
Context-Aware Deep Lagrangian Networks for Model Predictive Control

Lucas Schulze1, Jan Peters1,2,3,4, Oleg Arenz1

Abstract— Controlling a robot based on physics-consistent
dynamic models, such as Deep Lagrangian Networks (DeLaN),
can improve the generalizability and interpretability of the
resulting behavior. However, in complex environments, the
number of objects to potentially interact with is vast, and
their physical properties are often uncertain. This complexity
makes it infeasible to employ a single global model. Therefore,
we need to resort to online system identification of context-
aware models that capture only the currently relevant aspects
of the environment. While physical principles such as the
conservation of energy may not hold across varying contexts,
ensuring physical plausibility for any individual context-aware
model can still be highly desirable, particularly when using it
for receding horizon control methods such as model predictive
control (MPC). Hence, in this work, we extend DeLaN to make
it context-aware, combine it with a recurrent network for online
system identification, and integrate it with an MPC for adaptive,
physics-consistent control. We also combine DeLaN with a
residual dynamics model to leverage the fact that a nominal
model of the robot is typically available. We evaluate our
method on a 7-DOF robot arm for trajectory tracking under
varying loads. Our method reduces the end-effector tracking
error by 39%, compared to a 21% improvement achieved by
a baseline that uses an extended Kalman filter.

I. INTRODUCTION

Representative models are essential for control of dynamic
systems, whether for learning approaches, such as reinforce-
ment or imitation learning in simulation, or for model-based
techniques, like model predictive control (MPC). White-box
models can be derived from first principles, but they often
require significant engineering effort and may not generalize
well to dynamically changing environments. To address these
challenges, online system identification (SysID) continuously
adapts the model using online observations, improving its
accuracy and robustness during operation.

Classical adaptive control techniques online identify the
model’s parameters based on a linear regressor [1], [2], [3],
[4]. However, these methods rely on prior knowledge, such as
a known kinematic tree, and assume persistent excitation [5].
Additionally, they are typically designed for specific types
of model mismatches, limiting their generalization across
different systems and conditions.

On the other hand, black-box approaches leverage
recorded data to model the environment using nonparametric

This work was funded by the German Research Foundation (DFG) -
Project number PE 2315/18-1, and the German Federal Ministry of Re-
search, Technology and Space (BMFTR) - Project number 01IS23057B.
This project has been supported by a hardware donation by NVIDIA through
the Academic Grant Program.
1Department of Computer Science, Technical University of Darmstadt,
Germany. 2Hessian.AI. 3German Research Center for AI (DFKI), Research
Department: Systems AI for Robot Learning. 4Robotics Institute Germany
(RIG).
Corresponding author: lucas.schulze@tu-darmstadt.de

models, such as Gaussian process regression (GPR) [6],
[7], [8] or locally weighted projection regression [9], or
parametric models such as neural networks [10]. However,
these techniques typically perform well only within the
trained domain and require large amounts of data.

A powerful technique to increase the accuracy of the
learned model in the small data regime, is to employ physics-
informed inductive biases [11]. To address physical plau-
sibility in offline SysID, grey-box methods such as Deep
Lagrangian Networks (DeLaN) were proposed to combine
Lagrangian mechanics with deep learning [12], [13]. The
resulting model from DeLaN is interpretable and can be used
as a forward and inverse model. A similar approach is used in
Hamiltonian Neural Networks (HNN) [14], which are based
on Hamiltonian mechanics. Both DeLaN and HNN can be
applied to model-based control [15], [16].

However, these offline methods are not suitable for en-
vironments where the robot manipulates different objects,
as they cannot account for the resulting changes in the
robot’s dynamics. Therefore, we propose an extension of
DeLaN to enable physically consistent online SysID by
learning a contextual DeLaN model that obtains a latent
representation of the environment as additional input, which
can be identified online. This modification allows us to
generalize across multiple and time-varying environments
while maintaining a physically plausible model at any given
time. By using a fixed model during each MPC iteration,
which might be updated between iterations, we impose the
prior belief that the dynamic properties will remain constant
over the prediction horizon. Yet, this approach still enables
swift adaptation whenever this prior belief is violated. We
argue that this method is particularly fruitful in settings
where changes in dynamics are sparse over time, e.g., when
picking up or dropping objects.

Furthermore, we use a nominal model as an inductive
bias to focus on learning the unknown dynamics of the
system, as certain elements may remain unchanged compared
to the nominal case. Learning a residual dynamics model
that incorporates prior dynamics has been shown to improve
data efficiency and generalization [17]. In the context of
deep learning, learning a residual model has similar benefits
[18]. It also enables the use of smaller networks, which is
essential for fast evaluation and optimization, which is a key
requirement of MPC.

Our work is within the context of meta-learning, i.e., learn-
ing how to optimize a meta-objective over different tasks
using previous experience [19]. Many approaches combine
this concept with adaptive control, relying on GPR [20], [21],
[22], non-linear basis functions [23], [24], or feed-forward

ar
X

iv
:2

50
6.

15
24

9v
3

 [
cs

.R
O

]
 2

7
Ju

l 2
02

5

https://arxiv.org/abs/2506.15249v3

neural networks [25], [26]. Similar meta-learning methods
have been applied to physics-informed neural networks
(PINNs) [27], iMODE [28] learns a more general PINN
that incorporates an additional latent variable to describe the
underlying system, similar to our approach. However, these
methods do not guarantee physical consistency.

Similarly, while residual models have been previously
employed for MPC [29], [30], these methods did not use
physically plausible models for better data efficiency. Fur-
thermore, while [31] proposes an adaptive controller based
on Hamiltonian neural ordinary differential equations to learn
disturbance features, ensuring physical consistency, their
method is only applied to a feedback energy control strategy,
and the results are demonstrated only in simulation.

We demonstrate the adaptability of our method in joint
trajectory tracking of a 7-DOF Franka Emika Panda under
an unknown payload, both in simulation and on the real
robot. To demonstrate the benefits of identifying an entire
dynamics model and not only gravitational compensation for
agile motions, we compare it to an extended Kalman filter
(EKF) that directly estimates the force at the end-effector. As
shown in our experiments, we outperform the tracking and
prediction error of both, the nominal model and the EKF. On
the real robot, our method is applied zero-shot, that is, we
apply it using a model trained solely with simulated data.

A. Contributions

Our main contributions are as follows:
• We combine DeLaN with a nominal model to only

predict the unmodeled dynamics.
• We extend DeLaN to a contextual setting, enabling us

to learn a single network for different dynamics.
• By training our contextual DeLaN along with a history

encoder in simulation, we are able to online identify a
physically plausible dynamics model.

• We combine the aforementioned contributions for MPC
by using recent software frameworks [32], [33], [34],
[30] to integrate our contextualized DeLaN network
with an optimizer suitable for real-time optimization.

• We demonstrate the benefits of our learning-based con-
trol method for agile manipulation tasks, by performing
zero-shot real robot experiments from simulated data.

The remainder of this paper is organized as follows:
Section II briefly reviews DeLaN and presents our extensions
for the residual and contextual setting, along with their
application for MPC: Context-Aware Deep Lagrangian MPC
(CaDeLaC). Section III presents our experimental setting
as well as the results. Finally, Section IV summarizes our
findings.

II. CONTEXT-AWARE DELAN

We will now briefly discuss DeLaN [13], before presenting
our extensions to the residual and contextual setting, as well
as its application to online system identification for MPC.

DeLaN embeds Lagrangian mechanics into a deep learning
framework to learn physically consistent dynamical models.
Consider the Lagrangian defined as the difference between

the kinetic energy K = 1
2 q̇

TH(q)q̇ and the potential energy
P . Using the Euler-Lagrange equation, the system’s equation
of motion is given by

H(q)q̈+ Ḣ(q)q̇− 1

2

(
∂

∂q
(q̇TH(q)q̇)

)T

︸ ︷︷ ︸
:=C(q,q̇)q̇

+
∂P

∂q︸︷︷︸
:=g(q)

= τ ,

(1)
where τ is the joint torque.

DeLaN approximates H and P by two neural networks.
The first one outputs the diagonal ldiag and off-diagonal
loff elements of the lower triangular matrix L given by the
Cholesky decomposition of H. Thus, the estimated inertia
matrix Ĥ(q,θH) is given by

Ĥ(q,θH) = L̂(q,θH)L̂(q,θH)T, (2)

where an offset ϵ and a softplus function is applied to
ldiag to guarantee Ĥ to be positive definite, and θH is the
network parameter. The second network directly outputs the
potential energy P̂ (q,θP). Therefore, the inverse dynamics
model (1) is defined as a function of the joint variables and
the parameters of the networks τ = f−1(q, q̇, q̈,θH,θP).

To train the network parameters, a loss function using
inverse dynamics error can be employed. The gradient of
the loss function is obtained using automatic differentiation
in (1) of PyTorch [35].

A. Residual DeLaN

Given a nominal model, the equation of motion of the real
system (1) can be rewritten as

Ĥ(q)q̈+ Ĉ(q, q̇)q̇+ ĝ(q) + τ̃ = τ , (3)

where Ĥ, Ĉ and ĝ refer to the nominal components, and
τ̃ = τ − τ̂ denotes the residual torque between actual and
nominal torque. Due to the model mismatches, i.e., H̃ =
H− Ĥ, g̃ = g − ĝ, the residual torque can be defined as

τ̃ = H̃(q)q̈+ ˙̃H(q)q̇− 1

2

(
∂

∂q

(
q̇TH̃(q)q̇

))T

+ g̃, (4)

which has the same form as (1) and can be learned using the
DeLaN framework, i.e., τ̃ = f̃−1(q, q̇, q̈,θH,θP).

Despite the extensive engineering efforts, model mis-
matches will always arise in real systems due to variations
during production, flexible and moving parts, unmodelable
internal components, e.g., wires and cables, and additional
payloads attached to the robot. Hence, the residual torque is
not only a function of joint states but also of the environment.

B. Context-Aware DeLaN

To enable DeLaN to estimate the residual torque τ̃ across
different environments, we condition it on a latent embedding
z of the environment. By training a history-based encoder
along with the contextual DeLaN, we are able to infer the
latent representation of the environment based on the recently
observed states and actions. More specifically, we use an
LSTM [36] network as encoder, and feed it a sequence of

joint positions, velocity and measured residual torques τ̃ .
Thus, each entry i in the nh length sequence is:

hi =
[
qT
i q̇T

i τ̃T

i

]T
. (5)

We chose an LSTM for its ability to capture information
from historical data while retaining long-term memory. By
conditioning the contextual DeLaN on a learned latent rep-
resentation, we can also reduce the number of neurons and
layers. Please note, that we will only require the contextual
DeLaN model during a given MPC iteration, but not the
LSTM. The proposed architecture is depicted in Figure 1.

Fig. 1: Our proposed architecture. The orange block is similar
to the original DeLaN [13], but with additional input z.

C. Context-Aware DeLaN for MPC

We will now introduce CaDeLaC and discuss how it uses
our context-aware and residual DeLaN model for MPC.

MPC is an optimal control technique that computes control
actions in a receding horizon fashion by optimizing a cost
function based on a system’s model prediction [37]. To
follow a desired state trajectory, we optimize at each instant k
the state and control inputs, x̄k and ūk, along the prediction
horizon ny with respect to the optimization problem

min
x̄k,ūk

ny∑
i=0

∥xd
k+i − xk+i∥2Q +

ny−1∑
i=0

∥uk+i∥2R

s.t. xk = x0,
xk+i+1 = f(xk+i,uk+i),
h(xk+i,uk+i) ≤ 0,

(6)

where Q and R are the weights matrices, x0 is the current
state, xd

k+i is the desired state at each timestep k + i,
f(xk+i,uk+i) defines the system’s model and h(xk+i,uk+i)
are inequality constraints, e.g., actions and state limits,
collision avoidance or safety margins.

A straightforward way to integrate our Context-Aware
DeLaN would be to infer the residual torque along a future
sequence of states and control actions, i.e., predicted in the
step before or the reference values. This residual torque could
then be given to the MPC as an external torque. However,
the controller would only be able to compensate static model
errors that do not depend on the system’s state. Yet, we
typically require state-dependent compensation for model
mismatches, for example, due to mismatches in the inertia.
A possible solution is to approximate the model using Taylor
series [7], [30], but as we will discuss in more detail, we can
also directly pass our model to the optimizer.

As we assume that the environment will not change within
the prediction horizon, we can infer the latent variable z
before every MPC iteration and use the resultant function

f̃−1(q, q̇, q̈) as a residual function. Please note, that the
network parameters θ = {θH,θP } are trained jointly in
an initial training phase, but remain constant throughout
inference, as illustrated in Algorithm 1 and Algorithm 2.

Fig. 2: CaDeLaC: Context-Aware Deep Lagrangian Model
Predictive Control. The MPC optimizes considering both
nominal and learned models (orange blocks).

Algorithm 1 Training Phase

Require: Stepsize α, Dataset D = {he
1:T }Ee=1 of state-action

sequences collected at different training environments e
(e.g., in simulation)

1: for every iteration i do
2: for every environment e ∈ {1, . . . , E} do
3: for every timestep t ∈ {1, . . . , T} do
4: z← LSTM(he

0, . . . ,h
e
t)

5: θ ← θ − α∇θ

∥∥τ̃ e
t − f−1(qe

t , q̇
e
t , q̈

e
t ;θ, z)

∥∥2
6: end for
7: end for
8: end for

Algorithm 2 Control Phase

Require: Network parameters θ obtained during training
phase

1: for time step k do
2: zk ← LSTM(hk−nh

, . . . ,hk−1)
3: uk ← solve (6) with f−1(qk, q̇k, q̈k;θ, zk)
4: Apply control uk

5: end for

III. EXPERIMENTS

In this section, we evaluate the proposed architecture to
improve the joint trajectory tracking on a 7-DOF Franka
Emika Panda robot with an unknown payload.

A. Data Collection and Training

We collect data using an LQR based on the nominal model
for tracking a joint trajectory of the robot in simulation using
MuJoCo [38]. We collect 20 trajectories with a duration of
10 seconds for 100 different payloads attached to the end-
effector. The mass and position of the payloads are uniformly
sampled from 0 kg to 4 kg, while the 3D coordinates are
sampled between -0.3 m and 0.3 m from the center of the

end-effector. Additionally, we simulate the LQR without an
additional load. The trajectories are sampled at the same
control frequency of 50 Hz as the LQR; thus, the dataset has
1.01 M samples. For system excitation, the joint reference
trajectories are a chirp signal of 5th order and 10 seconds
following [3], i.e.

qd(t) =

ne∑
i=1

aei
iωe

sin(iωet)−
bei

iωe
cos(iωet) + q0,

qmin < qd < qmax, q̇min < q̇d < q̇max,

(7)

where ωe = 2π/Te with Te = 10 s, ae and be are uniformly
sampled. The reference joint velocities q̇d are obtained by
analytically differentiating the reference joint positions qd.

In addition to the latent variable z, a transformation
input layer is applied to q in both DeLaN networks, i.e.,
Tq(q) = [cos(q), sin(q)] as proposed in [13]. For the
network architectures, we selected an MLP with 2 hidden
layers, the first one with 30 neurons, and the second one
with 20. The LSTM has 5 hidden layers of 10 neurons each,
followed by a dense layer applied to the last temporal output,
yielding an output dimension of 10.

To enhance the robustness of our model to noise, we in-
troduced artificial noise into the input dataset. The variances
for the different joints and the training hyperparameters are
detailed in the Appendix A.

B. MPC for Joint Trajectory Tracking
We use the optimization problem presented in Section II-

C to track a joint trajectory, by choosing the state xk as the
concatenation of joint velocities and positions, q̇k and qk,
while the actions uk correspond to the joint torques τ k. We
use the inequality constraints h to bound the torques within
their limits τmin and τmax.

The nonlinear MPC is implemented using Acados [32] on
SQP-RTI mode with the solver HPIPM [33]. The nominal
model is obtained as a CasADi expression using Pinoc-
chio [34]. To convert the PyTorch model to CasADI, we
use the Naive implementation of L4CasADi [30] to convert
the MLPs into symbolic expressions.

While direct torque control is feasible in simulation, the
control interface of the real robot requires a real-time loop
controller at 1 kHz, which is challenging for any controller
based on online optimization. Therefore, on the real robot,
we use a feedback controller at 1 kHz with a feedforward
torque that is updated by MPC at 50 Hz. The same fre-
quencies are used for all evaluated controllers to ensure that
performance differences are due only to the different models.
Hence, the commanded torque is computed as

τCMD = τMPC +Kp(qd − q) +Kd(q̇d − q̇)− ĝ(q), (8)

where the feedback gains Kp and Kd are small, see Ap-
pendix B, and only help to regularize the control action
τCMD. To account for the robot’s internal nominal gravity
and friction compensations, we subtract ĝ(q) from τCMD.
Due to the presence of noise in the measured q̇ and the
estimated q̈ through finite differences, we apply a low-pass
filter with a 2 Hz cutoff frequency to the LSTM’s output.

C. Extended Kalman Filter
To show that only gravity compensation is insufficient

for fast motions, an extended Kalman filter (EKF) is imple-
mented to estimate the load as an external force fee applied
at the end-effector, which is added to the nominal model,

Ĥ(q)q̈+ Ĉ(q, q̇)q̇+ ĝ(q) = τ + Jee(q)
Tfee, (9)

where Jee is the end-effector Jacobian. Similar to [39], we
define the filter state and observation as

xa =
[
qT q̇T fT

ee

]T
, ya =

[
qT q̇T

]T
, (10)

assuming a constant external force, ḟee = 0. The estimated
torque τ̂ ee = Jee(q)

Tf̂ee is provided to the MPC as an
external torque applied to the joints, named EKF-MPC.

D. Simulation - Experiments
We evaluate our method in a wide range of environments.

Namely, we evaluate Nominal MPC (using only the nominal
model), EKF MPC, and CaDeLaC across 30 unseen envi-
ronments over 20 trajectories, i.e., in total 600 trajectories
of 10 seconds for each controller. The reference trajectories
are given by (7) with randomly sampled parameters. The
payload parameters were sampled from the same range of
mass and positions as for the training set.

To evaluate the performance of the three models, we
analyze the Root Mean Square Error (RMSE) of the inferred
residual torque. Table I presents the average RMSE of each
model for all 1800 trajectories. The EKF reduced the residual
torque error for only four of the seven joints. This occurs
because the rotation axis of the first, along with the third
and last joints in certain configurations, is parallel to gravity.
Thus, the gravitational torque due to the load is zero, and
only the extra inertia affects these joints, requiring some
velocity or acceleration to manifest. Since the Context-Aware
DelaN captures not only the gravitational component, it
reduces all the errors significantly, outperforming the EKF.

TABLE I: Average residual torque RMSE τ̄e for the three
models over the 1800 simulated trajectories.

Model τ̄e1 τ̄e2 τ̄e3 τ̄e4 τ̄e5 τ̄e6 τ̄e7
[Nm] [Nm] [Nm] [Nm] [Nm] [Nm] [Nm]

Nominal 2.28 10.55 5.13 11.63 3.21 3.98 2.56
Ours 0.95 1.36 1.81 1.37 0.92 0.81 0.83
EKF 10.02 8.40 11.30 7.25 1.87 1.25 2.56

The average position and velocity tracking RMSE are pre-
sented in Table II. CaDeLaC outperforms both Nominal MPC
and EKF MPC in position tracking. However, for tracking
velocity, the proposed controller presented larger errors in
the first, second, and third joints than the nominal controller.
One possible explanation is that the cost function considers
both tracking errors and torque amplitudes, allowing for a
different tradeoff due to the new controller’s dynamic model.
The EKF MPC improved the tracking errors for the last three
joints but significantly increased them for the first three joints
due to the residual torque estimation and the trade-off within
the cost function.

TABLE II: Average tracking RMSE position ē and velocity
¯̇e for the three controllers across 30 unseen simulated envi-
ronments over 20 trajectories.

Controller ē1 ē2 ē3 ē4 ē5 ē6 ē7
[rad] [rad] [rad] [rad] [rad] [rad] [rad]

Nominal 0.024 0.081 0.053 0.123 0.155 0.164 0.145
CaDeLaC 0.022 0.040 0.025 0.036 0.037 0.070 0.028
EKF MPC 0.093 0.083 0.114 0.081 0.101 0.066 0.157

Controller
¯̇e1 ¯̇e2 ¯̇e3 ¯̇e4 ¯̇e5 ¯̇e6 ¯̇e7

[rad/s] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s]

Nominal 0.059 0.084 0.096 0.102 0.212 0.215 0.221
CaDeLaC 0.098 0.097 0.106 0.105 0.152 0.163 0.128
EKF MPC 0.168 0.152 0.192 0.166 0.201 0.176 0.267

(a) (b)

Fig. 3: Hardware experiments: (a) 3 kg gym weight attached
to 3D-Printed holder; (b) The robot executes a sequence of
two pick-and-place tasks with varying loads.

E. Hardware Experiments

1) High-speed trajectory: To evaluate our method in
agile motions where gravity compensation alone might be
insufficient, we tested all three controllers on high-speed
trajectory tracking near the joint velocity limits with unseen
payloads. Each controller was set to track the specified
trajectory with three different gym weights: 1 kg, 2 kg, and
3 kg, resulting in a total of 9 trajectories. To ensure a secure
attachment, we removed the robot’s gripper and replaced it
with a 3D-printed holder, depicted in Figure 3a. Since the
gripper weighs approximately 0.7 kg, the resulting payloads
were 0.3 kg, 1.3 kg, and 2.3 kg, respectively.

The high-speed trajectory is defined as:

pref(t) =

 0
a1 sin(ωIt) cos(ωIt)

a2 sin(ωIt)

+ p0, (11)

where p0 is the initial end-effector position, ωI = 2πfI,
with fI = 0.7 Hz, a1 = 0.40, and a2 = 0.15. The
reference joint positions were obtained using inverse kine-
matics. The reference joint velocities were then computed
by finite difference, resulting in the following peak values:
max(|q̇ref |) = [2.0, 2.22, 1.99, 1.3, 0.37, 0.95, 0.0]).

The inferred residual torque RMSE results are presented
in Table III. Since the additional payload is only 0.3 kg
for the 1 kg gym weight, the ratio between the residual
torque and noise is small. As a result, both the EKF and
our model do not improve significantly the residual torque.
Similar to the simulation results, the EKF was able to
improve the residual torques for five of the seven joints,
with no significant improvement in the first and third joints.
Our model presented an overall better estimation, as it also
reduced the error for the first joint, while the errors for the
last three joints remained small. The residual torque results
were not as good as in the simulation, mainly due to noise,
friction, and an imperfect rigid attachment of the weights.

TABLE III: Average residual torque RMSE τ̄e for the three
models over the 9 high-speed trajectories.

Model τ̄e1 τ̄e2 τ̄e3 τ̄e4 τ̄e5 τ̄e6 τ̄e7
[Nm] [Nm] [Nm] [Nm] [Nm] [Nm] [Nm]

Nominal 1 kg 3.03 4.05 3.58 2.58 0.47 0.70 0.14
Ours 1 kg 3.95 4.12 4.27 2.47 0.57 1.02 0.19
EKF 1 kg 4.32 3.56 4.83 2.67 0.43 0.83 0.14

Nominal 2 kg 7.27 8.70 8.08 6.40 1.00 1.55 0.42
Ours 2 kg 6.36 6.83 6.90 4.45 1.24 1.86 0.53
EKF 2 kg 7.26 6.04 7.93 4.12 1.01 1.47 0.42

Nominal 3 kg 10.96 11.69 12.13 9.31 1.43 2.11 0.56
Ours 3 kg 9.40 5.92 9.68 4.95 1.72 2.28 0.84
EKF 3 kg 10.00 5.97 10.84 4.70 1.37 1.85 0.56

The tracking errors are presented in Table IV. Our con-
troller outperformed position and velocity tracking for almost
all the joints when compared to EKF MPC and Nominal
MPC. Only the position tracking for q2 and q6 presented
larger errors, probably due to trade-offs in the cost function,
as mentioned before. As the last joint was the only one with
a constant reference, its error analysis is irrelevant as they
are very small. The EKF MPC still presented an overall
performance than the nominal one, but it was not able to
improve the errors for the first and third joints.

The first three cycles of the trajectories for each load,
around 4.2 seconds, are presented in Figures 4a-4c. Our
method achieves the best tracking performance, reducing the
RMSE in Cartesian space by 28.24%, 57.93%, and 62.10%
for 1 kg, 2 kg, and 3 kg, respectively, compared to 14.80%,
33.58%, and 35.62% achieved by the EKF MPC.

The neural network, as part of the MPC’s model, increases
the optimization complexity and, consequently, the compu-
tational time. In Table V, we present the average total time
t̄total from the start of the MPC update to the moment the
computed torque is sent, and the model time t̄model spent
by the solver on model discretization and simulation. As the
EKF does not add any complexity to the model, its times
are comparable to the nominal one. CaDeLaC increased the
total time by a factor of 4 due to the extra complexity of the
model, as demonstrated by a higher t̄model. However, the
delay introduced by the additional computational time did
not affect the hardware experiments, as they were almost
50% below the control period of 20 ms. Also, due to the

0.39
0.41

0.43
0.45

0.47

x [m]−0.1

0.0

0.1

0.2

y [m]

0.2

0.4

0.6

z
[m

]

Nom
Ours

EKF
Ref

(a)
0.39

0.41
0.43

0.45
0.47

x [m]−0.1

0.0

0.1

0.2

y [m]

0.2

0.4

0.6

z
[m

]

(b)
0.39

0.41
0.43

0.45
0.47

x [m]−0.1

0.0

0.1

0.2

y [m]

0.2

0.4

0.6

z
[m

]

(c)

Fig. 4: End-effector trajectory in high-speed experiments on the real robot. (a) 1 kg: CaDeLaC reduced the RMSE by 28.24%
(EKF MPC: 14.80%); (b) 2 kg: 57.93% (33.58%); (c) 3 kg: 62.10% (35.62%).

TABLE IV: Tracking position e and velocity ė RMSE for
the three controllers over high-speed trajectories with three
different loads.

Controller e1 e2 e3 e4 e5 e6 e7
[rad] [rad] [rad] [rad] [rad] [rad] [rad]

Nominal 1 kg 0.032 0.020 0.024 0.054 0.017 0.015 0.002
CaDeLaC 1 kg 0.032 0.034 0.028 0.036 0.009 0.019 0.001
EKF MPC 1 kg 0.028 0.025 0.023 0.046 0.008 0.014 0.003

Nominal 2 kg 0.044 0.027 0.035 0.091 0.016 0.026 0.007
CaDeLaC 2 kg 0.029 0.052 0.020 0.036 0.011 0.022 0.005
EKF MPC 2 kg 0.040 0.021 0.033 0.058 0.011 0.014 0.005

Nominal 3 kg 0.053 0.057 0.045 0.124 0.022 0.031 0.002
CaDeLaC 3 kg 0.033 0.076 0.028 0.031 0.014 0.027 0.009
EKF MPC 3 kg 0.050 0.017 0.047 0.069 0.020 0.016 0.004

Controller ė1 ė2 ė3 ė4 ė5 ė6 ė7
[rad/s] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s]

Nominal 1 kg 0.379 0.243 0.317 0.150 0.100 0.133 0.008
CaDeLaC 1 kg 0.326 0.196 0.261 0.128 0.105 0.162 0.015
EKF MPC 1 kg 0.368 0.221 0.322 0.166 0.081 0.122 0.009

Nominal 2 kg 0.513 0.287 0.454 0.202 0.137 0.179 0.040
CaDeLaC 2 kg 0.345 0.228 0.301 0.167 0.137 0.255 0.052
EKF MPC 2 kg 0.506 0.264 0.467 0.226 0.140 0.158 0.037

Nominal 3 kg 0.603 0.293 0.554 0.254 0.201 0.236 0.035
CaDeLaC 3 kg 0.420 0.260 0.405 0.213 0.232 0.311 0.124
EKF MPC 3 kg 0.611 0.283 0.597 0.305 0.217 0.234 0.040

real-time kernel and the SQP-RTI, the total time variance
was low, around 10−7.

TABLE V: Average total and model computational times in
high-speed trajectories.

Controller t̄total[ms] t̄model[ms]

Nominal 2.59 1.22
CaDeLaC 10.57 8.50
EKF MPC 2.70 1.19

2) Pick-and-place task: To demonstrate that our method
can adapt to dynamic changes in the environment, we define
a pick-and-place task, which consists of two repeated phases.
In each phase, the robot must approach a gym weight, grasp
it, perform a rapid motion in the air, and place it in a
location different from the initial one. During the trajectory,
which lasts 26 seconds, the system’s dynamics change four

times. The robot waits 3 seconds at each pick-and-place
position to ensure a safe grasp and disengagement of the
strap. Thus, only 14 seconds of the full trajectory are spent
in motion. For this experiment, we reattached the gripper
to the end-effector and attached straps to the gym load,
since the gripper does not have sufficient force to directly
hold the gym weight. The experimental setup is depicted in
Figure 3b. The slack caused by holding the strap introduced
an additional challenge for the controller, as it allows the
gym weight to swing, changing the relative position of the
load’s center of mass. The sequence of weights during the
task was 3 kg and 2 kg. Since the gripper was reattached, the
additional loads relative to the nominal model are 2 kg and
3 kg, with the latter being the maximum payload specified
by the manufacturer.

The results of the evaluated models are presented in
Tables VI. Similar to the simulation results and as previously
mentioned, the EKF could not capture the residual torque
for the first and third joints. While Context-Aware DeLaN
showed significant improvement across all joints, except for
the last joint, which already had a small error.

TABLE VI: Average residual torque RMSE τ̄e for the three
models in the pick-and-place task.

Model τ̄e1 τ̄e2 τ̄e3 τ̄e4 τ̄e5 τ̄e6 τ̄e7
[Nm] [Nm] [Nm] [Nm] [Nm] [Nm] [Nm]

Nominal 0.69 7.97 0.78 6.74 0.19 1.93 0.03
Ours 0.64 2.32 0.59 1.55 0.14 0.45 0.04
EKF 1.70 2.78 1.65 2.21 0.24 0.63 0.03

The tracking errors are presented in Table VII. Although
the EKF MPC had the best position tracking for q2, q4, and
q5, CaDeLaC presented an overall improvement in position
and velocity tracking, particularly for q3. Note that, since
almost half of the full trajectory is spent in waiting positions,
the RMSE values will not vary much among the controllers
compared to a full trajectory in motion.

Regarding the end-effector trajectory, the obtained trajec-
tories for the three controllers are presented in Figure 5. Vi-
sually, CaDeLaC demonstrated better tracking, as it reduced
the end-effector position RMSE by 39%, compared to only
21% with the EKF.

TABLE VII: Tracking position e and velocity ė RMSE for
the three controllers in the pick-and-place task.

Controller e1 e2 e3 e4 e5 e6 e7
[rad] [rad] [rad] [rad] [rad] [rad] [rad]

Nominal 0.011 0.055 0.005 0.073 0.016 0.052 0.001
CaDeLaC 0.011 0.044 0.004 0.032 0.014 0.015 0.001
EKF MPC 0.011 0.038 0.018 0.028 0.007 0.015 0.001

Controller ė1 ė2 ė3 ė4 ė5 ė6 ė7
[rad/s] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s]

Nominal 0.018 0.121 0.016 0.055 0.012 0.068 0.001
CaDeLaC 0.018 0.104 0.014 0.049 0.011 0.061 0.001
EKF MPC 0.019 0.101 0.023 0.057 0.008 0.048 0.001

0.35

0.45

0.55

0.65

x
[m

]
−0.2

−0.1
0.0

0.1
0.2

y [m]

0.1

0.3

0.5

0.7

0.9

z
[m

]

Nom
Ours

EKF
Ref

Fig. 5: End-effector trajectory in the pick-and-place task for
the three evaluated controllers. Blue and black markers indi-
cate the pick and place positions, respectively. Each marker
corresponds to a change in the payload and, consequently,
in the system’s dynamics.

Since the controllers and hardware setup, including the
computers and communication architecture, remain the same,
we omit the computational time analysis, as it will be
identical to the first hardware experiment.

IV. CONCLUSION

In this work, we presented a method for online iden-
tification of physics-consistent DeLaN models and their
application in model predictive control, named CaDeLaC.
To enable online adaptation, we introduced latent environ-
ment embeddings as additional inputs to DeLaN and jointly
learned a recurrent system identification network alongside
contextual DeLaN. To meet the computational requirements
of MPC, we proposed modeling only the residual dynamics
with respect to a nominal model, enabling good predictive
performance with small network sizes. Our real robot exper-
iments demonstrated excellent tracking performance for fast
motions under varying loads, outperforming the baselines.
For future work, we want to apply our method to higher-
dimensional and underactuated systems, such as humanoids.
Furthermore, we want to investigate alternative objectives
for training the history-based encoder, in particular, using

reinforcement learning to directly optimize it with respect to
downstream task performance.

APPENDIX

A. Data Collection and Training

The data collection and training are conducted on an AMD
Ryzen 9 5900X processor with an NVIDIA GeForce RTX
4080 GPU and 32 GB of RAM. The parameters for both are
presented in Tables VIII and IX.

TABLE VIII: Data collection parameters.

Parameter Values
QLQR diag(100× 114)
RLQR diag(0.05× 114)
qmax [2.8973, 1.7628, 2.8973, -0.0698, 2.8973, 3.7525, 2.8973]
qmin [-2.8973, -1.7628, -2.8973, -3.0718, -2.8973, -0.0175, -2.8973]

q̇max, −q̇min 2× 17

Range ae,be ±[0.20, 0.35, 0.58, 0.30, 0.58, 0.38, 0.58]
Samples 1.01 M

TABLE IX: Training hyperparameters.

Parameter Values

var(q̇) 10−3 × 17

var(q̈) [0.05, 0.05, 0.15, 0.03, 0.15, 0.25, 0.65]
var(τ) [0.5, 0.1, 0.5, 0.3, 0.01, 0.01, 0.01]
var(τ̃) [1.0, 0.5, 1.0, 0.4, 0.02, 0.03, 0.02]

Activation Tanh
Batch Size 1024

Learning Rate 5× 10−4

Epochs 3000
nh 15
ϵ 0.1

B. Experiments setup

The inference and control experiments are performed on
an AMD Ryzen 9 3900X processor with 64 GB of RAM,
running Ubuntu 22.04 with a real-time kernel 5.15.0. All
parameters related to the controllers are presented in Table X.

TABLE X: Controller parameters.

Parameter Values
ny 12

Control frequency 50 Hz
Discretization time 20 ms

Q diag(100 × 14, 50 × 13, 10
3 × 14, 500 × 13)

R diag(0.2× 14, 1.0× 13)
τmax, −τmin [87, 87, 87, 87, 12, 12, 12]

QEKF diag(17, 10−1 × 17, 102 × 13)
REKF diag(10−2 × 114)
Kp [10, 10, 10, 10, 5, 5, 2]
Kd [2.5, 2.5, 2.5, 2.5, 1.5, 1.5, 1.5]

REFERENCES

[1] J.-J. E. Slotine and W. Li, “On the adaptive control of
robot manipulators,” The International Journal of Robotics
Research, vol. 6, no. 3, pp. 49–59, 1987. [Online]. Available:
https://doi.org/10.1177/027836498700600303

[2] C. H. An, C. G. Atkeson, and J. M. Hollerbach, “Estimation of inertial
parameters of rigid body links of manipulators,” in 1985 24th IEEE
Conference on Decision and Control, 1985, pp. 990–995.

[3] J. Huang, D. Tateo, P. Liu, and J. Peters, “Adaptive control based
friction estimation for tracking control of robot manipulators,” IEEE
Robotics and Automation Letters, vol. 10, no. 3, pp. 2454–2461, 2025.

[4] J. Foster, S. McCrory, C. DeBuys, S. Bertrand, and R. Griffin,
“Physically consistent online inertial adaptation for humanoid loco-
manipulation,” in 2024 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2024, pp. 11 278–11 285.

[5] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: A
survey,” Cognitive processing, vol. 12, pp. 319–40, 04 2011.

[6] M. S. Duy Nguyen-Tuong and J. Peters, “Model learning with local
gaussian process regression,” Advanced Robotics, vol. 23, no. 15, pp.
2015–2034, 2009.

[7] L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious model predictive
control using gaussian process regression,” IEEE Transactions on
Control Systems Technology, vol. 28, no. 6, pp. 2736–2743, 2020.

[8] J. Matschek, J. Bethge, and R. Findeisen, “Safe machine-learning-
supported model predictive force and motion control in robotics,”
IEEE Transactions on Control Systems Technology, vol. 31, no. 6,
pp. 2380–2392, 2023.

[9] G. Petkos and S. Vijayakumar, “Load estimation and control using
learned dynamics models,” in 2007 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2007, pp. 1527–1532.

[10] L. F. Recalde, J. Varela, B. S. Guevara, V. Andaluz, and D. Gandolfo,
“Adaptive nmpc-rbf with application to manipulator robots,” in 2023
9th International Conference on Control, Decision and Information
Technologies (CoDIT), 2023, pp. 2475–2482.

[11] J. Watson et al., “Machine learning with physics knowledge
for prediction: A survey,” 2024. [Online]. Available:
https://arxiv.org/abs/2408.09840

[12] M. Lutter, C. Ritter, and J. Peters, “Deep lagrangian networks:
Using physics as model prior for deep learning,” in International
Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=BklHpjCqKm

[13] M. Lutter and J. Peters, “Combining physics and deep learning to
learn continuous-time dynamics models,” CoRR, vol. abs/2110.01894,
2021. [Online]. Available: https://arxiv.org/abs/2110.01894

[14] S. Greydanus, M. Dzamba, and J. Yosinski, “Hamiltonian neural
networks,” in Advances in Neural Information Processing Systems,
vol. 32. Curran Associates, Inc., 2019.

[15] M. Lutter, K. D. Listmann, and J. Peters, “Deep lagrangian networks
for end-to-end learning of energy-based control for under-actuated
systems,” 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 7718–7725, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:195874061

[16] T. Duong, A. Altawaitan, J. Stanley, and N. Atanasov, “Port-
hamiltonian neural ode networks on lie groups for robot dynamics
learning and control,” IEEE Transactions on Robotics, vol. 40, pp.
3695–3715, 2024.

[17] D. Nguyen-Tuong and J. Peters, “Using model knowledge for learn-
ing inverse dynamics,” in 2010 IEEE International Conference on
Robotics and Automation, 2010, pp. 2677–2682.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770–778, 2015. [Online]. Available:
https://api.semanticscholar.org/CorpusID:206594692

[19] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-
Learning in Neural Networks: A Survey,” IEEE Transactions
on Pattern Analysis & Machine Intelligence, vol. 44,
no. 09, pp. 5149–5169, Sept. 2022. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3079209

[20] R. C. Grande, G. V. Chowdhary, and J. P. How,
“Nonparametric adaptive control using gaussian processes with
online hyperparameter estimation,” 52nd IEEE Conference on
Decision and Control, pp. 861–867, 2013. [Online]. Available:
https://api.semanticscholar.org/CorpusID:7528974

[21] E. Arcari, A. Carron, and M. N. Zeilinger, “Meta learning
mpc using finite-dimensional gaussian process approximations,”
ArXiv, vol. abs/2008.05984, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:221112284

[22] A. Carron, E. Arcari, M. Wermelinger, L. Hewing, M. Hutter, and
M. N. Zeilinger, “Data-driven model predictive control for trajectory
tracking with a robotic arm,” IEEE Robotics and Automation Letters,
vol. 4, no. 4, pp. 3758–3765, 2019.

[23] S. M. Richards, N. Azizan, J.-J. E. Slotine, and
M. Pavone, “Adaptive-control-oriented meta-learning for nonlinear
systems,” ArXiv, vol. abs/2103.04490, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:232147745

[24] E. Arcari, M. V. Minniti, A. Scampicchio, A. Carron, F. Farshidian,
M. Hutter, and M. N. Zeilinger, “Bayesian multi-task learning mpc for
robotic mobile manipulation,” IEEE Robotics and Automation Letters,
vol. 8, no. 6, pp. 3222–3229, 2023.

[25] D. Lapandić, F. Xie, C. K. Verginis, S.-J. Chung, D. V. Dimarogonas,
and B. Wahlberg, “Meta-learning augmented mpc for disturbance-
aware motion planning and control of quadrotors,” IEEE Control
Systems Letters, vol. 8, pp. 3045–3050, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:273229398

[26] W. Yu, J. Tan, C. Karen Liu, and G. Turk, “Preparing for
the unknown: Learning a universal policy with online system
identification,” in Robotics: Science and Systems XIII, ser. RSS2017.
Robotics: Science and Systems Foundation, July 2017. [Online].
Available: http://dx.doi.org/10.15607/RSS.2017.XIII.048

[27] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations,” Journal of Computational
Physics, vol. 378, pp. 686–707, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0021999118307125

[28] Q. Li, T. Wang, V. Roychowdhury, and M. K. Jawed, “Metalearning
generalizable dynamics from trajectories,” Physical Review Letters,
vol. 131, no. 6, p. 067301, 2023.

[29] K. Y. Chee, T. Z. Jiahao, and M. A. Hsieh, “Knode-mpc: A knowledge-
based data-driven predictive control framework for aerial robots,”
IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2819–2826,
2022.

[30] T. Salzmann, E. Kaufmann, J. Arrizabalaga, M. Pavone, D. Scara-
muzza, and M. Ryll, “Real-time neural-mpc: Deep learning model
predictive control for quadrotors and agile robotic platforms,” IEEE
Robotics and Automation Letters, 2023.

[31] T. P. Duong and N. A. Atanasov, “Adaptive control of se(3)
hamiltonian dynamics with learned disturbance features,” IEEE
Control Systems Letters, vol. 6, pp. 2773–2778, 2021. [Online].
Available: https://api.semanticscholar.org/CorpusID:247597120

[32] R. Verschueren et al., “acados – a modular open-source framework for
fast embedded optimal control,” Mathematical Programming Compu-
tation, 2021.

[33] G. Frison and M. Diehl, “HPIPM: a high-performance quadratic
programming framework for model predictive control,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 6563–6569, 2020, 21st IFAC World
Congress.

[34] J. Carpentier et al., “The pinocchio c++ library – a fast and flexible
implementation of rigid body dynamics algorithms and their analytical
derivatives,” in IEEE International Symposium on System Integrations
(SII), 2019.

[35] J. Ansel et al., “PyTorch 2: Faster Machine Learning Through
Dynamic Python Bytecode Transformation and Graph Compilation,”
in 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume
2 (ASPLOS ’24). ACM, Apr. 2024. [Online]. Available:
https://pytorch.org/assets/pytorch2-2.pdf

[36] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[37] E. F. Camacho and C. Bordons Alba, Model predictive control.
Springer-Verlag London, 2007.

[38] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[39] L. Roveda, D. Riva, G. Bucca, and D. Piga, “External joint torques es-
timation for a position-controlled manipulator employing an extended
kalman filter,” in 2021 18th International Conference on Ubiquitous
Robots (UR), 2021, pp. 101–107.

