
Technical Perspective on ’BOSS - An Architecture
for Database Kernel Composition’

Carsten Binnig
TU Darmstadt & DFKI

Composability is becoming an important characteristic of modern
database systems, enabling �exible integration of storage, process-
ing, and acceleration components. This shift allows specialized
accelerators, various specialized storage backends, and di�erent
query execution engines for CPUs and GPUS to seamlessly work to-
gether to execute a workload. By embracing composability, database
systems can better ensure adaptability in an increasingly complex
data landscape rather than developing a zoo of specialized database
systems — one for each workload. The VLDB 2024 paper ’BOSS -
An Architecture for Database Kernel Composition’ [3] is one of the
�rst papers that tackles the composability of data systems with low
added overhead and a holistic view of the full stack.

The BOSS Idea. Traditional database systems struggle with
composability due to the impedance mismatch between di�erent
query processing models, data formats, and execution strategies.
While specialized systems such as Apache Arrow (storage), Velox
(CPU execution), and ArrayFire (GPU acceleration) o�er e�cient
solutions within their domains, integrating them into a uni�ed
system typically requires extensive glue code, data transformation,
and runtime overhead. BOSS addresses these challenges by design-
ing a framework which comes with two key ideas: (1) queries are
incrementally evaluated in stages (called Partial Query Evaluation),
and (2) data is exchanged without copies (called Zero-Copy Data
Transfer), ensuring high performance and �exibility.

Partial Query Evaluation. The partial query evaluation model
in BOSS transforms query execution into a pipeline of processing
stages, where each engine evaluates as many operations as it can
e�ciently execute while leaving the remaining work for subse-
quent stages. Instead of enforcing a monolithic execution model,
queries are passed through a sequence of transformations, progres-
sively reducing their complexity until they are fully evaluated. This
approach allows each kernel to exploit its unique optimizations;
e.g., a GPU kernel can perform fast parallel �ltering and arithmetic
operations, while a CPU kernel can handle complex joins and ag-
gregations. The execution model ensures that if a kernel cannot
process a particular query component, it simply forwards it to the
next stage in the pipeline without breaking execution semantics.

Zero-Copy Data Transfer. To support e�cient data transfer
between components without heavy data transformations and data
copies, BOSS introduces a uni�ed in-memory representation. Typi-
cally, database systems su�er from performance bottlenecks when
transferring data between di�erent execution models due to the
need for format conversions (e.g., from row-based to column-based
layouts) or explicit serialization and deserialization. BOSS over-
comes this by de�ning a shared data representation compatible
with multiple processing paradigms. BOSS builds on the fact that
data in many engines already uses physically the same in-memory
data structures (i.e., C-arrays) and suggests Spans, lightweight wrap-
pers around these in-memory data structures, to allow di�erent

kernels to access data directly without copying. Spans also include
a reference management mechanism to ensure safe memory reuse,
avoiding the complexities of garbage collection.

Other Directions in the Community. The importance of com-
posability is also shown by the fact that the larger community and
industry is working on related ideas and the fact that there are even
workshops just dedicated to this topic1. One direction is open table
formats such as Apache Iceberg2, Apache Parquet 3, etc., which
allow data engines to work on the same �les, making query engines
replaceable. Moreover, Apache Calcite 4 or the Postgres Query Com-
piler and Optimizer are examples of query frontends that are often
reused for building a new database engine. Furthermore, as part
of cloud data systems, which already today separate query com-
pilation from query execution and storage, there are many other
trends of breaking data systems down further into sub-components
and separating the indexing layer as a separate service [1] or pro-
viding data shu�ing as a service [2]5 that can be used by di�erent
distributed data systems.

Open Challenges and Impact. While composability is clearly
becoming more and more an important topic, as outlined above,
many challenges remain. Even when focussing only on tabular data
and SQL, it is not really clear if composability will ever become
true. One particular challenge is the semantic mismatch between
di�erent components, which mainly stems from the fact that di�er-
ent SQL query engines implement SQL as a query language very
di�erently. For example, type inference or rounding numbers work
very di�erently in di�erent engines. As such, when running the
same SQL query in di�erent engines, di�erent results might be
produced, which is somewhat of a deal-breaker for composable sys-
tems. While clearly composability in parts (e.g., open data formats)
is already today a huge success, it remains unclear if composability
across the stack will ever happen – while being a great idea.

References
[1] Peter A. Boncz, Yannis Chronis, Jan Finis, Stefan Halfpap, Viktor Leis, Thomas

Neumann, Anisoara Nica, Caetano Sauer, Knut Stolze, and Marcin Zukowski. 2023.
SPA: Economical and Workload-Driven Indexing for Data Analytics in the Cloud.
In 39th IEEE International Conference on Data Engineering, ICDE 2023, Anaheim,
CA, USA, April 3-7, 2023. IEEE, 3740–3746. doi:10.1109/ICDE55515.2023.00302

[2] Matthias Jasny, Lasse Thostrup, Sajjad Tamimi, Andreas Koch, Zsolt István, and
Carsten Binnig. 2024. Zero-sided RDMA: Network-driven Data Shu�ing for
Disaggregated Heterogeneous Cloud DBMSs. Proc. ACM Manag. Data 2, 1 (2024),
36:1–36:28. doi:10.1145/3639291

[3] Hubert Mohr-Daurat, Xuan Sun, and Holger Pirk. 2023. BOSS - An Architecture
for Database Kernel Composition. Proc. VLDB Endow. 17, 4 (2023), 877–890.
doi:10.14778/3636218.3636239

1https://cdmsworkshop.github.io/
2https://iceberg.apache.org/
3https://parquet.apache.org/
4https://calcite.apache.org/
5https://cloud.google.com/blog/products/data-analytics/how-distributed-shu�e-
improves-scalability-and-performance-cloud-data�ow-pipelines

36 SIGMOD Record, March 2025 (Vol. 54, No. 1)


