

Investigating Gamification Modalities in Running: A Comparison of Auditory and Visual Feedback on User Performance and Experience

Marc Schubhan

German Research Center for Artificial Intelligence (DFKI), Saarland Informatics Campus
Saarbrücken, Germany
Interaction Experience Group
Saarland University of Applied Sciences (htw saar)
Saarbrücken, Germany
marc.schubhan@htwsaar.de

Anne Deutschen

Saarland Informatics Campus
Saarland University
Saarbrücken, Germany
s8andeut@stud.uni-saarland.de

Felix Kosmalla

Saarland Informatics Campus
Saarland University
Saarbrücken, Germany
felix.kosmalla@dfki.de

Florian Daiber

German Research Center for Artificial Intelligence (DFKI), Saarland Informatics Campus
Saarbrücken, Germany
florian.daiber@dfki.de

Maximilian Altmeyer

Interaction Experience Group
Saarland University of Applied Sciences (htw saar)
Saarbrücken, Germany
maximilian.altmeyer@htwsaar.de

Abstract

Gamification has been widely researched to increase user engagement in physical activities. Often, these interventions rely on visual elements, neglecting the impact of non-visual modalities. Especially during physical activities like running, visual game elements are not always feasible and displays not always available. By utilizing auditory counterparts to game elements like progress or badges, users could benefit from unintrusive, auditory feedback. To gain first insights into the effectiveness of auditory gamification in this context, we conducted a mixed-design lab study ($n=20$) where participants ran without gamification and once more with either visual or auditory gamification. Our results indicate that gamification, independent of the type of intervention, increases enjoyment and the distance covered. To our surprise, despite covering larger distances, participants did not report increased exertion in either condition. Differences regarding user experience and performance between auditory and visual gamification themselves were not observed.

CCS Concepts

• Human-centered computing → *User studies; Laboratory experiments; Empirical studies in HCI; Auditory feedback*.

Keywords

gamification, running, feedback modalities, lab study

This work is licensed under a Creative Commons Attribution 4.0 International License.
SportsHCI 2025, Enschede, Netherlands

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1428-3/25/11
<https://doi.org/10.1145/3749385.3749419>

ACM Reference Format:

Marc Schubhan, Anne Deutschen, Felix Kosmalla, Florian Daiber, and Maximilian Altmeyer. 2025. Investigating Gamification Modalities in Running: A Comparison of Auditory and Visual Feedback on User Performance and Experience. In *Annual Conference on Human-Computer Interaction and Sports (SportsHCI 2025), November 17–19, 2025, Enschede, Netherlands*. ACM, New York, NY, USA, 9 pages. <https://doi.org/10.1145/3749385.3749419>

1 Introduction

Gamification describes the use of game elements in non-game contexts [14], enhancing user engagement towards various activities [18, 27]. Following *goal-setting theory* [26] extrinsically driven game elements such as points, achievements and leaderboards serve as motivators by providing goals for users, which they can aim to achieve. Based on this, specifically in the context of sports, gamification has found its way into various tracking applications, from apps for tracking lifted weights like Hevy¹ to running trackers, such as Strava². These applications not only grant rewards in the form of achievements and badges, or allow to compare one's performances to friends on leaderboards, but also enable live-tracking said activities. Progress bars indicate how far one's workout session has been completed already and awards can highlight new personal records alongside the workout. While this type of gamification has been shown to have beneficial effects on user performance and experience on a wide scale in the past already, including exercise [18], research often focuses on the visual implementation of these game elements, neglecting potential and flexibility, e.g. towards improved usability or user experience, by appealing to different or additional human senses, such as hearing. In contexts like sports, auditory game elements could even enhance the effectiveness, as displays are

¹<https://www.hevyapp.com/>, last accessed on August 14, 2025

²<https://www.strava.com/>, last accessed on August 14, 2025

either not always conveniently available during a workout routine, or require shifting the attentional focus away from the activity to the digital application. In gamification research, this effect has already been reported outside of the sports context, for example during an image tagging task, where participants reported to get distracted from their ongoing activity by the visual game elements, while the auditory counterparts helped them to maintain their focus [37]. While works investigating audio interventions in sports exist (e.g. [11, 15]), a systematic comparison between visual game elements and sound effect counterparts is lacking.

In this work, we want to contribute to the aforementioned research gap by addressing the following research question: **What is the impact of auditory gamification on user performance and experience in running and how does it compare to visual gamification?** To this end, we conducted a study with $n = 20$ participants, where we compare visual gamification to auditory gamification and a baseline run without gamification in a controlled lab environment. With this, we take a first step into the direction of systematically comparing different game element modalities in the context of physical activities like running. We contribute valuable insights for researchers and practitioners in the field of multimodal gamification and provide implementation specifics for future studies, as well as future directions that have emerged from the evaluation and discussion of our study.

2 Related Work

In the following sections we will provide an overview on fields relevant to our research question. First, we will shed light on how gamification has been used in physical exercise to date, as well as its effects on users in terms of engagement and experience. Second, we will describe recent advances in the field of multimodal gamification, and lastly, we will look at how audio in general already had an impact on physical activity in sports-related contexts in the past.

2.1 Gamification in Physical Activity and Exercise

Gamification has long made its ways into everyday sports-related activities and workout-routines. Through the integration of short-term rewards into fitness-tracking applications for example, users can find more motivation to perform sports [4, 5, 21, 27], stick to regular exercise [42], increase their performance [3], or they benefit from an enhanced experience [33]. Commonly, visual gamification is implemented into digital applications that require users to look at a device like smartphones or gadgets such as smartwatches. Given the disruptive nature of smart devices found in a variety of fields (e.g. [16] and [39]) leading for example to reduced concentration and focus [41], a recent study showed that the use of smartphones in resistance training can decrease the enjoyment of the workout, as well as the productivity during the workout [34]. In physical activities visual gamification could similarly distract users from their ongoing activity. Jackson and Csikszentmihalyi say that “sport presents a special opportunity for flow to occur” [19] and describe it as “a state of consciousness where one becomes totally absorbed in what one is doing” [19]. Visual gamification requires looking at a display, which could disturb this state of flow. Shifting the focus from the common visual implementation of gamification to auditory

gamification could reduce the immediate necessity to unlock and look for example at one’s smart-device during sports.

2.2 Multimodal Gamification

Research in the gamification domain often (though not exclusively) focuses on the impact of visual game elements, either by utilizing visual elements without an auditory component (e.g. [24, 29, 30, 35]), by neglecting the impact sound as a mediator could have had on the user (e.g. [13]), or by utilizing vocal sound feedback (e.g. [8, 9]), which potentially confounds observed effects, as it remains unclear whether they stem from the auditory modality itself or from the semantic content of the spoken message. Altmeyer et al. come to the conclusion that complementing visual game elements with sound effects has “less impact than expected” [2] on user performance and experience in a gamified image-identification task. Another study goes one step further and systematically investigates visual, audiovisual and audio-only gamification in an image-tagging task [36]. While an impact on user performance specifically through audio remains statistically insignificant, users report that auditory feedback improves their focus on the task, as visual game elements are perceived as more distracting in a visually intensive task [36]. Consequently, avoiding disturbance through gamified interventions by making the right choice of modality should not be overlooked. While running is not specifically a visually intensive task like image-tagging and rather a physical exercise, the comparison holds as looking at one’s smartphone or smartwatch display for example might lead to similar distractions in a state of focus.

2.3 Effects of Audio on Sports

In the past, audio in general (i.e. in the form of sound effects, but also music), has been shown to have beneficial effects in sports-related contexts. For example a meta-review by Terry et al. [40] could show that listening to music positively impacts the performance and perceived exertion of athletes. Similarly, Jarraya et al. [20] found that music listening in the warm-up phase positively impacts the power output of athletes during the Wingate test. Regarding sound effects, Agostini et al. [1] looked at and classify different methods utilizing sounds to improve motor skills in sports. For example a study on rowing found that providing sound feedback on the boats current speed via speakers significantly increased boat speed. Lastly, Lin and Lu [25] took a similar approach to our research question outside of the gamification domain by comparing the effect of video stimuli versus audio stimuli during stationary bike exercises, finding that the audio intervention leads to increased physical performance and lower perceived exertion.

In their work on the design of interactive jogging systems Mueller et al. [32] highlight several prototypes and applications using audio interventions for running specifically. *Jogging over a Distance* [31] for example utilizes spatial audio to connect and motivate two runners by synchronizing their individual target heart rates. Similarly, *PaceTunes* [10] makes use of spatial music during a run to keep runners at a pre-defined pace. If a runner’s pace is slower than the target pace, the music is playing “in front” of the runner. If they are faster, it plays “behind” them. An example of a commercial application in this domain is *Zombies, Run!* [38], a smartphone app based on narrative storytelling, where the sound of approaching

Figure 1: Overview of the experimental environment, including a sketch of the setup and the treadmill used.

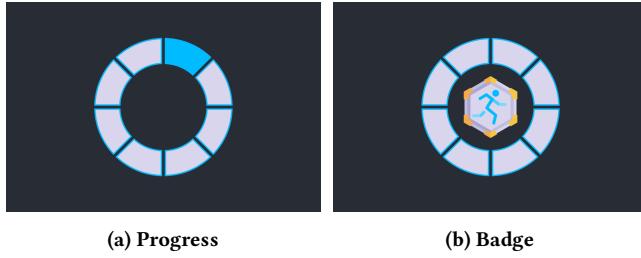
zombies cue a user to increase their running pace. In a study involving young participants, an 8-week training program was found to be more effective using the app compared to a no-intervention group in improving five kilometer running performance [15]. Similarly, *Time:Runner*, an audio storytelling game, has been shown to enhance users' enjoyment of physical activity before and after running [11]. However, the study lacks a baseline to assess effectiveness, and its use of spoken audio confounds whether effects stem from the narrative content or auditory engagement more generally.

2.4 Summary

Based on the works presented we can see that audio has been a successful intervention in sports in the past. A systematic comparison between audio and visual interventions in the domain of gamification and sports does, to the best of our knowledge, not exist yet, which is why we aim to fill this gap. Next to the positive outcomes of audio mentioned above, looking into auditive gamification in a flow-prone and widely adapted sport like running could prove fruitful not only for the individual performance, but also experience metrics such as enjoyment or perceived exertion.

3 Study System

For the purpose of investigating effects of auditory and visual gamification on user performance and experience, we adapted a treadmill in our lab to our needs. Compared to a run in-the-wild, a controlled lab environment allowed us to ensure that each subject in our study would face the same conditions in the same environment, independent of outer influences such as weather or reflective displays


making visual game elements hard to recognize. A sketch of the overall setup is shown in Figure 1. In the following, we will shed light onto the used hardware, implementation details, as well as the choice of game elements and sound effects.

3.1 Game Element & Sound Effect Selection

We opted for simple and basic game elements as a direct translation to an auditory variant was necessary. Among the most used game elements in gamification literature are points, badges, progress bars and leaderboards [18]. For our purposes we opted to implement the game elements progress and badges. These are often found in common sports tracking applications on the one hand and are simple enough to create a non-verbal auditory counterpart to compare them to on the other hand, unlike e.g. leaderboards. In our setup, we utilized progress bars to display the achieved distance up to one kilometer, divided into eight intermediate steps, and badges to reward users for completing a full kilometer. Both elements are shown in Figure 2. Badges were displayed for a few seconds upon unlocking them.

Regarding the auditory counterparts for both elements, we picked one sound for badges, which was derived by Schubhan et al. [37] in the context of gamified image tagging. As a suitable sound for the element of progress was not part of their sound selection process, we picked the sound identified for points from [37] (A) and another sound from Mixkit³ (B) and created three variants derived from earcon literature by Brewster et al. [7] to be able to reflect

³<https://mixkit.co/free-sound-effects/game/>, last accessed on August 14, 2025

Figure 2: The game elements progress, divided into eight chunks (a) and badge, as a reward for completing one kilometer (b).

the state of progress with each sound: One variant with increasing volume levels, one variant with increasing pitch levels, and lastly, one variant with increasing complexity, i.e. playing the sound as an increasingly complex diatonic scale, with one further pitch-level added for each of the eight intermediate progress steps. Based on an informal user evaluation with $n=9$ participants drawn from the social circle of the authors, six out of nine participants favored sound B in the complexity variant to resemble the element of progress while running. Thus, we selected this sound effect. We provide each sound for badges and progress in the appendix of this work.

3.2 Technical Setup & Implementation

In order to gain full control over the contents displayed to the user, we covered the treadmill's original display as shown in Figure 1b. This way information for example on distance run, time elapsed or pace was not visible on the treadmill itself in order to exclude confounding factors that might impact user motivation. Instead, we placed a convertible notebook with a touch display on the treadmill, through which we could display instructions, information on the run, the visual game elements described before and play sounds. We refrained from displaying any additional information (like e.g. time elapsed) for the same reason we covered the treadmill's original display on the one hand, and to avoid displaying these visual contents alongside the auditory gamification in our study later to maintain comparability on the other hand.

To measure the distance covered, we added an Arduino Uno in combination with an IR-Reflector-Sensor right above the tread belt. A white piece of sticky tape placed on the belt was recognized by the sensor, indicating a full rotation of the belt. Each revolution equals a distance of 3.44 meters. Multiplying said distance with the amount of times the white strip was recognized by the sensor results in the total distance run, and allowed us to track the overall progress during each trial, as well as to react to the user's distance and milestones.

The frontend displayed on the convertible notebook was a simple React⁴ web application guiding participants through their trial run, and allowing us to display either no game elements at all, visual game elements, or the respective auditory game elements reacting to the distance covered during a run.

⁴<https://react.dev/>, last accessed on August 14, 2025

4 Study

The aim of this study is to investigate the impact of and difference between auditory and visual gamification in the physical activity of running in terms of performance and user experience (UX). With the treadmill setup introduced in section 3 and based on related literature, we pose the following hypotheses:

- H1** Gamification (audio and visual), increases the distance run compared to no gamification.
- H2** Gamification (audio and visual) increases the UX (IMI [28], RPE [6], PACES [22]) compared to no gamification.
- H3** Auditory gamification increases the UX (IMI [28], RPE [6], PACES [22]) compared to visual gamification.

H1 is based on general literature in the gamification domain and aims to replicate results. Multiple reviews and meta-analysis from various contexts, including sports, have shown that gamified interventions can increase user performance [4, 18, 23, 27]. Since auditory gamification only changes the means of communication and does not provide more or different information than visual gamification, we do not expect a significant difference between the modalities. While systems like *AIMFIT* [15] and *Time:Runner* [11] suggest positive impacts on user performance through audio experiences, they are not systematically compared to direct visual counterparts in their respective studies. Furthermore, preliminary studies from non-sports contexts found no significant difference on performance between users of auditory and visual gamification [37]. By supporting H1, we could still indicate that auditory gamification performs similar to the established visual counterparts - even without clear, readable indicators. With H2 we expect auditory and visual gamification to outperform a non-gamified variant in terms of user experience. User experience was assessed through established methods from both fields, gamification and sports, i.e. we used the *intrinsic motivation inventory* [28] (IMI) to assess general enjoyment of the gamified activity, the *rating of perceived exertion* [6] (RPE), as well as the *physical activity enjoyment scale* [22] (PACES) to get feedback on the enjoyment of the physical activity itself. More details on their usage are provided in the following section. Lastly, with H3 we expect auditory gamification to outperform visual gamification in terms of the same user experience measures. As outlined in section 2 audio in general has been shown to have positive impacts on physical activities and we expect the use of the auditory modality to lead to a better experience when compared to visual gamification, as we assume audio feedback to be less disruptive, similar to [37].

4.1 Procedure

Following a mixed-methods design, participants were divided into two groups: *auditory gamification* (AG) and *visual gamification* (VG). Participants from both groups completed one *baseline* (BL) run without gamification, and at another day a run with their respective gamification intervention, or vice versa, as the sessions were counterbalanced to prevent order effects. Consequently, assessments between BL and one of either AG or VG follow a within-subjects design, while comparisons between AG and VG are between-subjects. Through this design, participants were only required to take part in two individual trials instead of three, easing the study duration and

n = 20	Sleep	Full Meals	Small Meals
Baseline	7.62 (1.29)	0.75 (0.44)	0.45 (0.69)
Gamified	7.10 (1.32)	0.82 (0.49)	0.35 (0.59)

Table 1: Amount of hours slept before the respective running trial, as well as amounts of full and small meals eaten beforehand.

commitment to participate per participant. In order to assess confounding differences in each participant's physical state between both runs, we asked them at the beginning of each session how long they slept during the night before and how many small and full meals they had prior to their study trial. This allowed us to evaluate differences between the two sessions in order to prevent biased effects in either direction during the analysis. Additionally, we asked them about their physical activities that they already had done before participating on that day.

Upon arrival participants signed a data-privacy form explaining the procedure, as well as the anonymized collection and processing of study data, followed by a demographics questionnaire asking about their age, gender, and how regularly they go for a run during one week. Afterwards, we explained how the treadmill and its controls to adapt the speed work and participants were granted a practice period to warm up and get used to the treadmill. Next, their 20-minute trial run would start. Participants were allowed to adapt the treadmill's speed at any point during the trial. Depending on the BL or gamified run, they would additionally see the respective auditory or visual game elements on the screen in front of them as described in section 3. After completing the run and a short break, participants were asked to fill out additional questionnaires: First, the Rating of Perceived Exertion [6] (RPE), followed by the Physical Activity Enjoyment Scale [22] (PACES), the Intrinsic Motivation Inventory's [28] (IMI) subscales for interest & enjoyment, pressure and competence. As a last step, participants were offered to shower at our facilities. The study was approved by the Ethical Review Board of Saarland University (No. 24-02-07).

4.2 Participants

For our mixed-methods design (between and within-subjects) an a-priori power-analysis using G*Power [17] suggested at least 18 participants to find medium sized effects (Cohen's $f = 0.25$) with a power of 0.8, which is recommended by Cohen [12]. In addition we assumed a correlation coefficient of $r = 0.75$ for repeated measures, as the distance a person is able to run depends on each individual's condition, which would naturally lead to a high correlation between the BL and gamified conditions. A detailed overview of our power-analysis parameters and results can be found in Appendix A.

In total we recruited $n = 20$ participants via flyers, student chat groups for participant recruitment and the authors' social circle. 18 subjects were university students from sports-unrelated fields (e.g. computer science, psychology or medicine) and two worked in sports-unrelated fields. Ten of the subjects identified as male, four as female, four as non-binary, one as agender and one as genderfluid. On average they were 24.3 years old ($SD = 3.87$). Most of the participants (11) indicated that they do not follow a regular

running routine, while four indicated to go running less than once per week, four once a week, and one participant twice a week. Participants were not paid for their participation, but were offered snacks after completing each study trial.

4.3 Results

To analyze our data, we used a repeated measures ANOVA (BL versus gamified conditions) with between-subject factors (AG versus VG) wherever a comparison between all conditions was applicable and insights into interaction effects might prove valuable. For comparisons between two conditions (e.g. to compare the amount of sleep between BL and the respective gamified conditions of each participant), we calculated the non-parametric Wilcoxon rank test (within-conditions), or the Mann-Whitney U test (between-conditions) due to violating the assumption of normally distributed data. An overview of our descriptive results including data on the achieved running distance, the respective IMI subscales, RPE and PACES is shown in Table 2.

4.3.1 Pre-Run Evaluation. As described in subsection 4.1 participants were asked about their amount of sleep and how many full and small meals they consumed before taking part in the respective trial run. The descriptive results can be found in Table 1. The Wilcoxon tests between the within-subjects conditions revealed no significant differences in terms of sleep ($W=59.00$, $p=0.36$), full meals ($W=3.00$, $p=0.57$), or small meals ($W=17.50$, $p=0.59$). Based on this, we can conclude that participants were likely in a comparable physical state on both trials.

4.3.2 Performance. First, a Mann-Whitney U test on the distance data from the baseline conditions revealed no significant difference between participants from the auditory, as well as the visual group ($U=44.00$, $p=0.68$), suggesting similar levels of running endurance in both samples. An ANOVA run on the distance metrics shown in Table 2 indicates a significant difference between the BL run and the gamified conditions ($F=5.60$, $p=0.03$, $\eta_p^2=0.24$). An effect of this size can be considered large according to Cohen [12]. Table 2 shows that participants in the visual intervention group increased their running distance by 422.43 meters in the gamified condition on average, while participants in the audio intervention group achieved an increase of 322.23 meters on average. No effects were found regarding the comparison between VG and AG ($F=0.11$, $p=0.74$, $\eta_p^2<0.01$), as well as the interaction between gamification, no gamification and audio or visual ($F=0.10$, $p=0.75$, $\eta_p^2<0.01$). This means that while gamification in general improved our participants distance measures, this effect was independent of the type of the gamification intervention. Furthermore, there are no significant differences between the audio and visual intervention themselves. This leads to **R1: Gamification generally increased measured distances, independent of its modality.**

4.3.3 Running Experience. Similar to the performance metric, the IMI subscale interest & enjoyment showed a significant difference between the BL runs and gamification in general ($F=11.42$, $p<0.01$, $\eta_p^2=0.39$). The effect can also be considered as large [12]. Again, the ANOVA showed no significant differences between VG and AG ($F=0.70$, $p=0.42$, $\eta_p^2=0.04$), as well as for the interaction effect

IMI							
	Condition	Distance (m)	RPE	PACES	Interest	Pressure	Competence
V	BL n=10	2183.71 (843.13)	5.30 (2.41)	84.30 (22.65)	3.79 (1.58)	2.58 (1.01)	3.80 (1.55)
I	VG n=10	2606.14 (1247.12)	5.40 (1.17)	90.10 (15.29)	4.36 (1.06)	2.42 (0.86)	3.88 (1.16)
A	BL n=10	2369.57 (908.87)	5.80 (1.81)	88.60 (18.92)	4.21 (1.07)	2.96 (1.01)	3.72 (0.90)
U	AG n=10	2691.80 (852.68)	5.30 (1.64)	95.60 (11.05)	4.76 (0.85)	2.90 (1.04)	3.76 (1.21)

Table 2: Score (and standard deviation) of our quantitative measurements during and after each run, divided into participants who were assigned to either the visual (VIS) or the audio (AUD) group.

($F<0.01$, $p=0.93$, $\eta_p^2<0.01$), leading to **R2: Gamification in general improved the enjoyment of the run, independent of its modality**. Contrary to the interest & enjoyment scale, the pressure subscale showed no significant results, neither in terms of BL versus general gamification ($F=0.18$, $p=0.68$, $\eta_p^2=0.01$), VG versus AG ($F=0.04$, $p=0.85$, $\eta_p^2<0.01$), or the interaction of both ($F=0.02$, $p=0.90$, $\eta_p^2<0.01$). The same applies to the competence subscale comparisons for BL versus general gamification ($F=0.14$, $p=0.72$, $\eta_p^2<0.01$), VG versus AG ($F=1.46$, $p=0.24$, $\eta_p^2=0.08$) and the interaction effect ($F=0.04$, $p=0.85$, $\eta_p^2<0.01$).

Another measurement that we assessed after each trial was the perceived exertion. Following our ANOVA, neither BL versus general gamification ($F=0.26$, $p=0.62$, $\eta_p^2=0.01$), nor VG versus AG ($F=0.08$, $p=0.78$, $\eta_p^2<0.01$), and the interaction effect ($F=0.59$, $p=0.45$, $\eta_p^2=0.03$) resulted in significant differences. The same applies to the PACES comparisons between BL and general gamification ($F=2.83$, $p=0.11$, $\eta_p^2=0.14$), VG and AG ($F=0.51$, $p=0.48$, $\eta_p^2=0.03$), and lastly, the interaction effect between them ($F=0.02$, $p=0.88$, $\eta_p^2<0.01$). Consequently, we cannot say that our participants felt more (or less) exhausted depending on the trial, nor that they perceived the physical enjoyment differently in any of the conditions. While non-significances do not entirely exclude missing an effect, our results hint at similar exertion and physical enjoyment levels. Especially the perceived exertion becomes interesting in the light of R1, where an increased distance was measured in the gamified conditions, yet the impact on perceived exhaustion seems to be negligible. In terms of the audio intervention, at least the descriptive RPE values are even lower for AG than for BL.

5 Discussion, Limitations & Future Directions

Following our results, we can conclude that we are able to support **H1**. Based on R1 we saw that gamification, independent of the intervention, increases the distance run compared to not using gamification at all. This is in line with gamification research in the domain [23] and the lack of an interaction effect in this regard indicates that both, visual and auditory gamification, affect the distance metric in similar ways. While a significant difference in terms of distance was not expected based on prior literature from other domains (e.g. [2] and [37]), it would have been conceivable given our expectation for an improved user experience. With our results, we contribute one more example, where purely auditory gamification results in comparable performance measures to the

well-established visual counterpart. Nonetheless, it should be noted that with regards to our sample size and statistical power, we cannot exclude the existence of medium to smaller effects in this regard.

With **H2** and **H3** we hypothesized that visual and auditory gamification increase the user experience compared to no gamification based on existing studies and that auditory gamification improves it once more compared to visual gamification in the specific context of running. Based on our analysis of the IMI, RPE and PACES scores we are not able to support these hypotheses. While R2 indicated a general improvement of the enjoyment of the activity through gamification overall, there was again no interaction effect, meaning that we cannot see an improvement between the modalities of gamification interventions. Furthermore, neither perceived pressure, nor the level of competence differed in any of the conditions, including the BL run. From this, we can derive that factors bound to the activity of running itself might be more important for perceived pressure or competence already, and the addition of gamification elements does not alter this perception to a notable degree. Similarly, no effects in terms of perceived exertion, nor the enjoyment of the physical activity itself were found.

A potential interplay regarding R1 is that while participants significantly improved their running distance through gamification by approximately 372 meters on average, they did not report a significantly increased perceived exertion. Although the non-significant result limits strong interpretations, the observed increase of 372 meters, while not substantial in absolute terms, could be a hint that the addition of gamification may positively influence perceived exertion relative to the distance covered during running. This would fit [25] or [40], who find similar effects through audio, although in the form of music. Future work should investigate a potential connection between gamification and perceived exertion to deepen our understanding of how game elements can affect perceptions in physical exercise beyond potential performance gains.

Regarding our methodology, we chose to conduct our study in a lab setting. This approach allowed us to keep the setup as comparable as possible between participants, but also between the individual assessments of a participant. While visual interfaces like displays are often more common to be found in such a setup, we removed any opportunity to perceive information on a screen beyond our own to make our results more applicable on a general level, including running outside. Nonetheless, our results might differ if they were assessed in an in-the-wild scenario. Furthermore, it should be noted that in our setup, the visual and auditory badges were only briefly perceivable, whereas the visual progress bar was

displayed continuously to better reflect its intended functionality. Another limitation stems from the use of a treadmill itself: on the one hand it allowed us to precisely measure and react to the distances with our game elements, on the other hand using a treadmill comes with the disadvantage of set speed-levels. Our participants were allowed to choose and change their own speeds throughout each trial, yet an impact on our results cannot be ruled out entirely. Running outside might lead to more variable running speeds and consequently larger effects. R1, the significant difference between the distances in gamified vs. non-gamified conditions, hints at a low impact of this limitation. An in-the-wild study in the future should validate and strengthen our results in this regard. Lastly, as mentioned throughout our results and discussion, while 20 participants in our exploratory setup are sufficient to find large effects, we cannot exclude the existence of smaller effects. Future studies in this direction should aim for larger sample sizes to strengthen these insights and provide a more fine-grained look.

6 Conclusion

This builds the foundation for a systematic comparison of sound effect based gamification and visual gamification on the physical activity of running. While our results do not indicate a substantial difference in terms of user performance and experience when it comes to auditory vs. visual gamification, we did find that gamification independent of the intervention improves running distance and the general enjoyment of the activity. Based on this, we contribute insights to both, gamification and sports-related research, as audio gamification can be a viable alternative to visual game elements for running. In the future, both, researchers and practitioners from the field, can build on this knowledge to adapt applications based on their needs and which type of gamification is more applicable in their scenario.

Next to the future research directions outlined in our discussion such as validation studies with bigger sample sizes to gain more detailed insights, research should also investigate audiovisual gamification as a potential modality to improve user experience. While testing this would have inflated our study concept, results from a different context have already shown that combining audio and visual feedback can result in the best compromise for user experience [37]. Furthermore, findings revealed through our exploratory analysis, like the comparable perceived exertion despite significantly larger distances covered by our participants, should be investigated in the future.

References

- [1] Tiziano Agostini, Fabrizio Sors, Mauro Murgia, and Alessandra Galmonte. 2024. Enhancing Perceptual–Motor Skills in Sports: The Role of Ecological Sounds. *Journal of Intelligence* 12, 2 (Jan. 2024), 15. doi:10.3390/intelligence12020015
- [2] Maximilian Altmeyer, Vladislav Hnatovskiy, Katja Rogers, Pascal Lessel, and Lennart E. Nacke. 2022. Here Comes No Boom! The Lack of Sound Feedback Effects on Performance and User Experience in a Gamified Image Classification Task. In *Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems* (New Orleans, LA, USA) (CHI '22). Association for Computing Machinery, New York, NY, USA, Article 193, 14 pages. doi:10.1145/3491102.3517581
- [3] Maximilian Altmeyer, Pascal Lessel, Tobias Sander, and Antonio Krüger. 2018. Extending a Gamified Mobile App with a Public Display to Encourage Walking. In *Proceedings of the 22nd International Academic Mindtrek Conference* (Tampere, Finland) (Mindtrek '18). Association for Computing Machinery, New York, NY, USA, 20–29. doi:10.1145/3275116.3275135
- [4] Víctor Arufe-Giráldez, Alberto Sanmiguel-Rodríguez, Oliver Ramos-Álvarez, and Rubén Navarro-Patón. 2022. Gamification in Physical Education: A Systematic Review. *Education Sciences* 12, 8 (Aug. 2022), 540. doi:10.3390/educsci12080540
- [5] Paula Bitrián, Isabel Buil, and Sara Catalán. 2020. Gamification in Sport Apps: The Determinants of Users' Motivation. *European Journal of Management and Business Economics* 29, 3 (May 2020), 365–381. doi:10.1108/ejmbe-09-2019-0163
- [6] Gunnar Borg. 1970. Perceived Exertion as an Indicator of Somatic Stress. *Scandinavian Journal of Rehabilitation Medicine* (1970).
- [7] Stephen A Brewster, Peter C Wright, and Alistair DN Edwards. 1995. Experimentally Derived Guidelines for the Creation of Earcons. In *Adjunct proceedings of HCI*, Vol. 95. 155–159.
- [8] Paula Bräuer and Athanasios Mazarakis. 2022. “Alexa, Can We Design Gamification Without a Screen?” - Implementing Cooperative and Competitive Audio-Gamification for Intelligent Virtual Assistants. *Computers in Human Behavior* 135 (oct 2022), 107362. doi:10.1016/j.chb.2022.107362
- [9] Paula Bräuer and Athanasios Mazarakis. 2022. How to Design Audio-Gamification for Language Learning with Amazon Alexa?—A Long-Term Field Experiment. *International Journal of Human–Computer Interaction* 40, 9 (Dec. 2022), 2343–2360. doi:10.1080/10447318.2022.2160228
- [10] Richard Byrne. 2008. *Adapting Running Pace with Music*. Ph. D. Dissertation.
- [11] Luca Chittaro and Francesco Zuliani. 2013. Exploring Audio Storytelling in Mobile Exergames to Affect the Perception of Physical Exercise. In *Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare* (Venice, Italy) (PervasiveHealth '13). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels, BEL, 1–8. doi:10.4108/icst.pervasivehealth.2013.252016
- [12] Jacob Cohen. 2013. *Statistical Power Analysis for the Behavioral Sciences*. Routledge. doi:10.4324/9780203771587
- [13] Petar Cvetkovic, Charly Harbord, and Helmut Hlavacs. 2020. A Study on Gamification Effectiveness. In *Proceedings of the 12th International Conference on Computer Supported Education*. SCITEPRESS - Science and Technology Publications, 236–244. doi:10.5220/0009340102360244
- [14] Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. 2011. From Game Design Elements to Gamefulness: Defining "Gamification". In *Proceedings of the 15th International Academic MindTrek Conference on Envisioning Future Media Environments - MindTrek '11* (Tampere, Finland) (MindTrek '11). Association for Computing Machinery, New York, NY, USA, 9–15. doi:10.1145/2181037.2181040
- [15] Artur Direito, Yannan Jiang, Robyn Whittaker, and Ralph Maddison. 2015. Apps for Improving Fitness and Increasing Physical Activity Among Young People: The AIMFIT Pragmatic Randomized Controlled Trial. *Journal of Medical Internet Research* 17, 8 (Aug. 2015), e210. doi:10.2196/jmir.4568
- [16] Alexander J. Dontre. 2020. The Influence of Technology on Academic Distraction: A Review. *Human Behavior and Emerging Technologies* 3, 3 (Nov. 2020), 379–390. doi:10.1002/hbe2.229
- [17] Franz Faul, Edgar Erdfelder, Axel Buchner, and Albert-Georg Lang. 2009. Statistical Power Analyses Using G* Power 3.1: Tests for Correlation and Regression Analyses. *Behavior research methods* 41, 4 (2009), 1149–1160.
- [18] Juha Hamari, Jonna Koivisto, and Harri Sarsa. 2014. Does Gamification Work? – A Literature Review of Empirical Studies on Gamification. In *2014 47th Hawaii International Conference on System Sciences*. IEEE, 3025–3034. doi:10.1109/HICSS.2014.377
- [19] Susan A Jackson and Mihaly Csikszentmihalyi. 1999. *Flow in sports*. Human Kinetics.
- [20] Mohamed Jaraya, Hamdi Chtourou, Asma Aloui, Omar Hammouda, Karim Chamari, Anis Chaouachi, and Nizar Souissi. 2012. The Effects of Music on High-intensity Short-term Exercise in Well Trained Athletes. *Asian Journal of Sports Medicine* 3, 4 (March 2012). doi:10.5812/ajsm.34543
- [21] Tuomas Kari, Jenni Pippola, Lauri Frank, Markus Makkonen, and Panu Moilanen. 2016. To Gamify or Not To Gamify? Gamification in Exercise Applications and Its Role in Impacting Exercise Motivation. *Proceedings of the 29th Bled eConference "Digital Economy"* (2016), 393–405.
- [22] Deborah Kendzierski and Kenneth J. DeCarlo. 1991. Physical Activity Enjoyment Scale: Two Validation Studies. *Journal of Sport and Exercise Psychology* 13, 1 (March 1991), 50–64. doi:10.1123/jsep.13.1.50
- [23] Jonna Koivisto and Juha Hamari. 2019. Gamification of Physical Activity: A Systematic Literature Review of Comparison Studies. *GamiFIN* (2019), 106–117.
- [24] Pascal Lessel, Maximilian Altmeyer, Marc Müller, Christian Wolff, and Antonio Krüger. 2016. “Don’t Whip Me With Your Games”: Investigating “Bottom-Up” Gamification. In *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems* (San Jose, California, USA) (CHI '16). Association for Computing Machinery, New York, NY, USA, 2026–2037. doi:10.1145/2858036.2858463
- [25] Ju-Han Lin and Frank Jing-Horng Lu. 2013. Interactive Effects of Visual and Auditory Intervention on Physical Performance and Perceived Effort. *Journal of Sports Science & Medicine* 12, 3 (2013), 388.
- [26] Edwin A. Locke. 1968. Toward a theory of task motivation and incentives. *Organizational Behavior and Human Performance* 3, 2 (may 1968), 157–189. doi:10.1016/0030-5073(68)90004-4
- [27] Alexandre Mazeas, Martine Duclos, Bruno Pereira, and Aïna Chalabaev. 2022. Evaluating the Effectiveness of Gamification on Physical Activity: Systematic Review and Meta-analysis of Randomized Controlled Trials. *Journal of Medical*

Internet Research 24, 1 (Jan. 2022), e26779. doi:10.2196/26779

[28] Edward McAuley, Terry Duncan, and Vance V. Tammen. 1989. Psychometric Properties of the Intrinsic Motivation Inventory in a Competitive Sport Setting: A Confirmatory Factor Analysis. *Research Quarterly for Exercise and Sport* 60, 1 (mar 1989), 48–58. doi:10.1080/02701367.1989.10607413

[29] Elisa D. Mekler, Florian Brühlmann, Klaus Opwis, and Alexandre N. Tuch. 2013. Do Points, Levels and Leaderboards Harm Intrinsic Motivation? An Empirical Analysis of Common Gamification Elements. In *Proceedings of the First International Conference on Gameful Design, Research, and Applications* (Toronto, Ontario, Canada) (*Gamification '13*). ACM, New York, NY, USA, 66–73. doi:10.1145/2583008.2583017

[30] Elisa D. Mekler, Florian Brühlmann, Alexandre N. Tuch, and Klaus Opwis. 2017. Towards understanding the effects of individual gamification elements on intrinsic motivation and performance. *Computers in Human Behavior* 71 (jun 2017), 525–534. doi:10.1016/j.chb.2015.08.048

[31] Florian 'Floyd' Mueller, Shannon O'Brien, and Alex Thorogood. 2007. Jogging Over a Distance: Supporting a "Jogging Together" Experience Although Being Apart. In *CHI '07 Extended Abstracts on Human Factors in Computing Systems* (San Jose, CA, USA) (*CHI EA '07*). Association for Computing Machinery, New York, NY, USA, 2579–2584. doi:10.1145/1240866.1241045

[32] Florian "Floyd" Mueller, Chek Tien Tan, Rich Byrne, and Matt Jones. 2017. 13 Game Lenses for Designing Diverse Interactive Jogging Systems. In *Proceedings of the Annual Symposium on Computer-Human Interaction in Play (CHI PLAY '17)*. ACM, 43–56. doi:10.1145/3116595.3116607

[33] Andhika Giri Persada. 2023. Impact of Gamification on User Experience: An Empirical Review. In *2023 7th International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM)*. IEEE, 43–47. doi:10.1109/elticom61905.2023.10443134

[34] Morgan Rekstis, Emily Beach, Taylor Cornell, Mallory Kobak, and Michael Rebold. 2025. The Effects of Smartphone Use During Resistance Training. *Pamukkale Journal of Sport Sciences* 16, 1 (April 2025), 154–168. doi:10.54141/psbd.1588327

[35] Mitchell Rogers, Wendy Yao, Andrew Luxton-Reilly, Juho Leinonen, Danielle Lottridge, and Paul Denny. 2021. Exploring Personalization of Gamification in an Introductory Programming Course. In *Proceedings of the 52nd ACM Technical Symposium on Computer Science Education* (Virtual Event, USA) (*SIGCSE '21*). Association for Computing Machinery, New York, NY, USA, 1121–1127. doi:10.1145/3408877.3432402

[36] Marc Schubhan, Maximilian Altmeyer, Dominic Buchheit, and Pascal Lessel. 2020. Investigating User-Created Gamification in an Image Tagging Task. In *Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems* (Honolulu, HI, USA) (*CHI '20*). Association for Computing Machinery, New York, NY, USA, 1–12. doi:10.1145/3313831.3376360

[37] Marc Schubhan, Maximilian Altmeyer, Katja Rogers, Donald Degraen, Pascal Lessel, and Antonia Krüger. 2024. Auditory, Visual, or Both? Comparing Visual and Auditory Representations of Game Elements in a Gamified Image-Tagging Task. *Proceedings of the ACM on Human-Computer Interaction* 8, CHI PLAY (Oct. 2024), 1–28. doi:10.1145/3677059

[38] Six To Start Limited. 2025. Zombies, Run! <https://zrx.app/zombies> Accessed: 2025-05-22.

[39] Cary Stothart, Ainsley Mitchum, and Courtney Yehnert. 2015. The Attentional Cost of Receiving a Cell Phone Notification. *Journal of Experimental Psychology: Human Perception and Performance* 41, 4 (Aug. 2015), 893–897. doi:10.1037/xhp0000100

[40] Peter C. Terry, Costas I. Karageorghis, Michelle L. Curran, Olwenn V. Martin, and Renée L. Parsons-Smith. 2020. Effects of Music in Exercise and Sport: A Meta-Analytic Review. *Psychological Bulletin* 146, 2 (Feb. 2020), 91–117. doi:10.1037/bul0000216

[41] Bill Thornton, Alyson Faires, Maija Robbins, and Eric Rollins. 2014. The Mere Presence of a Cell Phone May be Distracting: Implications for Attention and Task Performance. *Social Psychology* 45, 6 (Nov. 2014), 479–488. doi:10.1027/1864-9335/a000216

[42] Aron Toth and Emma Logo. 2018. The Effect of Gamification in Sport Applications. In *2018 9th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)*. IEEE, 69–74. doi:10.1109/coginfocom.2018.8639934

A Power Analysis

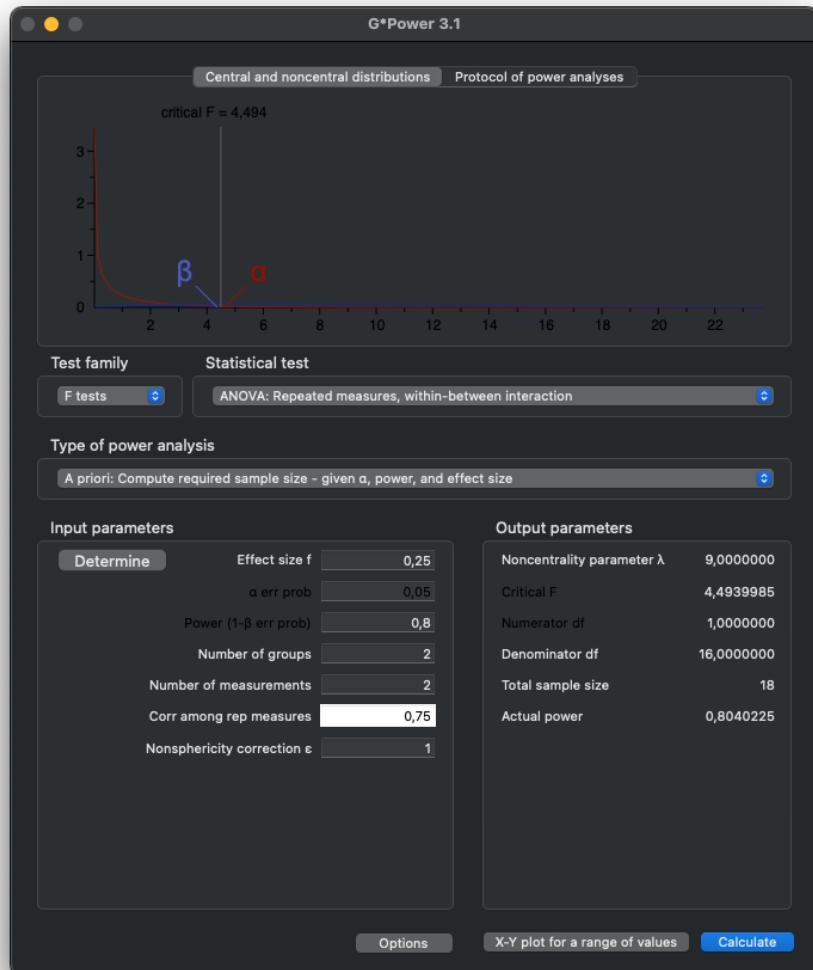


Figure 3: Overview of our power-analysis parameters and results.