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DoublyAware: Dual Planning and Policy Awareness for Temporal
Difference Learning in Humanoid Locomotion

Khang Nguyen', An T. Le?, Jan Peters?>*%, and Minh Nhat Vu®6

Abstract—Achieving robust robot learning for humanoid lo-
comotion is a fundamental challenge in model-based reinforce-
ment learning (MBRL), where environmental stochasticity and
randomness can hinder efficient exploration and learning sta-
bility. The environmental, so-called aleatoric, uncertainty can
be amplified in high-dimensional action spaces with complex
contact dynamics, and further entangled with epistemic un-
certainty in the models during learning phases. In this work,
we propose DoublyAware, an uncertainty-aware extension of
Temporal Difference Model Predictive Control (TD-MPC) that
explicitly decomposes uncertainty into two disjoint interpretable
components, i.e., planning and policy uncertainties. To handle the
planning uncertainty, DoublyAware employs conformal prediction
to filter candidate trajectories using quantile-calibrated risk
bounds, ensuring statistical consistency and robustness against
stochastic dynamics. Meanwhile, policy rollouts are leveraged
as structured informative priors to support the learning phase
with Group-Relative Policy Constraint (GRPC) optimizers that
impose a group-based adaptive trust-region in the latent action
space. This principled combination enables the robot agent to
prioritize high-confidence, high-reward behavior while maintain-
ing effective, targeted exploration under uncertainty. Evaluated
on the HumanoidBench locomotion suite with the Unitree
26-DoF H1-2 humanoid, DoublyAware demonstrates improved
sample efficiency, accelerated convergence, and enhanced motion
feasibility compared to RL baselines. Our simulation results
emphasize the significance of structured uncertainty modeling
for data-efficient and reliable decision-making in TD-MPC-based
humanoid locomotion learning.

I. INTRODUCTION

In model-based reinforcement learning (MBRL) for hu-
manoid locomotion learning, uncertainty is a central concern
for ensuring robustness and safe behaviors, particularly for
high-dimensional, complex, whole-body coordination, where
observations and dynamics can be noisy and stochastic [1]],
[2]. As humanoid robots need to explore and interact with
world dynamics, they must adaptively reason about two fun-
damentally distinct sources of uncertainty: one inherent to
the environment and one arising from limitations in learned
policy knowledge. Therefore, in this work, we identify two
complementary forms of uncertainty to tackle this problem:

o Planning uncertainty arises from the stochasticity in the
local sampling-based trajectory optimizers, such as Model
Predictive Control [3]], in the planning phase.

o Policy uncertainty stems from the learned policy net-
work’s incomplete knowledge due to the unexplored
action-state space during the learning phase.
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Fig. 1: Overview of DoublyAware: Disjoint uncertainty decomposi-
tion in TD-MPC frameworks and refinements for each component in
planning and learning phases for robust humanoid locomotion.

Planning uncertainty maps to aleatoric uncertainty, which
is induced by the environment randomness together with the
system dynamics (e.g., ground contact, observation noises, and
multi-modal nature of feasible movement trajectories). Such
uncertainty cannot be eliminated even with augmented data,
as it naturally reflects the stochasticity of the world itself.
Meanwhile, policy uncertainty is akin to epistemic uncertainty,
where the model is being trained yet to know about the world
due to its internal training experience, which can be reduced
through further exploration, learning, and sophisticated policy-
aware optimization.

The concept of aleatoric and epistemic uncertainty can be
dated back to prior works in machine learning [4], [5]. Vast
adaptations have been made for further investigation in learn-
ing the world dynamics and control drifts under the influence
of uncertainty in classification [4] for feature selection and
autonomous driving [6f], [7] for trajectory prediction under
the influence of control uncertainty and world dynamics. In
the scope of learning for control, Temporal Difference Model
Predictive Control (TD-MPC) [8]], [9] has shown its excellence
at short-horizon decision-making through real-time trajectory
optimization with TD-learning, enabling more flexible and
scalable behavior learning for MBRL-based techniques. Still,
these methods frequently suffer from poor sample efficiency
and unstable policy updates [10]], [11] and notably remain
vulnerable to planning compound errors and learning biases
issues that are particularly pronounced in high-dimensional
control settings [8[], [9], [[12].

To address this dual challenge, we proposed DoublyAware,
a planning- and policy-aware TD-MPC-based method for
humanoid locomotion learning. Specifically, our approach ex-
plicitly decomposes aleatoric planning and epistemic learning
uncertainties and solves them distinctively, as illustrated in Fig.
Leveraging conformal prediction theory [13]], DoublyAware
integrates conformal quantile filtering to select suitable can-
didate trajectories robustly, and uses them as informative
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priors to modulate agents into a high-reward learning space
as a planning-aware solution. Furthermore, inspired by recent
advancements in large language models, DoublyAware incor-
porates group-relative policy optimizers [14] in the learning
phase with an adaptive trust-region as policy-aware learning.
Our contributions are threefold:

1) We outline the decomposition of overall uncertainty in
MBRL into planning and policy uncertainty, and solve
them distinctively instead of framing them as one.

2) We integrate the planning-aware mechanism with the
policy-aware learning optimizer, enabling uncertainty-
calibrated trajectory filtering followed by policy rollouts
used as informative learnable priors.

3) We evaluate DoublyAware’s performance on locomo-
tion tasks in HumanoidBench [15]], showcasing its
improvements compared to baseline methods regarding
learning speed and kinodynamically feasible motions.

II. RELATED WORK

Temporal-Difference Model Predictive Control: Hu-
manoid locomotion is one of the most complex control sys-
tems, stemming from its high-dimensional continuous action
spaces, inherently unstable dynamics, and complex interac-
tions with the environment [[16]. TD-MPC has shown promise
in addressing these challenges by uniting the short-horizon
optimization capabilities of MPC with the sample-efficient,
value-driven learning of RL. Prior works on this [_], [9],
[17] have demonstrated that incorporating TD learning into
MPC frameworks enables flexible value function learning
without relying on handcrafted cost functions. Building upon
this direction, TD-MPC2 [9] extends the original TD-MPC
[8]] by introducing scalable latent world models tailored for
continuous control to mitigate error accumulation and improve
planning stability, where previously even minor errors can
quickly lead to destabilized motion as a result. By merging TD
learning with MPC-style planning, these frameworks enhance
sample efficiency and offer adaptability in high-dimensional
control. However, these methods fail when encountering more
complex tasks as their uncertainty compounds over time for
an extended task execution period. In this work, we further
investigate and solve the planning and learning uncertainty
distinctively that might lead to poor performance and non-
feasible behavior of the TD-MPC framework for humanoid
control, especially for locomotion tasks.

Uncertainty-Aware Robot Planning: Recent developments
in uncertainty-aware robotics have emphasized the role of
conformal prediction and information-theoretic decomposition
to enhance planning robustness. In trajectory and motion
planning, conformal prediction offers statistical guarantees
through distribution-free calibration, making it a natural fit
for high-risk, multimodal robotic tasks. Prior works have
integrated conformal methods into learned manifold learn-
ing [18], [19], enabling model-agnostic risk assessment for
learned representations. This research has been extended to
motion planning under dynamic uncertainty, where adaptive
conformal frameworks improve safety and feasibility [20]-
[26]. Other approaches have explored handling distribution
shifts during policy learning via conformal mechanisms [27]],

while others target high-dimensional control for teleoperation
through confidence-aware policy mappings [28]. Complement-
ing these, Stochasticity in Motion introduces an entropy-based
decomposition of trajectory uncertainty into aleatoric and epis-
temic terms, formalizing their roles in motion prediction and
emphasizing their implications for safe downstream planning.
Unlike previous approaches, our work directly applies confor-
mal prediction to latent trajectory selection between policy-
guided priors and stochastic trajectories to alleviate exploration
uncertainty during planning, offering a solution for effectively
tackling the aleatoric part of the TD-MPC framework.

Policy-Aware Optimization for Robot Learning: Policy
mismatching poses a core challenge in robot control, partic-
ularly for humanoid locomotion, where off-policy methods
are highly susceptible to discrepancies between the actions
rolled out by the learned policy and the targets generated by
temporal-difference updates. The misalignment and bootstrap-
ping error accumulation often lead to compounding inaccura-
cies and poor generalization performance [29], [30]. Offline
RL approaches have significantly addressed this by learning
from fixed datasets. Several methods mitigate distributional
shift by explicitly regularizing the policy toward expert demon-
strations [29], [31]], while others leverage importance sampling
to correct for distributional mismatch in value estimation [32]],
[33]. Similarly, in-sample learning techniques [34], [35] avoid
out-of-distribution actions by constraining updates to observed
data, implicitly ensuring policy reliability. This challenge is
equally framed in MBRL; for example, LOOP [17]] introduces
actor regularization to inject conservatism into the planning
process and stabilize learning. Departing from prior work,
our method enforces distributional consistency directly on the
policy prior in latent space, without modifying the underlying
planner, allowing for more flexible planning while maintaining
stability and enabling fast policy adaptation. In brief, our work
extends these principles by incorporating algorithmic stability
and data efficiency through Group-Relative Policy Optimiza-
tion (GRPO) [14] with an explicit trust-region constraint for
policy optimization during the learning phase.

III. PLANNING- & POLICY-AWARE TEMPORAL
DIFFERENCE LEARNING

A. Vanilla Planning with Model-Predictive Control

Humanoid locomotion tasks can be formulated as infinite-
horizon Markov Decision Processes (MDPs), defined by the
tuple M = (S, A, p,r,7), where S denotes the state space, A
is the action space, p : S x A — S represents the transition
function, 7 : § x A — R is the reward function, and ~ €
(0,1] is the discount factor. The objective J™ is to learn the
parameters 6 for the policy network IIp : S — A that enables
the robot to continuously generate optimal actions, maximizing
the expected discounted cumulative reward over a trajectory,
¢, as a sequence of states and actions:
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with each action a; is sampled from the policy ITy(s;), and
each subsequent state s; is determined by p(s;_1,a;_1) based
on the previous state s;_; and action a;_1.
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Fig. 2: Uncertainty-Aware Planning for Humanoid Locomeotion: At each planning step, two sets of trajectories are sampled from the
policy network and MPPI planner. The policy network provides prior-guided trajectories that reflect learned behavior, while MPPI samples
explore around a sampling distribution A/ (,uj,af-l) with j as the number of iterations. Each iteration contains a batch of trajectories for
all action dimensions along the predictive planning horizon. (1) These candidate trajectories are then evaluated using the TD-based cost
function, (2) assigned normalized nonconformity scores 3, (3) and filtered via a conformal quantile threshold ¢ to retain only trajectories
within the empirical (1 — «) prediction set. These conformal latent trajectories ensure statistically reliable planning under policy model error
and guarantee quality explorative behavior for sequential decision-making while learning humanoid locomotion tasks.

Hansen et al. [8]], [9] introduced an approach that integrates
MPPI [36] as a local trajectory optimizer for short-horizon
planning within a learned latent dynamics model. During the
planning phase, the action sequences of length H are sampled
as latent trajectories from the learned dynamics model, and the
cumulative return ¢, of each sampled trajectory £ is calculated
using a trained value estimator Vy(z;,a;), as the composition
of Ry(z:,a;) and Qg(zy,ay) as follows:

H-1
Vo(zi,a;) = ¢ = Y 7' Ro(z,a) + 7" Qo(zn,an), ()
t=0
where z; = hy(s;) is the latent representation that selectively
captures the relevant dynamics of the state s;, rather than all
observation dimensions, z; = dg(s;—1,a;—1) represents the
next latent state under the latent dynamics dy, 7+ = Ry (s¢, az)
and §; = Qo(s¢,a;) denote reward and value estimators, and
a; ~ N (pg, 021) describes the MPPI sampling distributions:

k

pi=ny &, ol =n> Qg - 3)
i=1 '

where Q; = exp(r¢;;), 7 is a temperature parameter, 7

represents the normalizing term with respect to the coefficients

€, and & denotes the i of the latent trajectory corresponding

to return estimate ¢;. In the MBRL-based robot learning, Eq.

can therefore be called as an H-step look-ahead policy, whic

iteratively maximizes the first step’s costs.

B. Planning as Exploration with Conformal Trajectories

To improve planning exploration probabilistically safely,
we integrate conformal prediction into the MPPI planner, as
depicted in Alg. [T} Specifically, conformal prediction allows
the underlying planner to choose “statistically-significant”
trajectories as candidates without assuming any parametric
form of the return value/cost distribution.

The planning procedure in TD-MPC2 [9]] incorporates two
distinct sources of candidate latent trajectories (Fig. [2):

o The first set is sampled from the current policy network

by simulating trajectories under the learned world model,

which acts as prior knowledge by proposing trajectories
that reflect the agent’s learned behavior so far. These
trajectories serve as a warm start for planning, reducing
dependence on purely random sampling and encouraging
consistency during training.

o The second set is generated via the MPPI planner, which
aims to explore the action space heuristically and re-
weights them based on expected cumulative rewards,
thus refining the action distribution toward higher-value
trajectories through the learning process.

Using policy-guided and MPPI samples improves explo-
ration and stability by balancing prior-driven guidance with
adaptive search. Nevertheless, both sources might fall into
sub-optimality, where policy rollouts may propagate error-
prone behavior during training, while MPPI may overfit to
inaccuracies in the model dynamics. Thus, an uncertainty-
aware selection mechanism for the MPPI planner is needed to
calibrate and filter trajectories based on empirical plausibility.

We compute the conformal scores to quantify the agreement
between candidate trajectories and the prior trajectories from
the policy network. Denote A, = {af:’g) fV:”l as the N, prior
trajectories sampled from the policy with vf:’(lj) are their evalu-
ated costs, Amppi = {agziq}f\’:l as the N candidate trajectories
generated via MPPI with vﬁq as their corresponding costs.
With Eq. 2] the nonconformity scores can be directly computed
from the latent trajectories’ costs:

O =1 = vy (280} ) Ya € A= (A Uduyi} @)

where the scores are computed as the normalized cost func-
tions across all actions all:)H along the planning horizon H.
Note that normalized costs are computed to align with the
original concept of softmaxes, in the range of 0 to 1, in
classical conformal classification problems.

As both sets are exchangeable and the TD-based cost
function Vy(z,a) is used to estimate the conformal scores,
the conformal prediction set Aconformar Satisfies the marginal



Alg. 1: Planning with Conformal Trajectories

Input: H: planning horizon, J: number of iterations,
N (o, 081): initial distribution for MPPI,
z;: latent represent. at time ¢, o error rate,
N,: number of prior trajectories by mp,
N: number of MPPI-sampled trajectories
Output: a;: action sampled from N (u7,071)

1 function plan (H, J, z;, o, N(po,02I), N, Ny)
2 while planning do

3 for j=1,...,J do

4 A {a7 N ~

5 Amppi = {27 L ~ N (i1, 07 41)
6 fora, e A={A,UA,,,} do

7 V; 0, Zy < 74

8 fort=0,...,H —1do

9 i v + 7 Ro(24, ;1)

10 Ziyq < do(ze,a:)

1 v; + v; + Y7 Qo(2m, 2, 1) (Eq.
12 /I compute nonconformity scores from costs
13 3; + 1 —normalize(v;) (Eq.

14 ¢ < quantile ({5},1— a) (Eq.[0)

15 Aconformal — {Z cA | Si < d} (Eq-
16 /[ update parameters for next planning step
17 Hj> 05 = update({aZ}zeAconfmmdl (Eq. '
18 | return a, ~ N(u,0I) for 7 =t,...,t + H

coverage guarantee, so-called distribution-free validity:
l1—a+ m >P [VG(Z7a) S Aconformal] >1—a. (5)

With the nonconformity scores 5*) from Eq. 4, we construct
the prediction set of candidate trajectories that conform to the
statistical properties of the calibration set. The key idea is
to select a quantile threshold ¢ such that a fixed proportion
(1 — @) of calibration trajectories achieve scores less than or
equal to this threshold. Formally, we define it:

G = quantile [{ (Z)}

where o € [0,1) is the pre-defined risk level that controls
the desired coverage. Intuitively, ¢ defines a level set of
conformity: any candidate MPPI latent trajectory with a score
5) < G is deemed statistically compatible with the teacher
prior A,. This leads to the formal definition of the conformal
prediction set that is in Eq. [5] described as:

Acunformal = {a(ljj)f{ € A | g(j) S Cj} ) (7)

which serves as a filtered subset of high-confidence tra-
jectories. The conformal set Aconformar admits finite-sample
validity guarantees under the assumption that the calibration
scores {5("} and the candidate scores {5()} are exchangeable
for any ¢ and j within the union set size. Thus, Aconformal
contains the best trajectories with probability at least 1 — a,
which satisfies Eq. E} Moreover, in online learning, the value
estimator is improved over time as it learns periodically.

For this reason, we suppose that the TD-based cost func-
tion Vy(z,a) is an imperfectly taught value estimator (i.e., a
weak teacher in conformal prediction theory [13]]) that reveals

Nr+N

a-a.  ®

i=1

informative conformity scores only along a teaching schedule

= {nr}r>1 C N. If the teaching schedule satisfies the
sub-linearity condition limg_,~ (ng /nk—1) = 1, the conformal
quantile ¢ in Eq. @ constructed from calibration scores {5(")},
admits asymptotic weak validity. That is, the prediction set
Aconformar defined in Eq. [7] satisfies:

hmlanP’ [ 5t < q] >1-—a. (8)

This means that this asymptotic validity under weak priors
(Eq. [8) holds even if the cost signal from Vy(z, a) is imperfect
or inconsistent, as long as the prior model improves.

Indeed, Eq. E] is a black-box oracle, and no distribu-
tional assumptions are made beyond exchangeability within
this context. Therefore, this conformal filtering preserves the
model-agnostic nature while seamlessly integrating with latent
dynamics and value-based planning, highlighting that the delay
in learning the value estimator is allowed.

C. Learning with Group Relative Policy Constraint

We adopt and improve GRPO [14] to enhance action
group-based explicit advantage estimation, enhancing entropy-
regularized policy gradient methods by leveraging group-wise
action comparisons, enabling the policy to learn from relative
action preferences rather than relying on those priors. In
standard actor-critic methods, policy gradients are scaled by
absolute values or advantage estimates, which may be sensitive
to estimation errors. These limitations become especially pro-
nounced in long-horizon tasks; GRPO addresses this issue by
constructing a relative preference distribution across sampled
groups. Mathematically, at each state s;, a set of G actions
{a},...,a%} is sampled, and their Q-values {q},...,q} are
computed, which are used to compute the group-based soft
attention advantage scores:

exp(q:/7)
Zg 1 exp(qz /T)

where q Qo(s,a;) denotes the estimates, and 7 is a
temperature parameter and 0 < A;(-) <1 as its property.
As {a 1 is a group of GG actions sampled from a policy
mo(s) at the state s with 7#; = ry(s,a;) and §; = Qq(s,a;) are
the reward and estimated values, respectively, we assume that
[|Vglogme(a | s)||= C, and §;, #; are bounded above with
Va € A and Vs € S. Therefore, we obtain:

Var [v9£softmax] < Var [veﬁstd-norm] s

Ai(q) = (©))

(10)

with Leofimax and Lgdnorm are the softmax-based and standard
normalized advantage losses, respectively. The variance of
gradient of Lgyfmax 1S thus smaller than that of Ly norm:

‘|v9£softmax| (11)

yields more stable policy updates at some constant C' that
asymptotically bounds ||[Vglogmg(a | s)||. Two keys favor
softmax-based over normalized advantages. First, their out-
puts lie between O and 1, limiting the impact of outliers.
Meanwhile, normalized advantages induce large magnitudes
under noise, leading to high-variance gradients. Second, policy
gradients scale with the advantage values. The gradient steps

std-norm|| i unbounded
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Fig. 3: Policy-Aware Learning for Humanoid Locomotion: Given an initial state so, it is encoded into a latent representation zo using the
encoder hg. A latent dynamics model dy then iteratively predicts future latent states z;41 over a planning horizon of H steps, conditioned
on actions a; and current latent states z:. Throughout this horizon, reward estimates, )-values, and policy outputs are generated via learned
networks Ry, (g, and 7y, respectively, supporting trajectory optimization in latent space guided by temporal-difference objectives. For each
state, groups of sampled actions are rolled out and evaluated through @Q-values, which are transformed into softmax-weighted advantage
scores AY per action group g. These scores inform the GRPC objective, promoting the selection of high-value actions while reducing
policy variance. A trust-region is enforced through a KL divergence penalty between the current policy and its MPPI-based prior, thereby
regularizing residual policy learning and bounding divergence from prior behavior to ensure stable updates.

will be disproportionately unstable if the advantage is large
or small. Therefore, softmax-based advantages smooth out
extreme values and act like a soft attention mechanism, giving
more stable policy updates during training episodes.

With the group relative weights in Eq. [0 and based on Eq.
and Eq. the improved GRPO objective is defined as:

L&
0) = EZAi((I)

where 1, denotes the behavior policy at k" iteration from
D in Eq. 3] The KL constraint ensures the updated policy
remains within a trust region of 7. The overall policy objective
combines the trust—region matching with Eq. [12}

ZA

where 3 is a welghtlng coefficient controlling the penalty
strength, the second term of Eq. [I3] imposes a residual-style
regularization as a trust-region for policy optimization [37].

Meanwhile, the latent dynamics dy, encoder hy, reward
network Ry, and value network Qg are concurrently optimized
by the following model objective:

EGRPO

log mp(a; | s) (12)

Ylogmg(a; | s)) + Blogpu(als), (13)

L(0; &) = |[do(zi,a:) — ho(sis1)|]3 (14a)
+ || Ro (2, ;) — il (14b)
+1Qo(2i,ai) — [ri + Qo (241, mo(zir1))]l5  (14c)

The training procedure with TD learning with GRPC at each
short horizon for long-horizon locomotion tasks is summarized
in Alg. 2] and is described visually in Fig. [3]

IV. SIMULATION RESULTS & ABLATION STUDIES

To assess our proposed method’s performance, we train
DoublyAware on the Unitree 26-DoF H1-2 humanoid, com-
prised of two legs of 12 DoFs and two arms of 14 DoFs.
The torso joint is locked to eliminate unnecessary body-
turning actions. The hands are included in the robot’s model

Alg. 2: Learning with Group-Relative Constraint
Input : T': trajectory length, [{: planning horizon,
G': number of groups, D: latent buffer,
S: number of iterations

1 function learn (T, H, G, D, S)

2 while learning do

3 fort=0,...,7T do

4 a; ~ Ig(ho(st))

5 (St+1,’l"t) NP(St7at)7R9(St,at)

6 D+ DU (St,a¢, 7, St+1)

7 for step = 0, ..., S do

8 {St,af,rt7Sf+1}t b H ™ D for G groups
9 ,uG oG = compute moments(at (Eq. '
10 z; < hp(st) if s; is the first observation
11 fori=t,...,t+ H do

12 Ziy1 < do(2;,a;) (Eq.|l4a)

13 T Rg(zi, ai) (Eq. |

14 /I group sampling & policy constraint
15 forg=1,...,G do

16 al ~ mp(z;)

" e = (@7 — S) /o®

18 ﬁg — threshold(ﬁ 6)

19 Qb‘(zza z) (Eq. |1

20 Ag = softmax( ) (Eq. E

21 £ = L9 Al logme(a? | z,)
2 Lp=LyttH Tc(” + BLkL Ea
23 0 0—nVoLl,

during training to account for their mass, ensuring that the
learned policies take both hands into consideration, even
though the robot is not involved in manipulation tasks. We
evaluate DoublyAware’s performance against SAC [3§]], BC-
SAC [39], AWAC [40], TD-MPC2 [9], TD-M(PC)? [12] on
the locomotion tasks in HumanoidBench [[15]. Nine tasks
include standing, walking, running, sitting on a chair, crawling
through a tunnel, navigating through standing poles, hurdling,
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Fig. 4: Episode Returns of DoublyAware and Baselines on H1-2 in Locomotion Tasks: DoublyAware achieves rapid convergence over
others in standing, walking, sitting, navigating through poles, hurdling, and sliding tasks, while it performs worse in more complex tasks
such as crawling and stair-climbing, which require high-dimensional whole-body coordination. In general, DoublyAware shows slightly better
data-efficiency than TD-M(PC)?, BC-SAC, and AWAC and significantly better sampling-efficiency than SAC and TD-MPC2.

stair-climbing, and walking over slides. Our evaluations are to
answer the following questions:

1) Does DoublyAware achieve superior reward convergence
compared to existing methods?

2) Can DoublyAware successfully solve tasks that demand
long-horizon, whole-body coordination?

3) Whether conformal trajectory planning and group-
relative policy constraint learning mutually benefit?

4) How does the motion generated by DoublyAware com-
pare qualitatively to those from other baselines?

Across the experiments, the evaluated algorithms are set
with the default starting pose of the H1-2. The hyperparame-
ters include the planning horizon of 3, batch size of 256, action
dimension of 26, learning rate of 0.0003, and number of prior
trajectories of 24 on an AMD Ryzen 9 7950X3D CPU and
an NVIDIA RTX 4090 GPU. Additionally, we use a group
number of 3 for group-based policy optimization and an error
rate of 0.05 for conformal trajectory planning.

A. Episode Returns of Locomotion Tasks

We report the episode return comparisons across all eval-
uated methods on the HumanoidBench locomotion tasks
in Fig. @] On foundational tasks such as standing, walk-
ing, running, and sitting, DoublyAware demonstrates signifi-
cantly faster convergence than competing approaches. Specif-
ically, the H1-2 humanoid achieves upright standing in fewer
than 100,000 training iterations, walking in approximately
300, 000 iterations, running in 450, 000 iterations, and sitting
in 200,000 iterations. In contrast, baseline methods such as
SAC, BC-SAC, AWAC, TD-MPC2, and TD-M(PC)? show
their difficulties achieving comparable performance on walk-
ing and running within the same training budget.

On more complex tasks requiring precise whole-body co-
ordination, such as navigating around standing poles, hur-
dling over obstacles, and walking across inclined slides,

DoublyAware maintains a consistent performance advantage.
Notably, it surpasses a reward threshold of 600 on the pole
navigation task within 500, 000 iterations, achieves a reward
of 150 on hurdling, and reaches around 300 on walking over
slides. While other methods eventually learn these tasks, they
exhibit slower convergence rates and higher variability in
performance. On the most challenging tasks, such as crawling
and stair-climbing, DoublyAware underperforms relative to
other methods in terms of reward acquisition within the same
number of training iterations. Overall, DoublyAware shows the
training efficiency compared to the competing baselines.

B. Ablation Studies on Uncertainty-Aware Modules

As also shown in Fig. ] we conduct an ablation analysis
to examine whether conformal trajectory prediction (CP) and
group-relative policy constraint (GRPC) offer complementary
benefits when integrated into the TD-MPC framework. We
compare three variants: TD-M(PC)? (blue) — which is plain
baseline, TD-M(PC)? + CP (pink), and DoublyAware (red) —
which combines both CP and GRPC.

Across most locomotion tasks, DoublyAware consistently
outperforms the ablated variants in final performance and
sample efficiency. For example, in tasks such as standing,
walking, navigating through poles, hurdling, and walking over
slides, DoublyAware reaches peak returns faster and more
stably than the other two. Although it underperforms in com-
plex coordination tasks like crawling and stair-climbing, TD-
M(PC)? + CP performs better in these settings, benefiting from
CP’s uncertainty-aware planning — yet it lacks generalization
across broader task domains. In general, these results suggest
that CP and GRPC are mutually beneficial, each addressing
complementary aspects of the problem: CP improves robust-
ness and uncertainty-awareness in trajectory exploration, and
GRPC enhances policy-aware policy optimization for learning.
Their integration in DoublyAware leads to a more data-efficient
and robust locomotion policy.
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Fig. 5: Qualitative Results of H1-2 in Locomotion Tasks: (a) Standing & Sitting Poses: DoublyAware enables H1-2 to complete these
tasks with appropriate leg and hand poses. (b) and (c) Walking & Running Direction: H1-2 can walk and run in the forward direction when
trained with DoublyAware, unlike when being trained with other algorithms: TD-M(PC)? induces walking/running backward, others generate
dynamically-infeasible motions. (d) Crawling under A Tunnel: DoublyAware unable to teach the robot to crawl through the tunnel, where
TD-M(PC)? and the ablation methods also fail. Only SAC and TD-MPC2 can accomplish this task. (e) Walking on Inclined Slides: The H1-2
can reach the top of the slide-like hill faster than other baselines when learning with DoublyAware. (f) Navigating through Poles: Again,
DoublyAware generates feasible motions for the robot to move forward and avoid collision; other methods fail on this task. and (g) Hurdling
& Stair-Climbing: DoublyAware is unable to teach the H1-2 to accomplish these challenging tasks, so do other methods.

C. Visualization of Sequential Behaviors

Beyond task completion, we study the qualitative results of
generated behavior across learning algorithms. Fig. [5] shows
the performance of H1-2 in a range of locomotion tasks.

In Fig. Eb, DoublyAware enables the robot to achieve stable
and plausible poses for standing and sitting, demonstrating
coordinated control of the legs and limbs. In contrast, baseline
methods exhibit unstable or implausible configurations. Fig. [5p
and Fig. [t both show that DoublyAware consistently results in
coherent walking and running in the forward direction, while
TD-M(PC)? and other methods induce backward locomotion.
For Fig. [5k, in the slide-walking task, DoublyAware guides the
robot to ascend the incline progressively and reach the top.

In the more challenging scenarios, such as Fig. B, crawling
through a tunnel, DoublyAware fails to complete the task,
showing sub-optimal postures and stalled progress, similar
to baseline methods, which also fail to solve this task. Only
SAC and TD-MPC2 can complete this task sufficiently. Fig.

Bf shows that DoublyAware improves spatial awareness in
navigating between standing poles, generating trajectories that
avoid collisions while maintaining forward progress, unlike
competing methods that get stuck or misstep. Lastly, in Fig.
Eg, DoublyAware and also other baselines fail to teach the H1-
2 hurdle and climb stairs. In general, these results highlight
that while DoublyAware significantly improves performance
on many tasks compared to its competitors.

We summarize solving abilities across all locomotion tasks
for all algorithms in Table |I} Based on both quantitative and
qualitative results analyzed, the summary shows an empirical
improvement when training the H1-2 with DoublyAware. In
specific, DoublyAware successfully solves most locomotion
tasks, including standing, walking, running, sitting on a chair,
navigating through standing poles, and walking on an inclined
slide. However, DoublyAware and others cannot solve crawl,
hurdle, and climb stairs tasks, which require more advanced
whole-body coordination and dynamic skill refinement. Over-

TABLE I: Solving ability of SAC [38], BC-SAC [39], AWAC [40], TD-MPC2 [9], TD-M(PC)? [12]}, and our method, DoublyAware, of
locomotion tasks on H1-2 in HumanoidBench : v for tasks that are solved sufficiently, ® for tasks that need additional mild refinements
for success, and X for tasks that need further intensive learning of whole-body and selective dynamics features.

sit on crawl under navigate climb walk on
Method / Task stand  walk run chair tunnel through poles hurdle stairs inclined slide
SAC X X X X v X X X °
BC-SAC [39] X X X ° ° ° X X X
AWAC [40] ° X X ° ° ° X X X
TD-MPC2 [9)] X X X ° v x X X °
TD-M(PC)? [12] v ° ° ° ° ° X X °
DoublyAware v v v v [ v X X v




all, these results highlight the robustness of DoublyAware in
diverse locomotion settings, with room for improvement in
tasks demanding complex full-body movements. For more
comprehensive results, the demonstration video can be seen
at: https://www.acin.tuwien.ac.at/f3c8/.

V. CONCLUSIONS

This work presents DoublyAware, an uncertainty-aware ex-
tension of TD-MPC tailored for robust and sample-efficient
humanoid locomotion. By decomposing uncertainty into dis-
joint planning and policy components, our method enables
principled reasoning and mitigation in planning and learn-
ing phases. Conformal quantile filtering ensures statistically
grounded trajectory selection under aleatoric uncertainty, while
GRPC with adaptive trust-region regularization promotes sta-
ble and policy-aware learning under epistemic uncertainty.
Our evaluations on HumanoidBench demonstrate that Dou-
blyAware surpasses prior methods in convergence speed and
motion quality across various whole-body locomotion tasks,
highlighting the benefits of structured uncertainty modeling in
complex, high-dimensional humanoid control settings.
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