in-place trot pattern by
defining sinusoidal feet height trajectories pcpg = [f(:)]1;
using a spline function

Ft) = h(=2t} + 3t3), t; € [0,7/2)
Ykt =32+ 1), ti€n/2,7)

where ¢; is the normalized phase of the gait cycle of the
i-th foot with a fixed frequency. In case of the trot gait,
the phases of the right and left legs are shifted by /2.
The maximum foot height h is set to 0.15m, which we
empirically validated on the HoneyBadger for robustness
on rough terrain with slight inclinations (up to 3°). The
action of the policy acpg = [2:, i, z;]}_; modifies the CPG
trajectory by predicting an offset position in the Cartesian
space for each foot. Similarly to JTP, the predicted offsets are
restricted to a Cartesian subspace to reduce the complexity

of exploration. The final feet positions are calculated by p =
PcpG + aceg, SO they can be converted to the corresponding
joint angles using analytical inverse kinematics and applied
using a PD controller. While the CPG provides a stable
in-place trot, the RL policy refines this gait, enabling the
robot to walk in any direction and dynamically adapt to the
environment.

In both control architectures, the agent has access to the
following observations: joint angles, joint velocities, previous
action, linear and angular accelerations of the trunk, linear
and angular velocities of the trunk, desired trunk velocity,
and the gravity vector. As discussed for the reward function,
the linear velocities of the trunk are crucial for the learning
process, but are the most noisy and biased estimates of the
observations. For the CPG approach, the observation space
is extended to include the normalized CPG phase variable
[11,12] € [0, 1], which tracks the current progress within the
gait cycle for the right and left legs.

IV. EXPERIMENTAL RESULTS

In this section, we empirically evaluate our framework in
both simulation and on the real HoneyBadger robot. The
simulation results compare CrossQ with state-of-the-art off-
policy methods in our locomotion setting, focusing on learn-
ing efficiency and stability. Building on these insights, real-
world experiments in different environments demonstrate
the practical viability of our framework and compare the
performance of the proposed control architectures.

A. Simulation

Before we deploy our learning framework on the real
robot, we first evaluate and ablate its performance in simu-
lation. We use the MuJoCo physics engine [35] to simulate
the HoneyBadger robot (see Figure 2) and the locomotion
tasks on flat terrain with randomized action delays. We build
on the DRL library RL-X [36] to integrate the simulation
environment with the algorithm in JAX, and to run the
experiments with 10 seeds for each setting.

First, we perform an ablation study on the learning effi-
ciency of CrossQ [19] by comparing it to other off-policy
algorithms, namely SAC [21], Aggressive Q-Learning with
Ensembles (AQE) [37], Randomized Ensembled Double Q-
Learning (REDQ) [24], and DroQ [25]. We use the default
hyperparameters proposed in the original papers and the
same network sizes for all algorithms. For the UTD ratio,
we use 1 for CrossQ, 1 and 20 for SAC, 5 for AQE, and
20 for REDQ and DroQ. Appendix A summarizes all hyper-
parameter choices. We evaluate the algorithms on learning
forward locomotion with a target velocity of v, = 0.5m/s
and combine them with the JTP control scheme. Figure 4
highlights the superior learning speed of CrossQ compared to
the other algorithms in terms of environment steps and pure
training time. CrossQ learns a good locomotion policy after
1 minute of training, while DroQ, the second-best algorithm
and used in previous works [16], [17], requires close to 5
times more training time to reach the same performance.
During the evaluation, the final gait of CrossQ appears to be
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Fig. 4: Top — Learning curves of the different algorithms
in terms of return over environment steps (left) and runtime
(right). Bottom — Number of falls (left) and squared action
rate norm (right) during training.

smoother, which is reflected in the squared action rate norm
Z?"ms la] — a]_;|?, which is significantly lower for CrossQ
compared to the other algorithms. Importantly, CrossQ also
achieves the lowest number of falls during training. The
lower action rate norm and the fall rate indicate a better-
tempered exploration strategy, which we hypothesize to be
due to the removal of target networks, leading to more
accurate value estimates. Fewer falls are highly beneficial
for real-world experiments later on, as every fall requires
manual intervention and can lead to hardware damage.

Next, we compare the two control architectures: JTP
and CPG. We train both using CrossQ and first evaluate
their ability to learn high-speed agile locomotion on the
maximum forward velocity task. Figure 5 shows that JTP
reaches a maximum forward velocity of 1.5m/s at the end
of training, while the CPG achieves only around 0.75 m/s.
This is expected, as the JTP has more direct control over
all joints and can learn a more aggressive gait. However,
the learning process with the CPG is much more stable and
leads to zero falls during training, while the JTP approach
falls multiple times. When training the agent on the target
forward velocity task with v, = 0.5m/s, both approaches
learn to track the target velocity quickly and show a similar
end performance. Using the CPG leads to a smaller variance
in the learning curves and no falls during training.

Finally, we evaluate the omnidirectional locomotion task
with target velocities ¥, independently sampled from
U(—0.5,0.5) for x and y. Figure 5 shows that the CPG
learns to track target velocities in both directions, while the
JTP struggles to learn the task at all and falls up to 30
times during training. It should be noted that we were able
to help the JTP approach learn by applying a curriculum
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Fig. 5: Top left — Average maximum velocity reached in
an episode during training on 7p,.x. Top right — Number
of episodes terminated due to falls during the maximum
velocity training. Bottom left — Average return on the target
forward velocity task. Bottom right — Absolute tracking error
of the target velocity on the omnidirectional task.
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Fig. 6: Footstep patterns of the learned policies for the
JTP (left) and CPG (right) approaches.

[38] strategy on the sampled target velocities based on the
tracking error, but we omit this strategy, as noisy estimates
of the tracking error in real-world experiments make it
unreliable. We refer the reader to appendix B for details.

In summary, in our experiments the CPG approach is more
stable and robust. It does not fall at all during training and its
initial trot pattern is easily adaptable for the policy to learn
omnidirectional locomotion. The JTP approach, on the other
hand, learns more agile and aggressive gaits and can achieve
higher velocities. This difference in gait style can also be
seen in the different footstep patterns shown in Figure 6.
The agile JTP policies produce more irregular patterns and
higher frequency gaits, compared to the CPG ones with a
fixed gait frequency.

B. Real-world

We evaluate our learning framework on the real Honey-
Badger robot in two settings: a small office environment that
provides a smooth, level surface with low friction and no
obstacles, and a spacious outdoor environment with uneven



cobblestone terrain, high friction, and small obstacles. The
experiments for the forward locomotion task are carried out
in both environments, while learning omnidirectional loco-
motion is only evaluated outdoors due to space constraints
in the office environment (see Figure 1). The training is
performed on a M3 MacBook Pro that is directly connected
to the robot via Ethernet and ROS 2. In contrast, previous
works rely on a laptop with a dedicated NVIDIA GPU [16],
[17]. Furthermore, we can double the action frequency of our
policy to 40 Hz, compared to 20 Hz used in previous works
[16], [17], due to the reduced update time of CrossQ with
the UTD ratio of 1 and the removal of the target network.
Like in simulation, we train the policies for 20,000 steps
which corresponds to 500 seconds or around 8 minutes of
raw training time. For the omnidirectional locomotion task,
we increase the training time to 50,000 steps to handle the
increased difficulty of the task. The actual training duration is
significantly longer due to the need for manual intervention,
including resetting the robot after falls, reorienting it when
it reaches the boundaries of the training area and additional
safety triggers that prevent the robot from damaging itself
(e.g., joints being close to their angle limits). We note that
using a self-resetting policy that can recover from falls au-
tonomously and is learned prior to the main task could reduce
the training time of our experiments [16]. After training,
we evaluate the performance of the agent by removing the
exploration noise and rolling out the deterministic policy.
First, we evaluate learning forward locomotion in the
indoor office environment. In addition to combining CrossQ
with the JTP and CPG control architectures, we also include
a SAC baseline with a UTD ratio of 20, a low-pass filter
and using the JTP approach. The results of this and all the
following real world experiments are summarized in Table II.
The SAC baseline was only able to reach a very low velocity
of 0.013m/s and learned a strategy of heavily jumping with
the front legs, leading to harsh movements and poor grip

TABLE II: Comparing real-world experiments with different
environments, tasks and control architectures. Eval. Vel.:
Maximum velocity reached during evaluation. For omnidi-
rectional locomotion, separate x and y velocities are reported.
Yaw Ctl.: Deviation from initial yaw orientation. Very Good
(<10°), Good (10° — 30°), Medium (30° — 60°), Poor (>
60°). Nr. Falls: Total number of falls during training. Durat.:
Time required to complete the training and evaluation.

App. Eval. Velocity Yaw Ctl. Nr. Falls Durat.
Office: Forward Locomotion

SAC 0.013 m/s Poor 43 40 min
JTP 0.85m/s Medium 15 25 min
CPG 0.3m/s Good 38 30 min
Outside: Forward Locomotion

JTP 0.25m/s Good 19 19 min
CPG 0.33m/s Very Good 39 17 min
Outside: Omnidirectional Locomotion

JTP N/A N/A 6 25 min
CPG x: 0.25m/s, y: 0.15m/s Poor 43 33 min

on the ground. This resulted in the robot being unable to
learn a straight and stable gait. The training took up to 40
minutes to complete, due to the 20 Hz action frequency
limited by the high UTD ratio and a total of 43 falls during
training. CrossQ with the JTP approach and a One-Euro filter
was able to reach a maximum velocity of 0.85m/s after
completing the training in 25 minutes with only 15 falls,
which is the fastest gait learned in a few minutes directly on
a quadruped robot to our knowledge. The agent initially took
small steps while maintaining balance, gradually improving
its gait, and increasing its step size over time. Although the
agent developed a fast-paced trotting strategy, it struggled
with occasional backward falls and walking in a straight
line. CrossQ with the CPG reached a maximum velocity of
0.3 m/s after 30 minutes of training with 38 falls. The CPG
triggered our safety constraints regularly, which led to many
unnecessary falls, nevertheless the agent was able to learn a
straight and stable gait with high foot clearance.

Next, we test the forward locomotion task in the outdoor
environment, which introduces additional complexity due to
uneven cobblestones, increased friction, and small obstacles
such as curbs. The JTP approach reached a maximum veloc-
ity of 0.25 m/s after 19 minutes of training with 19 falls. The
agent initially focused on balancing its trunk by deliberately
falling backward to prevent tipping forward, but over time
leveraged front-leg coordination to maintain stability. This
initial focus on balance led to a slower final gait speed, but
the agent was able to adapt to terrain variations effectively.
The CPG approach reached a maximum velocity of 0.33 m/s
after 17 minutes of training with 39 falls. The final policy
showed robustness against environmental disturbances and
avoided unnecessary safety activations after an initial phase
of struggle with inclinations.

The omnidirectional locomotion experiment introduced
random target velocities in both the z- and y-direction.
Due to the strong noise and drifting in the linear velocity
estimation, curriculum learning was not feasible, requiring
the agent to adapt without a difficulty progression for the
target velocities. Like in simulation, the JTP was unable to
learn with the full range of target velocities in the xy-plane
and failed to achieve any meaningful directional movement,
resorting to a standing behavior. The CPG achieved a max-
imum velocity of 0.25m/s in the x-direction and 0.15m/s
in the y-direction after 33 minutes. After overcoming early
instabilities that resulted in 43 falls, the agent adapted to
the outdoor environment, achieving forward, left, and right
movements during the evaluation. However, the learned gait
was not perfectly straight and the maximum velocities fell
short of the target velocities, leaving room for future work.

In summary, like in simulation, the JTP control architec-
ture proved to be more agile, while the gait of CPG looked
more natural and had better yaw control. But unlike in simu-
lation, the CPG suffered from triggering the joint limit safety
constraints, leading to more terminations during training.
Depending on the environment and the desired locomotion
task, both control architectures have their advantages and
disadvantages, with a trade-off between agility and stability.



V. CONCLUSION

In this work, we presented a framework for efficiently
learning quadruped locomotion directly on the HoneyBadger
quadruped robot using the CrossQ algorithm. Our approach
leverages CrossQ’s sample efficiency and minimal compute
overhead to achieve maximum velocities of up to 0.85m/s
in just 8 minutes of raw training. We combine CrossQ with
two control architectures: a JTP scheme for agile, high-
speed gaits and a CPG scheme for stable, natural gaits.
Lastly, we extended on-robot locomotion learning to omni-
directional locomotion with different target velocities in the
zy-plane. Our real-world experiments in indoor and outdoor
environments showed the practicality of our framework and
the robustness of the learned policies to terrain variations
and sensor noise. Future work will focus on improving the
linear velocity estimation with visual-inertial odometry [39],
exploring visual observations, algorithmic improvements of
the base algorithm [40] and fine-tuning powerful pre-trained
policies from simulation to adapt to new environments and
the specific robot embodiment that is changing through wear
and tear or hardware modifications.

APPENDIX

A. Learning and filtering hyperparameters

We summarize the hyperparameters for the different off-
policy algorithms used for the experiments in Table III. The
parameters for the action filtering are listed in Table IV.

TABLE III: Hyperparameter Configurations

Parameter SAC SAC-20 DroQ REDQ AQE CrossQ
Learn. Rate  0.003 0.003 0.001  0.0003 0.0003 0.005
Batch Size 256 256 256 256 256 128
Frequency 20Hz 20Hz 20Hz 20Hz 20Hz 40Hz
Neurons 256, 256
Nr. critics 2 2 2 10 10 2
Gamma 0.99
Optimizer Adam
UTD ratio 1 20 20 20 5 1
TABLE 1V: Filter Parameters

Parameter None Low-pass filter One-Euro filter

mincutoff - 0.4 2.5

beta - - 0.1

dcutoff - - 100

B. Omnidirectional curriculum

To enable the JTP approach to learn omnidirectional loco-
motion, we introduce a curriculum strategy. The curriculum
is designed to systematically guide the learning agent from
easy-to-learn backward locomotion to stable omnidirectional
movement in the xy-plane. We model movement direc-
tions as a circular space, partitioned into two half-circles,
representing leftward and rightward directions. Each half-
circle is further divided into multiple bins, corresponding

to incremental directional expansions. Initially, the agent is
trained exclusively in backward movement, exploiting its
natural tendencies. As training progresses, adjacent bins are
sequentially introduced, expanding the range of movement
directions the robot can reliably execute. Performance track-
ing determines the progression of the curriculum. Each bin
is considered learned once the robot achieves at least 95% of
the target velocity over an episode. Once the robot satisfies
these conditions for a given bin, the curriculum introduces
the next adjacent bin, continuing until the full circle of
movement directions is covered. When selecting a bin, a
specific direction within it is uniformly sampled to ensure
full coverage.

C. Filter and reward ablations

We carry out ablation studies to investigate the impact
of different filter setups and reward terms on the learning
performance. The filter setups are compared in Figure 7,
showing the average return and the number of falls for the
One-Euro filter, the low-pass filter, and no filtering. The One-
Euro filter achieves a balance between the high performance
of no filtering and the low amount of falls of the low-pass
filter.

Different compositions of reward terms are compared
in Figure 8, illustrating the impact of additional reward
penalties, especially on the number of falls during training,
while maintaining the same target velocity. The additional
penalties significantly reduce the amount of falls, achieving
a 50% reduction compared to only using the tracking reward
terms.
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Fig. 7: Ablation study of filter setups, illustrating their impact
on the average return (left) and the number of falls (right).
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Fig. 8: Ablation of reward terms, showing the impact on the
achieved velocity and the number of falls during training.
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