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Abstract— The field of robotic manipulation has advanced
significantly in recent years. At the sensing level, several novel
tactile sensors have been developed, capable of providing accu-
rate contact information. On a methodological level, learning
from demonstrations has proven an efficient paradigm to obtain
performant robotic manipulation policies. The combination
of both holds the promise to extract crucial contact-related
information from the demonstration data and actively exploit
it during policy rollouts. However, this integration has so far
been underexplored, most notably in dynamic, contact-rich
manipulation tasks where precision and reactivity are essential.
This work therefore proposes a multimodal, visuotactile imita-
tion learning framework that integrates a modular transformer
architecture with a flow-based generative model, enabling
efficient learning of fast and dexterous manipulation policies.
We evaluate our framework on the dynamic, contact-rich task
of robotic match lighting - a task in which tactile feedback
influences human manipulation performance. The experimental
results highlight the effectiveness of our approach and show
that adding tactile information improves policy performance,
thereby underlining their combined potential for learning dy-
namic manipulation from few demonstrations. Project website:
https://sites.google.com/view/tactile-il.

I. INTRODUCTION

Robotic manipulation still remains far from matching hu-
man dexterity and efficiency [1], [2]. A promising direction
toward closing this gap is leveraging human demonstration
data for learning robotic manipulation through imitation [3],
[4], [5], thereby actively exploiting humans’ task under-
standing and advanced manipulation capabilities. Although
numerous studies have shown that access to touch sensing
benefits human manipulation performance [6], [7], [8], the
majority of current works in imitation learning for manipu-
lation are still missing out on this modality [4], [5], [9]. This
raises the question of whether learning robotic manipulation
policies from human demonstrations could also benefit from
incorporating tactile sensing.

This work approaches this question by studying the impact
of touch sensing for learning a dynamic task, namely, igniting
matches. We argue that match lighting is a challenging
and effective testbed because the task requires dynamic
motion and compliance [10], which introduces additional
complexity compared to standard, quasi-static tasks such
as pick-and-place or insertion which have recently been
addressed with multisensory learning approaches [11], [12],
[13], [14], [15], [16]. Moreover, it is a task for which there is
evidence that the availability of touch sensing impacts human
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Fig. 1: Autonomous rollout of a policy that is conditioned on visual
and tactile observations illustrated on the left. The policy controls
the robot and, thereby, the contact configuration between the match
and striker paper. As can be seen, the policy ensures sufficient force
and velocity, resulting in successfully igniting the match. This work
highlights the importance of tactile sensing for reliably solving the
dynamic and delicate task of lighting up matches.

performance [17]. Despite the task’s relevance, to the best
of our knowledge, it has only previously been investigated
by Kronander et al. [10], who considered fixed match grasp
poses in a precisely calibrated setup without including high-
dimensional observations. Our work instead addresses more
complicated scenarios, including varying grasp poses and
striker paper orientations, while solely considering local
embodied sensing, i.e., RGB wrist-camera images, the end
effector velocity, and the information from an event-based
optical tactile sensor (cf. Fig. 1).

To address the challenges of this dynamic and intricate
manipulation task, we also introduce a multi-modal learning
from demonstrations framework. The proposed framework is
built upon an expressive multi-modal flow matching policy
[18] with a modular and efficient transformer-based policy
architecture. This combination enables reactivity through fast
real-time inference, and comparing different encoding and
training strategies given the real-world observation data. To
further restrict the human efforts for learning the task, we
emphasise learning from a few demonstrations and con-
sider only 20 available demonstrations. The experiments
demonstrate the efficiency of the proposed framework and
showcase that the visuotactile policies can robustly light up
matches across different scenarios and observation-encoding
strategies despite learning from only 20 demonstrations.
They also reveal that the vision-only policies perform worse
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throughout all evaluations. Additionally, we find that vision-
only policies can benefit from employing a masked training
procedure that exploits tactile observations during training.
The results, therefore, underline that tactile information is a
beneficial source of information for learning reliable robotic
match lighting policies from few demonstrations.

Overall, we contribute a multi-modal framework for ef-
ficiently learning robust and reliable manipulation policies
suitable for dynamic tasks such as lighting up matches.
Moreover, we present a masked training procedure that
exploits the tactile signals only during training and allows
for increased success rates of vision-only policies. Lastly, we
contribute an extensive evaluation conducted in our modular
real-world match-lighting testing environment. The experi-
ments across different policies and experiment configurations
demonstrate the competitive performance of our proposed
approach and its individual components. They also reveal that
tactile observations are important for learning performant
policies for dynamic tasks like match lighting and closely
matching the human demonstration data.

II. RELATED WORK

Artificial tactile sensors are a promising technology to ad-
vance robotic manipulation as they enable the direct sensing
of contacts [19]. Together with the emergence of commercial
[20] and open-source tactile sensors [21], [22], the field of
tactile robotic manipulation is gaining increased attention.

One approach to obtain tactile manipulation policies is
through reinforcement learning [11], [12], [23]. Since rein-
forcement learning requires exploration, learning performant
policies demands a vast amount of environment interactions.
To account for this, previous works rely on simulation, allow-
ing for fast sample generation while also mitigating the sim-
to-real gap [12], [23], [24], [25]. Alternatively, [11] presented
approaches for learning policies directly on real robots.
This, however, requires a carefully designed experiment
setup enabling autonomous exploration, as multiple hours
of real-world interactions are needed for successful policy
learning. Since our task of match lighting is challenging
to simulate, and since safety considerations hinder realizing
autonomous exploration on the real system, this work takes
a different direction. We want to efficiently learn match
lighting policies from few real-world expert demonstrations,
thereby significantly reducing the data requirements.

The field of learning robotic manipulation policies from
demonstration data [3] has lately received increasing at-
tention [4], [5], [9], [26], [27]. Several works showed the
effectiveness of training generative models based on expert
demonstrations for obtaining advanced real-world manipula-
tion [4], [5]. The field also benefits from efforts for building
effective devices for collecting human demonstrations [28],
[29]. However, the majority of works in imitation learning
focus on quasi-static manipulation tasks and only incorporate
RGB or RGBD cameras as external sensors without consider-
ing tactile information [4], [5], [9], [28]. This work follows
the current efforts and proposes an efficient and modular
multi-modal framework for learning from demonstrations by

leveraging a generative model trained as a policy. Yet, it
differs in that it considers tactile sensors as input modality
and investigates the contact-rich and dynamic manipulation
task of igniting matches. Only more recently, a few works
investigated adding tactile sensing capabilities [13], [14],
[30], [15] into imitation learning frameworks. Yet, these
works also focused on quasi-static manipulation tasks and
did not consider dynamic manipulation as we do herein.
While [13] leverages diffusion policy for policy learning
and [30], [15] use a standard mean-squared error behavioural
cloning loss, none of the works investigated a flow-matching-
based policy, which we find to be a key component for high
success rates. In a concurrent effort, [31] introduces Reactive
Diffusion Policy, which also achieves more reactive control,
however, through hierarchical decomposition, requiring ex-
plicitly training two separate policies. Furthermore, this work
introduces a masked training procedure, showcasing that
considering tactile observations during training can enhance
the inference performance of vision-only policies.

From a task-level perspective, [10] is closest related as
it also investigates learning match lighting policies from
human demonstrations. To achieve good task success rates,
they propose employing a varying stiffness controller learned
through information from a human-robot interface. Instead
of learning a variable stiffness controller, this work directly
learns a reactive policy capable of controlling the contact
forces by varying the desired target poses. Moreover, this
work extends upon [10] in that it considers a more realistic
experimental setup, including varying match poses, striker
paper orientations, and conditioning the policies onto high-
dimensional image and tactile observations.

Overall, we contribute a framework for learning visuo-
tactile robotic match lighting policies from human demon-
strations and showcasing that tactile sensing is crucial for
learning high performance policies on this dynamic task.

III. LEARNING MATCH LIGHTING POLICIES
FROM DEMONSTRATIONS

This section describes our approach for learning the
dynamic manipulation skill of lighting up matches from
few real-world expert demonstrations and deploying the
policies on the real system. In terms of sensing, this work
exclusively considers local, embodied information, i.e., the
image information from an Intel RealSense D405 camera
mounted in the robot’s wrist, an open source Evetac [22]
tactile sensor mounted within the parallel gripper, and local
velocity information (cf. Fig. 2). The following sections
detail the learning framework, the policy architecture, the
data collection, and the policy inference procedure.

A. Fast and Reactive Multi-modal Policies through Condi-
tional Flow Matching

Our multimodal policy learning framework leverages a
generative model as policy. Given the current observations,
the model should output actions close to the demonstrations.
Since the match lighting task is delicate and requires reactiv-
ity, we propose to learn a policy using flow matching [32].



Fig. 2: Method Overview. Upon retrieving the current observations,
they are first encoded individually inside the observation encoder
and brought into a common shape, i.e., each modality contributes
a latent vector of a fixed shape. These latent vectors, together with
the current action sequence & time index, then serve as the input to
the transformer architecture, which outputs velocities to iteratively
refine the action sequence through flow matching. Upon retrieving
the final desired end effector trajectory, it is sent to the robot and
tracked through a Cartesian Impedance Controller. Note that we
only apply the first action to maintain reactivity.

We learn an SE(3)-Rectified Linear flow model [9] that
generates high-quality samples within low inference times.
We impose a flow in SE(3), as the model should output the
desired future trajectory of the robot end-effector, a sequence
of N = 16 SE(3) poses, Ta = (T 1

a , . . . , T
N
a ) ∈ SE(3)N .

The idea in conditional rectified linear flow matching is
to impose a straight line path between samples from a noise
distribution at=0∼N (0, I) and samples from the dataset
at=1∈D. The intermediate waypoints of the flow are thus
defined by at=tat=1 + (1−t)at=0, t ∈ [0, 1]. The objective
is then to learn the velocity field of this path dat/dt, such
that during inference, samples can be generated by starting
from a random initial sample and iteratively refining the
sample through Euler integration given a learned estimate of
the velocity field. For our case of dealing with SE(3) action
poses that should be generated at=(pt∈R3, rt∈SO(3)),
we decouple the translational and rotational component
of the flow and obtain ṗt=(p1−pt)/(1−t) & ṙt =
(Log(r−1

t r1))/(1−t) for the velocity field. Given the train-
ing data, we then train a parameterized Flow Matching
model vθ(pt, rt,O, t), that, conditioned on the current
observation O and “action” pose, outputs translation and
rotation velocities (vθ,p ∈ R3 & vθ,r ∈ R3). The model is
trained by minimizing L = ||vθ,p−ṗt||2 + ||vθ,r−ṙt||2.
During inference, we sample actions by iteratively refining
random initial actions through pk+1=pk+vθ(pt, rt,O, t)∆t
& rk+1=rkExp(∆tvθ(pt, rt,O, t)). Note that we define the
flow for the entire action sequence of 16 poses.

B. Policy Architecture

Following the previous section, our approach employs a
parameterized SE(3)-Rectified Linear Flow matching model

for obtaining the actions. At the core of this policy is
a multimodal transformer architecture that receives obser-
vations from multiple sensors, including the RGB camera
image, the current end-effector velocity, and, when available,
observations from the Evetac tactile sensor. Transformers are
particularly suitable for this task as they can seamlessly han-
dle the multiple multimodal observations [33]. The resulting
transformer-based policy architecture is illustrated in Fig. 2.

The observations are the crucial source of information
for refining the actions. Since we later want to compare
different sensor combinations, we ensure modularity, i.e., the
individual observation modalities are first encoded individu-
ally into latent vectors of dimension 64. The first 5 entries
of this 64-dimensional vector are learnable weights that
should inform the transformer about the type of observation
modality. These latent vectors then serve as the input to a
transformer for refining the action sequence. Importantly, the
latent observations and entries of the action sequence enter
the transformer as individual tokens. The modular policy ar-
chitecture thus allows for seamlessly evaluating the policies’
performance under different observation encoders. It also en-
ables a masked training procedure that stochastically decides
upon the modalities which are available in the transformer.
The image observations are processed through a pre-trained
ResNet 18 [34] or by training the ResNet from scratch. For
the tactile observations, we consider the pre-trained model
from [22], and training this architecture from scratch. These
features (i.e., one per observation modality, one for each
action in the action sequence, and one for the current time
index) are the inputs to the transformer model, which consists
of 4 layers with 4 attention heads. Inside the transformer, the
inputs exchange information with each other and update their
embeddings through multi-head attention [35]. In its standard
implementation, all inputs exchange information with each
other (including self-connections). Herein, we configure the
transformer’s attention mask to full connectivity between
the observation tokens, while the action tokens solely cross-
attend to the observation tokens. The value of the action
tokens thus does not influence the update of the observation
tokens. This choice is made because only the observations
contain information on how to update the action sequence,
while the action sequence only contains noise, especially at
the beginning. Moreover, the self-attention within the action
tokens is configured such that action poses in the sequence
only attend to previous actions. In addition to this masking
scheme regarding the actions, in the experiments, we will
also investigate the effectiveness of employing stochastic
masking at the observation level during training. In particular,
we will train a single transformer model that is provided with
tactile observation during training with a probability of 50%.
Due to this stochasticity on the input level, the policy has to
better align the latents of the vision and touch observations
so that it can generate good outputs in both cases, i.e., when
touch is available and when it is not.

The transformer’s final output is the updated action fea-
tures representing the velocity vectors for the iterative re-
finement, which is repeated K= 5 times. After obtaining the



final action sequence, it is sent to the controller and applied
to the robot. Using this generative model as policy yields
online action generation as illustrated in Fig. 2.

C. Data Collection

Similar to [10], we collect the demonstrations through
kinesthetic teaching. This ensures that the human demon-
strator directly feels the interaction forces between match
and striker paper, and has been crucial for high task success
rates during data collection. From a task-level perspective,
to light up the match, the match tip must first be brought
into contact with the striker paper. Subsequently, the match
tip has to be moved along the striker paper while applying
sufficient force with sufficient velocity.

Figs. 1 & 2 depict the components of our real-world match
lighting environment. Throughout the demonstrations, we
record all sensor data, i.e., the image from the wrist-mounted
Intel RealSense D405 camera, an open-source Evetac [22]
tactile sensor mounted within a Robotis RH-P12-RN gripper
attached to the end effector of a 7-DoF Franka Panda,
and the local end-effector velocity information. We also
record the end-effector poses that the robot moves through.
They contain the trajectory information that the robot should
follow. Yet, we want to emphasize that the policy framework
only operates on the level of local poses expressed in the
current end effector frame. While Evetac naturally returns
asynchronous event information, for compatibility with the
other sensors, we convert the events into image form by
integrating them for every pixel for a duration of 40ms.
We also collect all the other sensor information at 25Hz.
Since the task is delicate, image (or tactile image) resolution
might be crucial. Thus, we maintain a high resolution of
320× 240 pixels. As shown in Figs. 1 & 2, for the images
of the wrist-mounted camera, we ensure that the match and
the tip of the match is fully observable during the trajectories.
Moreover, we found that using the striking surfaces of
regular paper matchboxes resulted in short durability after
a few experiments. We, therefore, decided to 3D-print a thin
rectangular plate to hold the striker paper. In its standard
configuration, the plate is raised and placed with an angle of
20◦ relative to the table (cf. Fig. 1). We used long standard
matches with dimensions of (100mm ± 5mm) × (4mm ±
1mm) × (4mm ± 1mm) to keep the fire at a sufficient
distance from the silicone surfaces of the tactile sensors
mounted inside the gripper. Lastly, we also 3D printed hollow
cylindrical cones to cover the upper 45mm of the matches.
This was necessary to significantly increase the longevity of
the silicone gels that cover the tactile sensor, which could
rip easily when in direct contact with the matches.

D. Policy Inference and Robot Control

We use the Cartesian Impedance Controller from [36] to
move the robot during the autonomous policy rollouts. We
tuned the controller’s stiffness and damping values on a few
of the collected demonstration trajectories. The gains have
been chosen such that replaying the trajectories obtained
during kinesthetic teaching yields task success when tracked

Fig. 3: Visualizing the versatility of the initial configurations during
the experiments. Left: Fixed grasp pose strategy. Middle & Right:
Two examples of the variable grasp initialization. Note how the
initializations yield different configurations w.r.t. distance and angle
between match and striker paper that the policies have to handle
for solving the task.

using this control strategy. We rely on the Robotic Operating
System (ROS) to gather the sensor observations. Policy
inference is run asynchronously, and only the first action
of the action sequence is applied by the controller before
updating the action sequence based on the most recent model
inference. The policies run online in real-time as action
generation, i.e., policy inference, only takes 0.028 s for our
largest vision+touch policies on an NVIDIA 3090 GPU.

IV. EXPERIMENTAL RESULTS

This section evaluates our proposed approach. It is struc-
tured along four main questions to investigate the importance
of tactile sensing and the effectiveness of our approach for
the dynamic manipulation task of lighting up matches: A:
How important is tactile feedback for obtaining performant
match lighting policies? B: Can the vision-only policies ben-
efit from leveraging the tactile information during training?
C: How does our proposed approach perform compared to
baselines? and D: Are the policies robust w.r.t. generalizing
to novel scenarios?

The following evaluation considers two task versions. One
in which the match is always grasped with the same pose,
and a more complicated one, where the grasping location
is varied within translational offsets of ±1 cm & rotational
perturbations of ±10 ◦ (cf. Fig. 3). For both tasks, we
collected 20 successful demonstrations within 1 hour. We
then trained our models for 500 epochs. The evaluations
report the mean performance together with the standard
deviation across task and model configurations. We trained
3 seeds per combination and evaluated the last checkpoint
through 10 rollouts on the real system.

A. How important is tactile feedback for obtaining perfor-
mant match lighting policies?

Fixed Grasp Pose. In the fixed grasp pose scenario
(cf. Fig. 3, left), the vision+touch policies outperform the
vision-only policies, achieving a mean success rate of 87%
compared to 33%, with both having a standard deviation
of 12%. Apart from the differences in success rate, Fig. 4
reveals that the rollouts of the vision+touch (also referred
to as visuotactile) policies better match the demonstration
data. The visuotactile policy evaluations better align in terms
of the timing of accelerating along the striker paper, which
corresponds to the end-effectors y-axis. This finding hints



Fig. 4: Comparing the demonstrated trajectories with trajectories
from rolling out different policies, considering the y-coordinate
of the end effector. The y-coordinate is the direction along the
striker paper in which the robot needs to accelerate to light up the
matches. Qualitatively, the vision+touch policies generate rollouts
that better match the demonstrations compared to the vision-only
policies, indicating that the tactile observations contain important
information for explaining and matching the demonstrations.

that vision-only policies struggle to precisely detect the
point in time of making contact since this indicates that the
acceleration phase along the striker paper should follow.

Variable Grasp Pose. We repeat the procedure for the
variable grasping poses (cf. Fig. 3, middle & right), yet
considering a wider class of observation encoders. In par-
ticular, we train policies with the pre-trained encoders and
either freeze or optimize them during policy training. We also
investigate training the observation encoders from scratch. As
presented in Fig. 5, in this new, more complicated scenario,
there remains a significant difference between the vision-only
and vision+touch policies in terms of success rate. Impor-
tantly, the superior performance of the visuotactile policies
holds across the observation encoding strategies, and adding
the tactile observations improves the task success rates by
at least 50%. While the best visuotactile policies achieve
an average success rate of 80%, the best performing vision-
only policies only reach success rates of up to 20%. The
visuotactile policies also reliably outperform the touch-only
baseline, demonstrating that only the combination of visual
perception from the RGB wrist-camera images and tactile
perception leads to robust policy performance. Given the
variability of the task and the selected observation modalities,
visual input is essential for reliably guiding the match tip
toward the striker paper—especially since the policy operates
solely on local end-effector velocities without access to the
global end-effector poses. However, it is the integration of
vision and touch that enables high success rates, as tactile
perception is critical for minimizing contact-related failures
and significantly improving performance.

Fig. 6 provides a more detailed comparison in that it
differentiates between different failure modes of the policies.
We consider four types of failures: 1) making contact in
the wrong location, i.e., the tip of the match not making
contact with the striker paper, 2) not making contact at all
during the policy rollout, i.e., the policy accelerating along
the striker paper but without making contact, 3) insufficient
contact force, i.e., making contact in the right location but
without sufficient force resulting in the match not lighting
up, and 4) applying too much force during the rollout, i.e.,
the policy pressing the tip of the match with too much
force against the striker paper which results in the match
sliding through the fingers. The last failure case is mainly

Fig. 5: Comparing the success rates (mean and std deviation) of
different policies on the variable grasp pose task. Across different
observation encoding strategies, the vision+touch policies consis-
tently outperform the vision-only policies by at least 50%, thereby
highlighting the importance of tactile sensing for obtaining reliable
match lighting policies. The vision+touch policies also outperform
a touch-only baseline underlining that touch alone is insufficient for
high success rates.

Fig. 6: Comparing success rates and different failure modes
(mean and std deviation) for the vision-only, touch-only, and
vision+touch policies in the variable grasp pose evaluation, for the
pretrained+refine encoding strategy (cf. Fig. 5). The vision+touch
policies reduce the failure rate by over 40%, substantially decreas-
ing contact-related failures — not applying force, applying insuf-
ficient force, or applying excessive force — compared to vision-
only policies, and also reducing wrong-contact-location failures
compared to touch-only policies.

related to the policy missing the transition between the
approaching phase of the task and the phase of accelerating
along the striker paper. As shown in the comparison, both,
the touch-only and the vision-only policies exhibit signifi-
cantly increased failure rates. Most failures of the touch-only
policies stem from making contact in the wrong location,
confirming that the task also needs spatial understanding.
The vision-only policies’ failures related to resolving the
current contact state (no contact, insufficient force & too
much force) are the most prominent ones with 27%, 17%, &
23%, respectively. In contrast, adding the tactile observations
yields significantly reduced failure rates. The few failure
cases of the vision+touch policies are mainly related to not
making contact in the right location (10%), while none of
the vision+touch policies apply too much contact force.

Lastly, Fig. 7 illustrates the evolution of the attention
weights of the individual inputs of the transformer w.r.t.
the update of the fifth action of the action sequence for
a visuotactile policy (trained using pre-trained weights but
further refining the encoder during training). In other words,
it shows how the inputs contribute to updating the action.
As can be seen, initially, the vision observation from the
RealSense is the most important modality. This is expected,
as the camera information is crucial to moving the robot
closer to the striker paper. The event-based tactile sensor
does not provide any information during this phase, as there



Fig. 7: Visualizing the evolution of the attention weights over
time for one exemplary trajectory. The bottom images show the
task progression. The plot shows the weights that are attributed
to the individual inputs of the transformer: 1) the actions, 2) the
proprioception observation (end effector velocity), 3) the tactile
observation from Evetac, and 4) the vision observation from the
Realsense camera. The weights are w.r.t. to updating the fifth action
of the desired end-effector trajectory, which is computed for every
observation along the rollout. At the beginning and end of the
trajectory (when there are no tactile signals), vision is the most
important modality. Once there are changes in contact configuration,
touch is the most important modality for action generation, therefore
highlighting that touch provides important feedback for controlling
the contact configuration.

is no change in contact configuration. However, once contact
is made, the tactile inputs gain importance and become the
most important entity. This holds true until the match ignites,
which signals successful task execution. The other inputs,
i.e., attention to the other actions and to the proprioception
observation, stay low throughout the trajectory.

Overall, based on the findings from these experiments, we
conclude that touch is a crucial sensing modality for learning
performant match lighting policies from few demonstrations,
and that it is particularily effective for reducing contact-
related failure modes of vision-only policies.

B. Can the vision-only policies benefit from leveraging tac-
tile information during training?

While the previous section showed the importance of
conditioning the policies onto tactile signals, this section
investigates whether vision-only policies can benefit from
leveraging tactile information during policy training. In
particular, we exploit the transformer architecture’s natural
capability to handle input sequences of different lengths
and investigate the effectiveness of the masked training
procedure (cf. Sec. III-B). During the masked training, the
policy either receives all of the input modalities or all
of the input modalities except for the tactile signals. The
masking probability is set to 50%. Since the policy uses
the same transformer independent of the masking, it has
to align the latent spaces to generate meaningful outputs
given the different input combinations. This experiment
now investigates whether the masked training procedure can
improve the performance of the vision-only policies in the
variable grasp pose scenario. We start with the pre-trained
encoders and optimize them during the training. This choice
is made because the pre-trained encoders already provide
a meaningful embedding when the respective modality is

Fig. 8: Comparing the policy predictions of two vision-only policies
(one trained with the standard procedure, the other one with the
masked one). We visualize the policy predictions for the y- and
z-component of the 5th action on a trajectory that was obtained by
rolling out the standard policy and on which it fails to establish
sufficient contact between the match and the striker paper. As
shown, the policy that underwent the masked training procedure
proposes different actions, i.e., moving closer to the striker paper
before accelerating along the striker paper (as shown for the z-
predictions when T < 3.5 s). Additionally, it proposes to accelerate
at a later point in time along the striker paper, as shown for the
y-axis predictions.

TABLE I: Success Rate of different vision-only policies in the
variable grasp scenario. The policies differ regarding the training
procedure, i.e., whether they are trained with the standard procedure
or with masked training that considers the tactile signals during
training. The masked training procedure, i.e., leveraging touch
during training, is effective and yields increased success rates.

Training Configuration
Standard Training Masked Training

Success Rate 20% (8%) 40% (8%)

important. This is particularly important for the tactile repre-
sentation, as the masked training procedure indirectly forces
the optimization of the vision encoder to account for the
missing tactile information.

As shown in Tab. I, the vision-only policies that have un-
dergone the masked training procedure achieve significantly
higher success rates, increasing the number of successful
rollouts by a factor of 2 and achieving an overall success
rate of 40%. In particular, while the policies trained with the
standard procedure often fail to establish contact between
the match and the striker paper (46% in this experiment),
the policies that underwent the masked training procedure
exhibit a significantly decreased probability of this failure
mode (25%). To underline this finding quantitatively, Fig. 8
compares the differently trained policies regarding action

Fig. 9: Visualizing the experiment setups considered in the gen-
eralization experiments. From left to right: Mounting angle of
5◦; Mounting angle of 30◦; Nominal mounting angle of 20◦ but
different striker paper; Using an actual handheld matchbox; Varying
lighting conditions (decreased illumination). Note how the different
mounting angles alter the angle & distance between match & striker
paper, and how the other changes affect the visual appearance.



TABLE II: Success Rate of different visuotactile policies in the
variable grasp scenario. The policies differ w.r.t. architectures and
training objectives. Our proposed architecture together with the
flow-matching objective yields best performance.

Policy Success Rate
See, Hear, and Feel [15] 50% (8%)
Diffusion Policy (DP architecture + DDIM) [5] 30% (14%)
Our architecture (III-B) + DDIM 53% (5%)
Ours (Our architecture (III-B) + Flow (III-A)) 80% (8%)

generation. It visualizes the translational outputs for the 5th
action in the sequence along the y- (direction of acceleration
along the striker paper) and the z-direction (controlling the
height of the match tip). For the comparison, we consider
a trajectory that has been obtained by rolling out the policy
trained with the standard procedure. During this trajectory,
the policy failed to establish contact between the match
and the striker paper. Considering the z-component of the
predicted action, before the start of the sideways motion, the
policy that was trained using the masked procedure outputs
lower values, thereby indicating that it wants to move the
end effector lower, increasing the probability of making
contact with the striker paper. Considering the y-direction,
it is also evident that the policy trained using the standard
procedure aims to move along the striker paper earlier. This
behaviour again increases the probability of accelerating too
early without making proper contact with the striker paper.
We conclude that the masked training procedure increases the
success rates of vision-only policies. Therefore, the availabil-
ity of tactile observations can improve policy performance,
even when tactile feedback is only provided during training.

C. How does our proposed approach perform compared to
baselines?

This section compares the performance of visuotactile
policies trained with our proposed approach against baseline
methods on the variable grasp pose task. As baselines, we
consider See, Hear, Feel [15], which similarly employs a
multi-head attention-based policy architecture but differs in
its training strategy: it relies on an explicit behaviour cloning
loss, directly regressing to the action prediction. We also
compare against the vanilla implementation of Diffusion
Policy (DP) [5] that uses the DDPM sampler during training
and DDIM for sampling during inference. To disentangle the
effect of the policy architecture and the sampler, we create a
third baseline that consists of our proposed policy architec-
ture (cf. Sec. III-B) trained with DDPM, and using DDIM
during inference. To ensure a fair comparison, all policies
are trained on the same vision+touch data, equipped with
identical observation encoder architectures, and configured to
maintain a comparable number of parameters. The previously
mentioned choices ensure that all the policies achieve real-
time inference given our control frequency of 25Hz.

The results in Tab. II showcase that our proposed approach
outperforms the baselines. The lower success rates of the
See, Hear, and Feel [15] baseline stem from difficulties in
reliably reaching the striker paper, which we attribute to
the behavioral cloning loss struggling with multi-modal data
during the approach phase. While the DP baseline employs

TABLE III: Success Rate of our vision+touch policies when eval-
uating the policies in novel, previously unseen scenarios.

Evaluation Configuration Success Rate
Different Mounting Angle (5◦) 77% (5%)
Different Mounting Angle (30◦) 67% (5%)
Nominal Mounting Angle (20◦), Different Striker Paper 77% (9%)
Actual Matchbox (handheld) & Different Striker Paper 70% (8%)
Varying Lighting Conditions 67% (5%)

a more expressive generative model, the vanilla version
performs worse in this comparison, with only 30% successes
on average. Notably, exchanging the DP architecture with
our proposed model architecture (our architecture + DDIM)
improves success rates to 53%. Compared to our proposed ar-
chitecture, the DP architecture concatenates the encodings of
the individual observation modalities without enforcing equal
dimensionality within the policy network. We hypothesise
that this design choice accounts for the observed performance
gap, which may be particularly impactful given the low-
demonstration regime. Indeed, introducing a bottleneck that
aligns the dimensionality of the encoded observations before
feeding them into the DP architecture improves performance
to 47% (5%), supporting this hypothesis. Nevertheless, it
still performs slightly worse compared to employing our
architecture + DDIM. Lastly, the results showcase another
improvement in performance to 80% upon combining our
architecture with the proposed flow-matching generative
model. Given the budget of only 5 inference iterations, the
straight-line rectified flow produces more precise and less
noisy actions compared to DDIM, which is crucial for task
success in the match lighting task that requires both precision
and reactivity. To further support this choice of limiting
inference to K=5 iterations, we conducted an ablation with
K=10 for our proposed approach. While the choice of
K=10 increased the inference time to 55ms, performance
dropped to a 50% (10%) success rate, due to the less regular
action updates, which increase the likelihood of the policies
accelerating before establishing sufficient contact. Overall,
these results underline the importance of our approaches’
individual components and their competitive performance.

D. Are the policies robust w.r.t. generalizing to novel sce-
narios?

This last experiment evaluates whether the visuotactile
policies can generalize to novel, previously unseen scenarios
(cf. Fig. 9). We evaluate the following variations: (1) altering
the angle between the match and the striker paper by mount-
ing the paper at previously unseen angles of 5◦ and 30◦; (2)
using a different, dotted striker paper; (3) replacing the 3D-
printed mount with an actual matchbox that is handheld; and
(4) varying lighting conditions by increasing or decreasing
the intensity of the external light source. This evaluation
considers the visuotactile policy with the pretrained+refine
training procedure and the variable grasp initialization.

In addition to providing rollout videos in the supple-
mentary material, quantitatively, as shown in Tab. III, the
policies generalize well to the 5◦ mounting angle and to
the different striker paper, with only a 3% drop in mean
success rate compared to the policies’ mean success rate



of 80% in the nominal scenario. In contrast, performance
decreases by 10%, 13%, and 13% for the handheld match-
box, 30◦ mounting angle, and varying lighting conditions,
respectively. The slightly lower successes at 30◦ can be
attributed to the match starting closer to the 3D-printed
holder, leaving less room for adjusting the angle relative to
the striker paper. We further hypothesize that the handheld
matchbox and lighting variations introduce the most sub-
stantial visual perturbations, leading to reduced successes as
the policies more often fail to align the match tip with the
striker paper in the initial phase. Despite being trained on
only 20 demonstrations, the results suggest that the learned
visuotactile policies exhibit robustness for variations beyond
the training scenario, generalizing reasonably well to new
conditions, with the overall performance remaining above the
performance of the previously investigated baselines in the
nominal scenario. Future improvements could be achieved
by adding demonstrations for the more challenging scenarios
and by refining visual data augmentation strategies.

V. CONCLUSION

This work investigated the importance of tactile sensing
for performing the dynamic manipulation task of match
lighting. The policies were learned from demonstration data
obtained through kinesthetic teaching. We also introduced
a policy learning framework combining a flow matching
generative model for fast and efficient action generation and
an expressive modular multi-modal transformer architecture.
The experimental results showcase the effectiveness of our
approach compared to competitive baselines, and that tac-
tile feedback is important for learning performant match
lighting policies from few demonstrations. Across all task
variations, our proposed vision+touch policies outperformed
vision-only policies, increasing the number of successful
policy rollouts almost by a factor of 3. By analysing the
visuotactile policies’ attention weights, we confirmed that
tactile observations gain importance during the contact-
rich interactions between the match and the striker paper.
Moreover, we also showed that exploiting the tactile signals
during training and employing a masked training procedure
can benefit vision-only policies and yield increased success
rates. Yet, the improved vision-only policies still cannot
reach the performance of the visuotactile policies. Lastly, we
showed that the individual components of our approach are
essential for obtaining policies with high success rates, and
that the visuotactile policies are robust and can generalize to
novel task variations. Taken together, these findings highlight
the synergistic potential of integrating tactile sensing with
suitable policy architectures to learn performant policies for
dynamic manipulation tasks like match lighting. Future work
should investigate transferring these findings to other manip-
ulation tasks and further improving the policy performance
by, e.g., learning from unsuccessful policy rollouts.
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