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ABSTRACT

The use of target networks in deep reinforcement learning is a widely popular solu-
tion to mitigate the brittleness of semi-gradient approaches and stabilize learning.
However, target networks notoriously require additional memory and delay the
propagation of Bellman updates compared to an ideal target-free approach. In
this work, we step out of the binary choice between target-free and target-based
algorithms. We introduce a new method that uses a copy of the last linear layer of
the online network as a target network, while sharing the remaining parameters
with the up-to-date online network. This simple modification enables us to keep the
target-free’s low-memory footprint while leveraging the target-based literature. We
find that combining our approach with the concept of iterated ()-learning, which
consists of learning consecutive Bellman updates in parallel, helps improve the
sample-efficiency of target-free approaches. Our proposed method, iterated Shared
Q-Learning (iS-QL), bridges the performance gap between target-free and target-
based approaches across various problems, while using a single Q-network, thus
being a step forward towards resource-efficient reinforcement learning algorithms.

1 INTRODUCTION

Originally, Q-learning (Watkins & Dayan, 1992) was introduced as a reinforcement learning (RL)
method that performs asynchronous dynamic programming using a single look-up table. By storing
only one (Q-estimate, Q-learning benefits from an up-to-date estimate and a low memory footprint.
However, replacing look-up tables with non-linear function approximators and allowing off-policy
samples to make the method more tractable introduces training instabilities (Sutton & Barto, 2018).
To address this, Mnih et al. (2015) introduce Deep Q-Network (DQN), an algorithm that constructs
the regression target from an older version of the online network, known as the target network,
which is periodically updated to match the online network (see “Target Based” in Figure 1). This
modification to the temporal-difference objective helps mitigate the negative effects of function
approximation and bootstrapping (Zhang et al., 2021), two elements of the deadly triad (van Hasselt
et al., 2018). Recently, new methods have demonstrated that increasing the size of the ()-network
can enhance the learning speed and final performance of temporal difference methods (Espeholt
et al., 2018; Schwarzer et al., 2023; Nauman et al., 2024; Lee et al., 2025). Numerous ablation
studies highlight the crucial role of the target network in maintaining performance improvements
over smaller networks (Figure 7 in Schwarzer et al. (2023), and Figure 90 in Nauman et al. (2024)).
Interestingly, even methods initially introduced without a target network (Bhatt et al. (2024) and Kim
et al. (2019)) benefit from its reintegration (Figure 5 in Palenicek et al. (2025) and Gan et al. (2021)).

While temporal difference methods clearly benefit from target networks, their utilization doubles the
memory footprint dedicated to @-networks. This ultimately limits the size of the online network due
to the constrained Video Random Access Memory (VRAM) of GPUs. This limitation is not only
problematic for learning on edge devices where memory is constrained, but also for applications
that inherently require large network sizes, such as handling high-dimensional state spaces (Boukas
et al., 2021; Pérez-Dattari et al., 2019), processing multi-modal inputs (Schneider et al., 2025), or
constructing mixtures of experts (Obando Ceron et al., 2024; Hendawy et al., 2024). This motivates
the development of target-free methods (see “Target Free” in Figure 1).

In this work, we introduce an alternative to the binary choice between target-free and target-based
approaches. We propose storing only the smallest possible part of the target network, i.e., the
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Figure 1: We propose a simple alternative to target-based/target-free approaches, where a linear layer
represents the target network, sharing the rest of the parameters with the online network (Shared
Features). We apply the concept of iterated Q-learning (Vincent et al., 2025), which consists of
learning multiple Bellman updates in parallel, to reduce the performance gap between target-free and
target-based approaches (iterated Shared Features).

parameters of the last linear layer, while using the parameters of the online network to substitute
the other layers of the target network (see “Shared Features” in Figure 1). Although this simple
modification alone helps reduce the performance gap between target-free and target-based DQN
(see “iS-DQN K = 1” in Figure 4, right), we explain in this work how it opens up the possibility
of leveraging the target-based literature to reduce this gap further, while maintaining a low memory
footprint. Notably, this approach is also orthogonal to regularization techniques that have been shown
to be effective for target-free algorithms (Kim et al., 2019; Bhatt et al., 2024; Gallici et al., 2025).
Therefore, we will build upon these approaches to benefit from their performance gains.

In the following, we leverage the concept of iterated Q-learning (Vincent et al., 2025) to enhance
the learning speed (in terms of number of environment interactions) of target-free algorithms. This
concept, initially introduced as a target-based approach, aims at learning multiple Bellman iterations in
parallel. This leads to a new algorithm, termed iterated Shared Q-Network (iS-QN), pronounced “ice-
QN” to emphasize that it contains a frozen head. iS-QN utilizes a single network with multiple linear
heads, where each head is trained to represent the Bellman target of the previous one (see “iterated
Shared Features” in Figure 1). Our evaluation of iS-QN across various RL settings demonstrates
that it improves the learning speed of target-free methods while maintaining a comparable memory
footprint and training time.

2 BACKGROUND

Deep Q-Network (Mnih et al., 2015) The optimal policy of a Markov Decision Process (MDP)
with a discrete action space can be obtained by selecting for each state, the action that maximizes the
optimal action-value function Q*. This function represents the largest achievable expected sum of
discounted rewards given a state-action pair. This is why Mnih et al. (2015) approximate the optimal
action-value function with a neural network @y, represented by a vector of parameters 6. This neural
network is learned to approximate its Bellman iteration I'Qy, leveraging the contraction property
of the Bellman operator I' to guide the optimization process toward the operator’s fixed point, i.e.,
the optimal action-value function @Q*. In practice, a sample estimate of the Bellman iteration is
used, where for a sample (s, a,r,s'), [Qp(s,a) = r + ymax, Qy(s’,a’), where 7 is the discount
factor linked to the MDP of interest. However, this learning procedure is unstable because the neural
network Qg learns from its own values, which change at each optimization step due to function
approximation, and because of the compound effect of the overestimation bias. To mitigate these
issues, the authors introduce a target network with parameters 6 to stabilize the regression target I'Q) g,
and periodically update these parameters to the online parameters 6 every T steps. On the negative
side, this doubles the memory footprint dedicated to Q-networks.

Iterated Q-Network (Vincent et al., 2025) By using a target network, DQN slows down the
training process as multiple gradient steps are dedicated to each Bellman iteration, as I'Q)5 is delayed
by some gradient steps compared to I'QQy. To increase the learning speed, Vincent et al. (2025)
propose to learn consecutive Bellman iterations in parallel. This approach uses a sequence of online

parameters (6;)% | and a sequence of target parameters (6;)~'. Each online network Qg, L s

trained to regress ['Q)p, . Similarly to DQN, each target parameter 0; is updated to the online parameter
0;+1 every T steps. Importantly, the structure of a chain is enforced by setting each 6; to 6; every



D < T steps so that each Qy, , ,, which is learned to regress I'Qg,, are forced to approximate I'Qy, .

This results in Qp,, ~ 'Qp,_, = ... = I (9, thus learning K consecutive Bellman iterations in
parallel. Importantly, DQN can be recovered by setting K = 1. While the feature representation can
be shared across the online Q-networks, iterated (Q-Network (i-QN) has the drawback of requiring an
old copy of the online networks to stabilize training, significantly increasing the memory footprint. In
the following, we will explain how the concept of i-QN can help reduce the performance gap between
target-free and target-based approaches while maintaining a low memory footprint.

3 RELATED WORK

Other works have considered removing the target network in different RL scenarios. Vasan et al.
(2024) introduce Action Value Gradient, an algorithm designed to work well in a streaming scenario
where no replay buffer, no batch updates, and no target networks are available. Gallici et al. (2025)
also develop a method for a streaming scenario, in which they rely on parallel environments to cope
with the non-stationarity of the sample distribution. Gradient Temporal Difference learning is another
line of work that does not use target networks (Sutton et al., 2009; Maei et al., 2009; Yang et al.,
2021; Patterson et al., 2022; Elelimy et al., 2025). Instead, they compute the gradient w.r.t. the
regression target as well as the gradient w.r.t. the predictions, which doubles the compute requirement.
Additionally, to address the double sampling problem, another network is trained to approximate the
temporal difference value, which also increases the memory footprint.

Alternatively, some works construct the regression target from the online network instead of the target
network, but still use a target network in some other way. For example, Ohnishi et al. (2019) compute
the TD(0) loss from the online network and add a term in the loss to constrain the predictions of
the online network for the next state-action pair (s’, a’) to remain close to the one predicted by the
target network. Piché et al. (2021; 2023) develop a similar approach, enforcing similar values for the
state-action pair (s, a). Lindstrom et al. (2025) show that the target network can be removed after a
pretraining phase in which they rely on expert demonstrations.

Many regularization techniques have been developed, attempting to combat the performance drop
that occurs when removing the target network. We stress that our approach is orthogonal to these
regularization techniques and we show in Section 5 that our method improves the performance of
target-free methods equipped with these advancements. Li & Pathak (2021) encode the input of
the QQ-network with learned Fourier features. While this approach seems promising, the authors
acknowledge that the performance degrades for high-dimensional problems. Shao et al. (2022)
remove the target-network and search for an action that maximizes the (Q-network predictions more
than the action proposed by the policy. Searching for a better action requires additional resources and
is only relevant for actor-critic algorithms. Kim et al. (2019) leverage the MellowMax operator to get
rid of the target network. However, the temperature parameter needs to be tuned (Kim, 2020), which
increases the compute budget, and a follow-up work demonstrates that the reintegration of the target
network is beneficial (Gan et al., 2021). Finally, Bhatt et al. (2024) point out the importance of using
batch normalization (Ioffe & Szegedy, 2015) to address the distribution shift of the input given to
the critic. Our investigation reveals that it degrades the performance in a discrete action setting (see
Figure 15, right).

The idea of learning multiple Bellman iterations has been introduced by Schmitt et al. (2022). They
demonstrate convergence guarantees in the case of linear function approximation. Then, Vincent et al.
(2024) used this approach to learn a recurrent hypernetwork generating a sequence of (-functions
where each Q-function approximates the Bellman iteration of the previous Q)-function. Finally,
Vincent et al. (2025) introduced iterated ()-Network as a far-sighted version of DQN that learns the K
following Bellman iterations in parallel instead of only learning the following one. While promising,
those approaches rely on a separate copy of the learnable parameters to stabilise the training process,
which increases the memory footprint. In this work, we propose to leverage the potential of iterated
Q@-learning to boost the learning speed of target-free algorithms.

4 METHOD

Our goal is to design a new algorithm that improves the learning speed of target-free value-based
RL methods without significantly increasing the number of parameters used by the ()-networks. To
achieve this, we consider a single (Q-network parameterized with K + 1 heads. We note wy, the



Algorithm 1 iterated Shared Deep QQ-Network (iS-DQN). Modifications to DQN are in purple.
1: Initialize a network @)y with K + 1 heads, where each head is defined by the parameters wy. We
note 0 = (w,wy), and w the shared parameters such that 0 = (w,wp, .., wr). D is an empty
replay buffer.

2: Repeat

3: Setu ~ Uniform({1,..,K}).

4 Take action a ~ e-greedy.(Qg, (s, -)); Observe reward r, next state s’.

5: Update D < D J{(s,a,r,s)}.

6: every G steps

7: Sample a mini-batch B = {(s,a,r, s')} from D.

8: Store [Qo(5', ), .., Qr (s',-)] + Qo(s',-) and [Qo (s, a), .., QK (s, a)] < Qo(s,a).

9: Compute the loss ’ > [-] indicates a stop gradient operation.
LN = Z(s,a,r,s/)eB Z?:l([r +ymaxy Qr-1(s,a")] — Qx(s, a))z'

10: Update 0 from V£SOV,

11: every 1 steps

12: Update wy, < wy41, fork € {0,..., K —1}.

parameters of the k™ head, w the shared parameters, and define § = (w, w, .., wx ) and O, = (w, wy).
Following Vincent et al. (2025), for a sample d = (s, a, r, ), the training loss is

K
L3N0 = 30 L8 0n 0ic) v
k=1

where KSN can be chosen from any temporal-difference learning algorithm. For instance, DQN uses
LNk, 06—1) = ([r +ymaxy Qp,_, (s, a")] — Qa, (5, a))?, where [-] indicates a stop gradient
operation. We stress that wy is not learned. However, every T steps, each wy, is updated to w1,
similarly to the target update step in DQN. This way, iS-QN allows to learn K Bellman iterations
in parallel while only requiring a small amount of additional parameters on top of a target-free
approach. Indeed, in the general case, the size of each head wy, is negligible compared to the size of
shared parameters w. Algorithm 1 summarizes the changes brought to the pseudo-code of DQN to
implement this approach.

In Figure 2, we compare the training paths defined by the ()-functions obtained after each target
update of the proposed approach (top) and the target-based approach (bottom). For each given sample,
the target-based approach learns only 1 Bellman iteration at a time and proceeds to the following one
after 7" training steps. In contrast, the iterated Shared Features approach learns several consecutive
Bellman iterations in parallel for each given sample. The considered window also moves forward
every T training steps. As the window shifts, the network represents (Q-functions that are closer to
the optimal ()-function since every (-function is learned to represent the Bellman iteration of the
previous @-function. Similarly to the target-based and target-free approaches, the online parameters
are updated with the gradient computed through the forward pass of the state-action pair (s, a), as
indicated with blue arrows. In Figure 2, we depict our approach with K = 2. However, the number
of heads can be increased at minimal cost. We note that the first Q-function is considered fixed in
this representation, even if the head is the only frozen element and the previous layers are shared with
the other learned ()-estimates. We remark that iS-QN with K = 1 implements the “Shared Features”
approach presented in Figure 1. Interestingly, the target-free approach can also be depicted in Figure 2.
Indeed, not using a target network is equivalent to updating the target network to the online network
after each gradient step. Consequently, the target-free approach can be understood as the target-based
representation with a window shifting at every step. Therefore, the target-free approach passes
through the Bellman iterations faster, creating instabilities as the optimization landscape may direct
the training path toward undesirable ()-functions.

In the following, we apply iterated Shared Features to several target-based approaches on multiple
RL settings, demonstrating that it reduces the gap between target-free and target-based methods.
For each algorithm A, we note TB-A as its target-based version, TF-A as its target-free version,
and iS-A as the iterated shared approach, where “iS” stands for iterated Shared. Importantly, we
incorporate the insights provided by Gallici et al. (2025) to use LayerNorm (Ba et al., 2016) for the
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Figure 2: Comparison of the training path defined by the target networks obtained after each target
update during training between the target-based approach (bottom) and the iterated Shared Features
approach (top). While both approaches wait for 7' training steps before shifting their respective
window by one Q-function, our approach already considers the following Bellman iterations using
multiple heads, where each head represents the Bellman iteration of the previous head.
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Figure 3: Reducing the performance gap in online RL on 15 Atari games with the CNN architecture
and LayerNorm (LN). While removing the target network leads to a 10% drop in AUC (left), iS-DQN
K =9 (using 10 linear heads), not only closes the gap but improves over the target-based approach
by 6%. Importantly, iS-DQN uses a comparable number of parameters to TF-DQN (right).

experiments with discrete action spaces, as we found it beneficial, even for the target-based approach.
Similarly, we use BatchNorm (Ioffe & Szegedy, 2015), as suggested by Bhatt et al. (2024), to improve
sample-efficiency in continuous action settings, except for the target-based approach, as it degrades

performances (see Figure 19, right).

5 EXPERIMENTS

We evaluate iS-QN in online, offline, continuous control, and language-based RL scenarios to
demonstrate that it can enhance the learning speed of target-free methods. We focus on the learning
speed because, in this work, we are interested in the sample efficiency of target-free methods. We
use the Area Under the performance Curve (AUC) to measure the learning speed. The AUC has
the benefit of depending less on the training length compared to the end performance, as it accounts
for the performance during the entire training. It also favors algorithms that constantly improve
during training over those that only emerge at the end of training, thus penalizing algorithms that
require many samples to perform well. In each experiment, we report the AUC of each algorithm,
normalized by the AUC of the target-based approach, to facilitate comparison. By normalizing the
AUC:s, the resulting metric can also be interpreted as the average performance gap observed during
training between the considered approach and the target-based approach. We use the Inter-Quantile
Mean (IQM) and 95% stratified bootstrapped confidence intervals to allow for more robust statistics
as advocated by Agarwal et al. (2021). The IQMs are computed over 5 seeds per Atari game, 10
seeds per DMC Hard tasks, and 5 seeds for Wordle. 15 Atari games are used for the experiments
on the CNN architecture, and 10 games for the experiments on the IMPALA architecture to reduce
the computational budget. Importantly, all hyperparameters are kept untouched with respect to the
standard values (Castro et al., 2018), only the architecture is modified, as described in Section 4.
Extensive details about the selection process of the Atari games, the metrics computation, the
hyperparameters, and the individual learning curves are reported in the appendix.
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Figure 4: Left: Reducing the performance gap in online RL on 10 Atari games with the IMPALA
architecture and LayerNorm (LN). Similar to the results with the CNN architecture, iS-DQN bridges
the gap between the target-free and target-based approaches. Middle and Right: Reducing the
performance gap in online RL on 15 Atari games with the CNN architecture. Removing the target
network of the vanilla DQN algorithm results in a 60% performance drop (100% — 40%). By using
iS-DQN with K = 3, the performance drop is divided by 4 (100% — 85% = 15% = 60%/4), thereby
confirming the benefit of this approach.

5.1 ONLINE DISCRETE CONTROL

First, we evaluate iS-DQN on 15 Atari games (Bellemare et al., 2013) with the vanilla CNN architec-
ture (Mnih et al., 2015) equipped with LayerNorm. As expected, the target-free approach yields an
AUC 10% smaller than the target-based approach, as shown in Figure 3 (left). This performance drop
is constant across the training, see Figure 3 (middle). Interestingly, iS-DQN K = 1 improves over
TF-DQN by simply storing an old copy of the last linear head. As more Bellman iterations are learned
in parallel, the performance gap between iS-DQN and TB-DQN shrinks. Remarkably, iS-DQN
K = 9 even outperforms the target-based approach by 6% in AUC. We note a slight decline in
performance for iS-DQN K = 49. We conjecture that this is due to the shared feature representation
not being rich enough to enable the network to learn 49 Bellman iterations in parallel with linear
approximations. Importantly, Figure 3 (right) testifies that this performance boost is achieved with
approximately half of the parameters used by the target-based approach, truly reducing the memory
footprint required by the Q-functions.

Our evaluation with the IMPALA architecture (Espeholt et al., 2018) with LayerNorm confirms the
ability of iS-DQN to reduce the performance gap between target-free and target-based approaches.
Indeed, Figure 4 (left) indicates that removing the target network leads to an 8% performance drop
while iS-DQN annuls the performance gap as more Bellman iterations are learned in parallel, i.e., as
K increases. Interestingly, as opposed to the CNN architecture, increasing the number of heads to
learn 49 Bellman iterations in parallel is beneficial in this scenario. We believe this is due to IMPALA
architecture’s ability to produce a richer representation than the CNN architecture, thereby allowing
more Bellman iterations to be approximated with a linear mapping. The plots of the performance
curve and the number of parameters are similar to the ones for the CNN architecture, see Figure 13.

Finally, we confirm the benefit of the iterated Shared Features approach by removing the normalization
layers for all algorithms with the CNN architecture in Figure 4 (right). We observe a major drop in
performance for TF-DQN, leading to 60% performance gap (100% — 40%). Notably, iS-DQN K = 1
reduces this performance gap to 18% (100% — 82%). This highlights the potential of simply storing
the last linear layer and using the features of the online network to build a lightweight regression
target. While increasing the number of learned Bellman iterations to 3 brings a small benefit, the
performances are slightly decreasing for higher values of K, indicating that LayerNorm is beneficial
to provide useful representations when considering a higher number of linear heads.

5.2 OFFLINE DISCRETE CONTROL

We consider an offline RL setting in which the agent has access to 10% of the dataset collected by
a vanilla DQN agent trained with a budget of 200 million frames (Agarwal et al., 2020), sampled
uniformly. We adapt the loss for learning each Bellman iteration to the one proposed by Kumar et al.
(2020b). This leads to an iterated version of Conservative Q-Learning (CQL). In Figure 5, iS-CQL
K = 9 reduces the performance gap by 20 percentage points, ending up with a performance gap
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Figure 5: Reducing the performance gap in offline RL on 10 Atari games with the IMPALA archi-
tecture and LayerNorm (LN). iS-CQL shrinks the performance gap from 26% to 6%. Interestingly,
applying the idea of sharing parameters to Ensemble DQN (Ensemble Shared Features, ES-CQL)
also reduces the performance gap, demonstrating that this idea is not limited to iterated Q-learning
and can be applied to other target-based approaches.
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Figure 6: Reducing the performance gap in online RL on the 7 DMC Hard tasks with the SimbaV2
architecture and BatchNorm (BN). iS-SAC recovers the performance drop incurred by removing the
target network (left). This performance boost is made while reducing the total number of parameters

by 49% (right).

of 6% compared to 26% for TF-CQL. Additionally, we evaluate another way of sharing features to
show that this idea is not limited to iterated (-learning. Instead of building a chain of @-functions
represented by linear heads, we define an ensemble of pairs of linear heads. Each pair contains a
frozen head representing a target network () that is used to train the learned head representing the
associated online network (), as depicted in Figure 5 (right). We evaluate this variant that we call
Ensemble Shared Features (ES-CQL), with 5 pairs of heads, i.e. 10 heads, to match the number
of heads used by iS-CQL K = 9, as the number of heads of iS-QN is always equal to K + 1.
Importantly, ES-CQL also outperforms TF-CQL, reinforcing the idea that sharing parameters and
using linear heads is a fruitful direction.

5.3 ONLINE CONTINUOUS CONTROL

We investigate the behavior of iS-QN on the DeepMind Control suite (Tassa et al., 2018), focusing on
the hard tasks. We select Soft Actor-Critic (SAC, Haarnoja et al. (2018)) as the base algorithm and
adapt the architecture to the one proposed by Lee et al. (2025) (SimbaV?2) so that the target-based
approach corresponds to the state-of-the-art. This experiment allows us to test iS-QN on different
learning dynamics, as the target updates are done with an exponentially moving average instead of a
hard update, and the loss for the critic uses a categorical distribution to learn the distribution of the
return. Interestingly, Figure 6 (left) shows that only using an old copy of the last layer of the critic
to construct the regression target (iS-SAC K = 1) recovers the performance drop incurred by the
target-free approach compared to the target-based approach. Importantly, Lee et al. (2025) design
the critic with significantly more parameters than the actor, as commonly done in the actor-critic
literature (Mysore et al., 2021; Mastikhina et al., 2025). This means that iS-SAC K=1 reduces the
total number of parameters by 49%, see Figure 6 (right). When considering more heads to learn
the following Bellman updates, we find it beneficial to give more importance to the first Bellman
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Figure 7: Reducing the performance gap in offline RL on Wordle with the GPT-2 small architecture.
iS-ILQL K =9, not only closes the gap but improves over the target-based approach by more than
5%. Importantly, iS-ILQL saves 33% of RAM compared to the target-based approach (right).

updates by scaling the future terms in the loss by a discounting factor of 0.25. We note that in this
setting, iIS-SAC K = 9 only performs on par with ' = 1. Nonetheless, iS-SAC K = 9 is still
performing better than the best target-free approach, having overlapping confidence intervals with the
target-based approach, which serves as the goal standard, as it requires additional parameters.

5.4 ScALING UP TO LANGUAGE MODELS

In this experiment, we evaluate iS-QN on an offline RL language processing task. Specifically,
we focus on Implicit Language )-Learning (ILQL, Snell et al. (2023)), a method introduced with
a target network. It adapts implicit Q-learning (Kostrikov et al., 2023) to the language domain
by sampling action tokens from a policy, learned with supervised learning, and weighted by the
advantage computed from the @Q-function. We evaluate ILQL on the Wordle game (Lokshtanov &
Subercaseaux, 2022), a multi-turn game where the agent guesses a hidden word and receives feedback
after each attempt. As in Snell et al. (2023), we choose the GPT-2 small architecture, which results in
TB-ILQL using 264 million parameters. In Figure 7 (left), we note that while a performance drop
is noticeable, the target-free approach does not perform significantly worse than the target-based
variant. Importantly, sharing parameters and learning KX = 9 Bellman iterations in parallel improves
the learning speed of the target-free approach by 10% without significantly increasing the memory
footprint. This leads iS-QN to save 88 million parameters compared to the original approach.

5.5 WHY IS IS-QN IMPROVING OVER TARGET-FREE APPROACHES?

We now provide some insights to understand why iS-QN reduces the performance gap between
target-free and target-based approaches. First, we investigate the change in the learning dynamics
that happens when the features are shared between the online and the target heads (“Shared Features”
or equivalently, “iterated Shared Features” with K = 1, see Figure 1). To evaluate the impact on the
learning dynamics, we compute, for each gradient step of an iS-DQN K = 1 agent, the gradient with
respect to the loss of iIS-DQN, as well as the gradients that the target-based loss and the target-free
loss would produce. These quantities determine how the parameters evolve during training. We then
report the cosine similarity between the gradients w.r.t. the iS-QN loss and the TB-DQN loss, and the
cosine similarity between the gradients w.r.t. the TF-DQN loss and the TB-DQN loss in Figure 8
(left) for 15 Atari games. Interestingly, the gradients obtained by the target-based approach are closer
to the gradients of iS-DQN K = 1 than the gradients of the target-free approach, especially at the
beginning of the training. This means that by simply using a copy of the last linear layer and sharing
features, iS-DQN’s learning dynamics become closer to those of the target-based approach.

At first sight, the fact that iS-QN uses frozen heads on top of features changing at each gradient step
might seem like an uncommon practice in machine learning. However, this design choice is already
part of the reinforcement learning literature. Indeed, in Deep (Q-Network, the (Q-network is designed
with multiple heads, each one representing the prediction for a specific action. For each sample, only
the selected head corresponding to the sampled action is updated, while the other heads, built on
top of the features that are getting updated, remain frozen. This is likely to contribute to the policy
churn phenomenon identified by Schaul et al. (2022), highlighting that the greedy-policy changes for
a significant proportion of the states in the replay buffer after a single batch update. To measure the
impact of sharing features, we introduce the notion of rarget churn, which we define as the absolute
value of the difference between the regression target before and after each batch update. We report
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Figure 8: Left: The cosine similarity between the gradients w.r.t. the loss of iS-DQN and TB-DQN
is larger than the cosine similarity between the gradients w.r.t. the loss of TF-DQN and TB-DQN.
Therefore, iS-DQN brings the learning dynamics of the target-free approach closer to those of the
target-based approach. Middle: The target churn is the difference between the regression targets
computed before and after each batch update. The target predictions of iS-DQN are less influenced
by batch updates than the ones computed from the target-free approach. Right: The effective rank
(srank) of the features in the penultimate layer is higher for iS-QN, resulting in a higher expressivity.

the cumulative target churn of iS-DQN, reinitialized to zero after each target update, normalized
by the target churn of TF-DQN in Figure 8 (middle). Conveniently, the target-based approach has
a constant target churn of zero since the batch update does not influence the fully separated target
network, and the normalization brings the target churn of the target-free approach to a constant value
of 1. Remarkably, the target churn of iS-DQN K = 1 and 9 lies in between 0 and 1, indicating that
1S-QN’s targets are more stable than the ones of the target-free approach. We note that the target
churn for i =9 is larger than K = 1, due to the influence of the additional terms in the loss.

Beyond improving the learning dynamics of TF-DQN, iS-DQN also provides a richer state repre-
sentation. We measure the representation expressivity by reporting the effective rank (srank) of the
features in the penultimate layer (Kumar et al., 2020a) in Figure 8 (right). Interestingly, the srank
obtained by iS-DQN K = 1 is closer to the srank of TB-DQN than the srank of TF-DQN, which
further demonstrates the benefit of using the last linear layer to construct the target. Notably, learning
K = 9 Bellman iterations in parallel increases the representation capacity of the network by a large
margin. This behavior is also visible in the offline setting, where iS-CQL reaches a similar srank as
the target-based approach at the end of the training (see Figure 17, middle). This confirms the benefit
of iS-QN to foster a richer representational capacity.

6 LIMITATION AND CONCLUSION

The proposed approach introduces the number of Bellman updates K to learn in parallel as a new
hyperparameter and there seems to be a different optimal value for each setting. However, we observe
that none of the values lead to a dramatic performance drop. In this work, we focus on reducing the
memory footprint of the function approximators. Depending on the setting, other objects such as the
replay buffer and the optimizer can occupy a large portion of the RAM. We remark that the proposed
approach can be combined with other works addressing these issues (Vasan et al., 2024). Additionally,
the proposed approach reduces the memory footprint during training but uses the same amount during
inference, which is complementary to pruning methods that use more memory during training and
less during inference (Graesser et al., 2022). As reported in Figure 10, iS-QN does not reduce the
training time or the number of floating-point operations, except for the language processing task for
which the temporal-difference error can be computed with a single pass through the network.

We introduced a simple yet efficient method for mitigating the performance drop that occurs when
removing the target network in deep value-based reinforcement learning, while maintaining a low
memory footprint. This is made possible by storing a copy of the last linear layer of the online
network and using the features of the online network as input to this frozen linear head to construct
the regression target. From there, more heads can be added to learn multiple Bellman iterations in
parallel. We demonstrated that this new algorithm, iterated Shared (Q-Networks, improves over the
target-free approach and yields higher returns when the number of heads increases. We believe that
combining iS-QN with pruning and/or quantization methods is a promising direction for future work
to facilitate online learning on resource-constrained settings, without sacrificing performance.



REPRODUCIBILITY STATEMENT

Special care was taken to ensure this work is reproducible. The code will be made open source
upon acceptance and is shared in the supplementary material. It contains the list of dependencies and
their exact version that was used to generate the results. To ease reproducibility, all hyperparameters
are listed in Appendix D, and the individual training curves are shown in Appendix E.

LARGE LANGUAGE MODEL USAGE

A large language model was helpful in polishing writing, improving reading flow, and identifying
remaining typos.

REFERENCES

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International Conference on Machine Learning, 2020.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc Bellemare. Deep
reinforcement learning at the edge of the statistical precipice. In Advances in Neural Information
Processing Systems, 2021.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. Stat, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
2013.

Aditya Bhatt, Daniel Palenicek, Boris Belousov, Max Argus, Artemij Amiranashvili, Thomas Brox,
and Jan Peters. Crossq: Batch normalization in deep reinforcement learning for greater sample
efficiency and simplicity. In International Conference on Learning Representations, 2024.

Ioannis Boukas, Damien Ernst, Thibaut Théate, Adrien Bolland, Alexandre Huynen, Martin Buch-
wald, Christelle Wynants, and Bertrand Cornélusse. A deep reinforcement learning framework for
continuous intraday market bidding. Machine Learning, 2021.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang.
JAX: composable transformations of Python+NumPy programs, 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G Belle-
mare. Dopamine: A research framework for deep reinforcement learning. arXiv preprint
arXiv:1812.06110, 2018.

Esraa Elelimy, Brett Daley, Andrew Patterson, Marlos C Machado, Adam White, and Martha White.
Deep reinforcement learning with gradient eligibility traces. Reinforcement Learning Journal,
2025.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance
weighted actor-learner architectures. In International Conference on Machine Learning, 2018.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus Foer-
ster, and Mario Martin. Simplifying deep temporal difference learning. In International Conference
on Learning Representations, 2025.

Yaozhong Gan, Zhe Zhang, and Xiaoyang Tan. Stabilizing q learning via soft mellowmax operator.
In Proceedings of the AAAI Conference on Artificial Intelligence, 2021.

10



Laura Graesser, Utku Evci, Erich Elsen, and Pablo Samuel Castro. The state of sparse training in
deep reinforcement learning. In International Conference on Machine Learning, 2022.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gémez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel J] Mankowitz, Cosmin Paduraru, et al. Rl unplugged: A
suite of benchmarks for offline reinforcement learning. Advances in Neural Information Processing
Systems, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, 2018.

Ahmed Hendawy, Jan Peters, and Carlo D’Eramo. Multi-task reinforcement learning with mixture of
orthogonal experts. In International Conference on Learning Representations, 2024.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, 2015.

Seungchan Kim. Adaptive tuning of temperature in mellowmax using meta-gradients. Master Thesis,
Brown University, 2020.

Seungchan Kim, Kavosh Asadi, Michael Littman, and George Konidaris. Deepmellow: removing
the need for a target network in deep g-learning. In International Joint Conference on Artificial
Intelligence, 2019.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
g-learning. In International Conference on Learning Representations, 2023.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization
inhibits data-efficient deep reinforcement learning. In International Conference on Learning
Representations, 2020a.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems, 2020b.

Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyperspherical
normalization for scalable deep reinforcement learning. In International Conference on Machine
Learning, 2025.

Alexander Li and Deepak Pathak. Functional regularization for reinforcement learning via learned
fourier features. In Advances in Neural Information Processing Systems, 2021.

Alexander Lindstrom, Arunselvan Ramaswamy, and Karl-Johan Grinnemo. Pre-training deep g-
networks eliminates the need for target networks: An empirical study. In The 14th International
Conference on Pattern Recognition Applications and Methods (ICPRAM), 2025.

Daniel Lokshtanov and Bernardo Subercaseaux. Wordle is np-hard. In International Conference on
Fun with Algorithms, 2022.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and Michael
Bowling. Revisiting the arcade learning environment: Evaluation protocols and open problems for
general agents. Journal of Artificial Intelligence Research, 2018.

Hamid Maei, Csaba Szepesvdri, Shalabh Bhatnagar, Doina Precup, David Silver, and Richard S
Sutton. Convergent temporal-difference learning with arbitrary smooth function approximation. In
Advances in Neural Information Processing Systems, 2009.

Olya Mastikhina, Dhruv Sreenivas, and Pablo Samuel Castro. Optimistic critics can empower small
actors. Reinforcement Learning Journal, 2025.

11



Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 2015.

Siddharth Mysore, Bassel E1 Mabsout, Renato Mancuso, and Kate Saenko. Honey. i shrunk the actor:
A case study on preserving performance with smaller actors in actor-critic rl. In IEEE Conference
on Games, 2021.

Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Mito$, and Marek Cygan. Bigger,
regularized, optimistic: scaling for compute and sample-efficient continuous control. In Advances
in Neural Information Processing Systems, 2024.

Johan Samir Obando Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob Nicolaus
Foerster, Gintare Karolina Dziugaite, Doina Precup, and Pablo Samuel Castro. Mixtures of experts
unlock parameter scaling for deep RL. In Infernational Conference on Machine Learning, 2024.

Shota Ohnishi, Eiji Uchibe, Yotaro Yamaguchi, Kosuke Nakanishi, Yuji Yasui, and Shin Ishii.
Constrained deep g-learning gradually approaching ordinary g-learning. Frontiers in Neurorobotics,
2019.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In Advances in Neural Information Processing Systems, 2016.

Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. The difficulty of passive learning in deep
reinforcement learning. In Advances in Neural Information Processing Systems, 2021.

Daniel Palenicek, Florian Vogt, and Jan Peters. Scaling off-policy reinforcement learning with batch
and weight normalization. In Advances in Neural Information Processing Systems, 2025.

Andrew Patterson, Adam White, and Martha White. A generalized projected bellman error for
off-policy value estimation in reinforcement learning. Journal of Machine Learning Research,
2022.

Rodrigo Pérez-Dattari, Carlos Celemin, Javier Ruiz-del Solar, and Jens Kober. Continuous control
for high-dimensional state spaces: An interactive learning approach. In International Conference
on Robotics and Automation, 2019.

Alexandre Piché, Joseph Marino, Gian Maria Marconi, Valentin Thomas, Christopher Pal, and
Mohammad Emtiyaz Khan. Beyond target networks: Improving deep g-learning with functional
regularization. In NeurlPS Workshop on Deep Reinforcement Learning, 2021.

Alexandre Piché, Valentin Thomas, Joseph Marino, Rafael Pardinas, Gian Maria Marconi, Christopher
Pal, and Mohammad Emtiyaz Khan. Bridging the gap between target networks and functional
regularization. Transactions on Machine Learning Research, 2023.

Tom Schaul, André Barreto, John Quan, and Georg Ostrovski. The phenomenon of policy churn. In
Advances in Neural Information Processing Systems, 2022.

Simon Schmitt, John Shawe-Taylor, and Hado Van Hasselt. Chaining value functions for off-policy
learning. In AAAI Conference on Artificial Intelligence, 2022.

Tim Schneider, Cristiana de Farias, Roberto Calandra, Liming Chen, and Jan Peters. Active perception
for tactile sensing: A task-agnostic attention-based approach. In German Robotics Conference,
2025.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 2020.

Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare, Rishabh Agarwal,
and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level efficiency. In
International Conference on Machine Learning, 2023.

12



Lin Shao, Yifan You, Mengyuan Yan, Shenli Yuan, Qingyun Sun, and Jeannette Bohg. Grac:
Self-guided and self-regularized actor-critic. In Conference on Robot Learning, 2022.

Charlie Victor Snell, Ilya Kostrikov, Yi Su, Sherry Yang, and Sergey Levine. Offline 1l for natural
language generation with implicit language q learning. In International Conference on Learning
Representations, 2023.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
2018.

Richard S. Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba
Szepesvari, and Eric Wiewiora. Fast gradient-descent methods for temporal-difference learning
with linear function approximation. In International Conference on Machine Learning, 2009.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Hado van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Modayil.
Deep reinforcement learning and the deadly triad. arXiv preprint arXiv/1812.02648, 2018.

Gautham Vasan, Mohamed Elsayed, Alireza Azimi, Jiamin He, Fahim Shariar, Colin Bellinger,
Martha White, and A. Rupam Mahmood. Deep policy gradient methods without batch updates,
target networks, or replay buffers. In Advances in Neural Information Processing Systems, 2024.

Théo Vincent, Alberto Maria Metelli, Boris Belousov, Jan Peters, Marcello Restelli, and Carlo

D’Eramo. Parameterized projected bellman operator. In AAAI Conference on Artificial Intelligence,
2024.

Théo Vincent, Daniel Palenicek, Boris Belousov, Jan Peters, and Carlo D’Eramo. Iterated ¢g-network:
Beyond one-step bellman updates in deep reinforcement learning. Transactions on Machine
Learning Research, 2025.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine Learning, 1992.

Guang Yang, Yang Li, Di’an Fei, Tian Huang, Qingyun Li, and Xingguo Chen. Dhqgn: a stable
approach to remove target network from deep g-learning network. In International Conference on
Tools with Artificial Intelligence, 2021.

Shangtong Zhang, Hengshuai Yao, and Shimon Whiteson. Breaking the deadly triad with a target
network. In International Conference on Machine Learning, 2021.

13



TABLE OF CONTENTS

A Experiment Setup 14
B Training Time and Floating-point Operations 15
C Algorithmic Details 15
D List of Hyperparameters 16
E Individual Learning Curves 18
E.1 Deep Q-Network with CNN and LayerNorm . . . . . ... ... ... ... 18
E.2 Deep @-Network with IMPALA and LayerNorm . . . . ... ... ... .. 19
E3 Deep @Q-Network withCNN . . . . .. ... ... ... ... ........ 20
E.4 Conservative Q-Learning with IMPALA and LayerNorm . . . . .. ... .. 21
E.5 Soft Actor-Critic with SimbaV2 and BatchNorm . . . . . .. ... ... .. 22

A  EXPERIMENT SETUP

Atari setup  We build our codebase fol- Atari games selection
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i ert elected games for
the Gym environment (Brockman' et al., MsPacman ¥ 11 Y the IMPALA experiments
2016) configured with no frame-skip, and BeamRider ¥ 1l
0 5 10 15 20

apply a max pooling operation on the 2 last
grayscale frames. We use sticky actions

to make the environment stochastic (with ) )
p = 0.25). Figure 9: The Atari games selected for the experiments

of this paper were chosen to cover a variety of normal-
Atari games selection  Our evaluations  jzed returns obtained by DQN after 200M frames. To
on the CNN architecture were performed  Jower the computational budget of the experiments with
on the 15 games recommended by Graesser  the IMPALA architecture, we reduced the set of games

et al. (2022). They were chosen for their o 10 by removing 5 games, while maintaining diversity.
diversity of Human-normalized score that

DQN reaches after being trained on 200 million frames, as shown in Figure 9. As the IMPALA
architecture increases the training length, we removed 5 games, while maintaining diversity in the
final scores to reduce the computational budget. For the offline experiment, we used the datasets
provided by Gulcehre et al. (2020). As the game Tutankham is not available in the released dataset,
we replaced it with Qbert, indicated with an asterisk in Figure 9.

Human-normalized Score of DQN at 200M Frames

DeepMind Control suite setup Our codebase follows the implementation details of Lee et al.
(2025). Before running the experiment presented in Section 5.3, we took special care that our
codebase reproduces the evaluation performance shared by the authors. As a takeaway from this
exercise, we note that the precision with which the state and reward are normalized matters, as using
float32 leads to lower performance than using float64. We invite interested readers to examine our
code for more details. We emphasize that the performances reported in this work correspond to those
collected during training, not the ones obtained during a separate evaluation phase, as they are closer
to the initial motivation behind online learning (Machado et al., 2018).

Wordle setup  Our codebase is a fork of the repository shared by the authors (Snell et al., 2023),
from which we implemented the target-free and the iterated Shared Features approaches. We refer to
the original paper for extensive details about the setup.

Computing the Area Under the Curve For each experiment, we report the normalized IQM
AUC. For that, we first compute the undiscounted return obtained for each epoch, averaged over the
episodes, as advocated by Machado et al. (2018). Then, we sum the human-normalized returns over
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the epochs and compute the IQM and 95% stratified bootstrap confidence intervals over the seeds and
games. Finally, we divide the obtained values by the IQM of the target-based approach to facilitate
the comparison. The human-normalized scores are computed from human and random scores that
were reported in Schrittwieser et al. (2020). As discussed in Section 5, the normalized AUCs can also
be interpreted as the average performance gap between the considered algorithm and the target-based
approach. Indeed, dividing the two sums of performances across the training is equivalent to dividing
the two averages of performances across the training because the normalizing factors cancel out.

B TRAINING TIME AND FLOATING-POINT OPERATIONS

SAC ILQL
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Figure 10: While TF-DQN and iS-DQN require fewer parameters, their training time is similar to
TB-DQN since each algorithm uses a similar amount of computation, as indicated by the number of
floating-point operations (FLOPs) per gradient steps. Left: All algorithms on the Atari benchmark
require a similar amount of FLOPs and training time. Middle: As reported in Figure 19, the
target-based approach does not benefit from BatchNorm for the DMC benchmark. This is why
TB-SAC does not use BatchNorm and therefore has a lower amount of FLOPs compared to the other
approaches. Importantly, the difference in training time between the algorithms is less visible across
the algorithms. Right: Thanks to the way the embeddings are computed, the target-free approach and
iS-ILQL can compute the TD error from a single pass through the neural network, which lowers the
training time.

The presented approach is designed to reduce the memory footprint of target-based methods, while
performing better than the target-free approach. In Figure 10 (bottom), we report the training
time in hours required by all algorithms. On the top row, we report the number of floating-point
operations (FLOPs) required by all algorithms to perform one gradient step. Computations were made
on an NVIDIA GeForce RTX 4090 Ti with the game Asterix for the DQN experiments, and with the
task Dog-walk for the SAC experiments. As expected, all algorithms require the same training time
and FLOPs because the same amount of computation is needed. Indeed, a forward pass through the
network for estimating the value of the next state is necessary to compute the temporal-difference
error. We note two exceptions. First, for experiments with SAC, the amount of FLOPs is reduced for
the target-based approach, as it does not use BatchNorm. However, the difference in training time
remains small. Second, for the experiments with ILQL, the training time for the target-free approach
and iS-ILQL is smaller than that of the target-based approach since only one forward pass is required
for computing the temporal difference instead of two forward passes. This results in the target-free
approach and iS-ILQL having a small training time. While this reduction is not visible in the amount
of FLOPs per gradient steps, we verified that the amount of FLOPs per loss computation (forward
pass only) is indeed lower: TB-ILQL: 3.3 x 10'® FLOPs, TF-ILQL: 2.0 x 10'° FLOPs, iS-ILQL
K =1: 2.1 x 10'° FLOPs, and iS-ILQL K = 9: 2.5 x 10'° FLOPs.

C ALGORITHMIC DETAILS

Aggregating individual losses In Equation 1, we define the loss of iS-QN as the sum of losses
over each Bellman iteration. Other ways of aggregating the losses are possible. Nonetheless, we
decided to stick to the version proposed by Vincent et al. (2025) and leave this investigation for
future work. We provide a first alternative in Section 5.3 that provides a performance boost by
discounting the following terms by a factor of 0.25. While it is true that taking the sum of temporal
differences increases the magnitude of the loss, it has a different impact on the updates than simply
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multiplying the learning rate by the number of terms in the loss. Indeed, the Adam optimizer (Kingma
& Ba, 2015) first normalizes the gradient with a running statistic before applying the learning rate.
Therefore, changing the aggregation mechanism has a greater impact on the direction of the update
than on its magnitude. This is why we do not compare iS-QN against baselines instantiated with
different learning rates.

Sampling actions Following Vincent et al. (2025), at each environment interaction, an action
is sampled from a single head chosen uniformly as shown in Line 3 in Algorithm 1. The authors
motivate this choice by arguing that it allows each @Q-function to interact with the environment,
thereby avoiding passive learning, identified by Ostrovski et al. (2021). This choice is further justified
by an ablation study (see Figure 19 in Vincent et al. (2025)) demonstrating a stronger performance
against another sampling strategy consisting of sampling one head for each episode, as proposed in
Osband et al. (2016).

In the experiment on continuous control (Section 5.3), the policy network is used to sample actions.
To align with the choice of computing the discounted sum of temporal differences, the critic estimate
in the policy loss is calculated as the average discounted prediction over the sequence of Q-predictions
given by the heads. The experiment on the language task (Section 6) also uses a policy network to
sample actions, but weighs each prediction with the predicted advantage from the critic. To align with
the choice made for the experiment on continuous control, the average over the weights corresponding
to each head is computed to obtain a single scalar value to weight each action probability.

D LIST OF HYPERPARAMETERS

Our codebase is written in Jax (Bradbury et al., 2018). The details of hyperparameters used for the
experiments are provided in Table 1 (Atari), Table 2 (DMC Hard), and Table 3 (Wordle). In each
experiment, the same hyperparameters as those provided in the original target-based approaches are
used without further tuning. We note Convi »C a 2D convolutional layer with C filters of size a x b
and stride d, and FC E a fully connected layer with E neurons. When added, LayerNorm is placed
before each activation function, and BatchNorm is placed after the activation function. Additionally,
when BatchNorm is used, the state-action and next state-next action pairs are first concatenated and
then passed as a single batch to the network as suggested by the authors of CrossQ and CrossQ +
WN (Bhatt et al., 2024; Palenicek et al., 2025).

Table 1: Summary of the shared hyperparameters used for the Atari experiments. The CNN
architecture is described here. We used three stacked layers of size 32, 64, and 64 with a last linear
layer of size 512 for the IMPALA architecture (Espeholt et al., 2018).

Shared hyperparameters
Discount factor v 0.99
DQN h t
Horizon H 27000 QN hyperparameters
Full acti N Number of training 9250 000
Ru acélolr? space — 10 steps per epoch
eward clipping clip(—1,1) Target update 2000
Batch size 32 period T
) COHV§,832 Type of the
Torso architecture —Convi 464 | replay buffer D FIFO
—Conv:l,)/364 Initial number
FC 512 | of samples in D 20000
Head architecture —FC n 4 [TB-QN, TF-QN] | Maximum number 1000000
—FC (K + 1) -n4 [iS-QN] | of samples in D
Activations ReLU | Gradient step 4
CQL hyperparameters gerlqd G T
Number of gradient tarting €
62500 | Endinge 0.01
steps per epoch  Tinear decay
Target update . 250000
period T 2o dBlzlrtiEOsrilze 32
Dataset size 5000000 - —
I - ——| Learning rate 6.25 x 10
earning rate 5x 10 Ad 15 <102
Adam e 3.125 x 102 am € X
CQL weight o 0.1
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Table 2: Summary of the shared hyperparameters Table 3: Summary of the shared hyperparameters
used for the DMC Hard experiments.

used for the Wordle experiments.

Environment Environment
Discount factor ~y 0.99 Dataset Wordle Twitter dataset
Horizon H 1000 Discount factor ~y 0.99
Action repeat 2 Number of tokens 35 (alphabet + colors)
Experiments Rewards —1 for incorrect guess,
Batch size 556 0 for correct guess
Policy architecture SimbaV2 Actor Experiments
Critic Torso SimbaV2 Critic Batch size 1024
architecture Policy architecture GPT-2 small
FC 512 y (Dropout p = 0.1)
z?rrclltqlc Head [TB-S AC_’%C:_Z‘XE Torso architecture Q, V (Dropglirl;fzsr(r)l?ll;
1tecture

—FC (K + ]-) * Matoms FC 1536
[iS-SAC] —FC n 4 [TB-ILQL,
Activations ReLU Head architecture @) TF-ILQL]
BatchNorm TF-SAC, iS-SAC —FC (K +1)-n4
Number of [iS-ILQL]
training steps 500000 FC 1536
Soft target update T 5x 1073 —FC 1 [TB-ILQL,
Initial number Head architecture V' TF-ILQL]
of samples in D 5000 —FC (KS+ 1()2~ 1
Maximum number [iS-ILQL]
of samples in D 1000000 Activations ReLU
Initial learning rate 1x 1074 Number of gradient steps 800000
Final learning rate 3 x 10~% _Soft target update 7 5x1077
Optimizer Adam  Learning rate 1x107°
SimbaV2 hyperparameters Optimizer Adam

Double Q No ILQL hyperparameters
Distributional critic 101 Inverse temperature 3 4.0
bins Matoms CQL weight o 1x1071%
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E INDIVIDUAL LEARNING CU
E.1 DEEP Q-NETWORK WITH CNN
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Figure 11: Reducing the performance gap in online RL on 15 Atari games with the CNN architecture
and LayerNorm. Left: iS-DQN K = 9 not only reduces the performance gap but outperforms the
target-based approach. Middle: iS-DQN annuls the performance gap for the games where the score is
below the human level. Right: iS-DQN exhibits a lower amount of dormant neurons at the beginning
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Figure 12: Per game training curves of iS-DQN, TF-DQN, and TB-DQN with the CNN architecture
and LayerNorm. Except on Asterix, iS-DQN outperforms or is on par with the target-free approach

(TF-DQN).



E.2 DEEP Q-NETWORK WITH IMPALA AND LAYERNORM
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Figure 13: Reducing the performance gap in online RL on 10 Atari games with the IMPALA
architecture and LayerNorm. Left: iS-DQN K = 9 is outperforms the target-free approach. Middle:
iS-DQN annuls the performance gap for the games where the score is below the human level. Right:
iS-DQN requires significantly fewer parameters than the target-based approach while reaching similar
performance.
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Figure 14: Per game training curves of iS-DQN, TF-DQN, and TB-DQN with the IMPALA architec-
ture and LayerNorm. Our approach outperforms or is on par with the target-free approach (TF-DQN)
on all games.
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E.3 DEEP Q-NETWORK WITH CNN
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Figure 15: Reducing the performance gap in online RL on 15 Atari games with the CNN architecture.
Left: iS-DQN K = 3 significantly reduces the performance gap between the target-free and target-
based approaches. Middle: iS-DQN annuls the performance gap for the games where the score is
below the human level. Right: Including BatchNorm in the architecture damages the performance on
the 5 considered games of the target-based approach. This is why BatchNorm is not included for the
experiments with TB-DQN.
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Figure 16: Per game training curves of iS-DQN, TF-DQN, and TB-DQN with the CNN architecture.
Remarkably, iS-DQN outperforms the target-free approach (TF-DQN) on all games.
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E.4 CONSERVATIVE Q-LEARNING WITH IMPALA AND LAYERNORM
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Figure 17: Reducing the performance gap in offline RL on 10 Atari games with the IMPALA
architecture and LayerNorm. Left: iS-CQL significantly reduces the performance gap for the gameS
where the score is below the human level. Middle: At the end of the training, iS-CQL and ES-CQL
lead to a higher srank than the target-free approach, which indicates a higher representation capability.
Right: All methods converge to a low amount of dormant neurons at the end of the training.
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Figure 18: Per game training curves of iS-CQL, TF-CQL, and TB-CQL with the IMPALA architecture
and LayerNorm. Except on VideoPinball, iIS-CQL outperforms or is on par with the target-free
approach (TF-CQL).
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E.5 SOFT ACTOR-CRITIC WITH SIMBAV2 AND BATCHNORM
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Figure 19: Reducing the performance gap in online RL on the 7 DMC Hard tasks with the SimbaV2
architecture and BatchNorm. Left: As opposed to iS-SAC, the target-free approach suffers from a
low srank, which indicates a lower representation capability. Middle: The percentage of dormant
neurons remains low during training for all methods, not exceeding 7%. Right: The target-based
approach does not benefit from BatchNorm. This is why it is not included in the experiments with
TB-SAC.
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Figure 20: Per game training curves of iS-SAC, TF-SAC, and TB-SAC with the SimbaV?2 architecture
and BatchNorm. iS-SAC consistently performs better than or on par with the target-free approach.
Interestingly, iS-SAC even outperforms the target-based approach on the humanoid tasks.
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