Technical Perspective on 'BOSS - An Architecture
for Database Kernel Composition’

Carsten Binnig
TU Darmstadt & DFKI

Composability is becoming an important characteristic of modern
database systems, enabling flexible integration of storage, process-
ing, and acceleration components. This shift allows specialized
accelerators, various specialized storage backends, and different
query execution engines for CPUs and GPUS to seamlessly work to-
gether to execute a workload. By embracing composability, database
systems can better ensure adaptability in an increasingly complex
data landscape rather than developing a zoo of specialized database
systems — one for each workload. The VLDB 2024 paper 'BOSS -
An Architecture for Database Kernel Composition’ [3] is one of the
first papers that tackles the composability of data systems with low
added overhead and a holistic view of the full stack.

The BOSS Idea. Traditional database systems struggle with
composability due to the impedance mismatch between different
query processing models, data formats, and execution strategies.
While specialized systems such as Apache Arrow (storage), Velox
(CPU execution), and ArrayFire (GPU acceleration) offer efficient
solutions within their domains, integrating them into a unified
system typically requires extensive glue code, data transformation,
and runtime overhead. BOSS addresses these challenges by design-
ing a framework which comes with two key ideas: (1) queries are
incrementally evaluated in stages (called Partial Query Evaluation),
and (2) data is exchanged without copies (called Zero-Copy Data
Transfer), ensuring high performance and flexibility.

Partial Query Evaluation. The partial query evaluation model
in BOSS transforms query execution into a pipeline of processing
stages, where each engine evaluates as many operations as it can
efficiently execute while leaving the remaining work for subse-
quent stages. Instead of enforcing a monolithic execution model,
queries are passed through a sequence of transformations, progres-
sively reducing their complexity until they are fully evaluated. This
approach allows each kernel to exploit its unique optimizations;
e.g., a GPU kernel can perform fast parallel filtering and arithmetic
operations, while a CPU kernel can handle complex joins and ag-
gregations. The execution model ensures that if a kernel cannot
process a particular query component, it simply forwards it to the
next stage in the pipeline without breaking execution semantics.

Zero-Copy Data Transfer. To support efficient data transfer
between components without heavy data transformations and data
copies, BOSS introduces a unified in-memory representation. Typi-
cally, database systems suffer from performance bottlenecks when
transferring data between different execution models due to the
need for format conversions (e.g., from row-based to column-based
layouts) or explicit serialization and deserialization. BOSS over-
comes this by defining a shared data representation compatible
with multiple processing paradigms. BOSS builds on the fact that
data in many engines already uses physically the same in-memory
data structures (i.e., C-arrays) and suggests Spans, lightweight wrap-
pers around these in-memory data structures, to allow different

36

kernels to access data directly without copying. Spans also include
a reference management mechanism to ensure safe memory reuse,
avoiding the complexities of garbage collection.

Other Directions in the Community. The importance of com-
posability is also shown by the fact that the larger community and
industry is working on related ideas and the fact that there are even
workshops just dedicated to this topic!. One direction is open table
formats such as Apache Iceberg?, Apache Parquet 3, etc., which
allow data engines to work on the same files, making query engines
replaceable. Moreover, Apache Calcite or the Postgres Query Com-
piler and Optimizer are examples of query frontends that are often
reused for building a new database engine. Furthermore, as part
of cloud data systems, which already today separate query com-
pilation from query execution and storage, there are many other
trends of breaking data systems down further into sub-components
and separating the indexing layer as a separate service [1] or pro-
viding data shuffling as a service [2]° that can be used by different
distributed data systems.

Open Challenges and Impact. While composability is clearly
becoming more and more an important topic, as outlined above,
many challenges remain. Even when focussing only on tabular data
and SQL, it is not really clear if composability will ever become
true. One particular challenge is the semantic mismatch between
different components, which mainly stems from the fact that differ-
ent SQL query engines implement SQL as a query language very
differently. For example, type inference or rounding numbers work
very differently in different engines. As such, when running the
same SQL query in different engines, different results might be
produced, which is somewhat of a deal-breaker for composable sys-
tems. While clearly composability in parts (e.g., open data formats)
is already today a huge success, it remains unclear if composability
across the stack will ever happen — while being a great idea.

References

[1] Peter A. Boncz, Yannis Chronis, Jan Finis, Stefan Halfpap, Viktor Leis, Thomas
Neumann, Anisoara Nica, Caetano Sauer, Knut Stolze, and Marcin Zukowski. 2023.
SPA: Economical and Workload-Driven Indexing for Data Analytics in the Cloud.
In 39th IEEE International Conference on Data Engineering, ICDE 2023, Anaheim,
CA, USA, April 3-7, 2023. IEEE, 3740-3746. doi:10.1109/ICDE55515.2023.00302
Matthias Jasny, Lasse Thostrup, Sajjad Tamimi, Andreas Koch, Zsolt Istvan, and
Carsten Binnig. 2024. Zero-sided RDMA: Network-driven Data Shuffling for
Disaggregated Heterogeneous Cloud DBMSs. Proc. ACM Manag. Data 2, 1 (2024),
36:1-36:28. doi:10.1145/3639291

Hubert Mohr-Daurat, Xuan Sun, and Holger Pirk. 2023. BOSS - An Architecture
for Database Kernel Composition. Proc. VLDB Endow. 17, 4 (2023), 877-890.
doi:10.14778/3636218.3636239

2,

&

!https://cdmsworkshop.github.io/

%https://iceberg.apache.org/

Shttps://parquet.apache.org/

“https://calcite.apache.org/
Shttps://cloud.google.com/blog/products/data-analytics/how- distributed- shuffle-
improves-scalability-and-performance-cloud-dataflow-pipelines

SIGMOD Record, March 2025 (Vol. 54, No. 1)

