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The rapid development of text-to-image (TTI) models has made it increasingly 
difficult to distinguish between AI-generated and authentic photographs. This 
study explores human perception and detection capabilities regarding AI-generated 
images of landscapes, architecture, and interiors using a mixed-methods approach. 
A total of 104 participants took part in an online survey, classifying 50 images (25 
real, 25 AI-generated) from five leading TTI models. Alongside their classifications, 
participants rated their level of confidence and provided optional justifications for 
their choices. A quantitative analysis revealed that participants correctly identified 
AI-generated images in 63.7% of cases overall and notably in only 29% of cases 
when FLUX.1-dev was used. The hierarchical model estimated lower odds of 
correct detection with increasing age, while education, gender, AI-tool use, 
media work, and editing experience showed no significant effects. Respective 
confidence scores highlight calibration issues and suggest potential overconfidence 
in more experienced groups. The qualitative analysis of 511 textual justifications 
uncovered several classic visual flaws such as geometric inconsistencies, unrealistic 
lighting, and semantic anomalies, while simultaneously showing a shift toward 
tacit judgments. Participants often characterized newer outputs as ‘too perfect’ 
or faintly uncanny. Therefore, this study emphasizes the need for visual literacy 
and regulatory mechanisms, especially in contexts susceptible to disinformation. 
The findings provide insights into vulnerable groups and raise awareness of the 
social risks posed by hyper-realistic synthetic media.
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1 Introduction

The rapid advancement of artificial intelligence (AI) has led to significant progress in the 
field of image generation. Recent text-to-image (TTI) models, including Generative 
Adversarial Networks (GANs) and diffusion models, have achieved a level of photorealism in 
their output that makes it increasingly difficult to differentiate from authentic photographs 
(Meyer, 2022). Whilst these developments offer novel possibilities across a variety of domains, 
including design, media, advertising and entertainment, they also give rise to significant 
ethical and societal concerns. Recent studies have demonstrated that AI-generated images are 
increasingly being used for cultural, political, and societal misuse with implications for trust 
in media and democracy, including the intentional spread of disinformation, content 
manipulation, and character defamation (Ferrara, 2024; Marchal et al., 2024; Nightingale and 
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Farid, 2022). A frequently cited example is that of a manipulated 
image depicting an explosion near the Pentagon, which was 
distributed via verified social media accounts and led to short-term 
fluctuations in financial markets (O’Sullivan and Passantino, 2023). 
Other viral examples of AI-generated images include Pope Francis 
wearing a puffer jacket by Balenciaga, Donald Trump getting arrested 
by police, and Vladimir Putin behind prison bars (Kamali et al., 2025; 
Lajka and Marcelo, 2023). Meanwhile, this deepfake phenomenon has 
also spread to video and audio media. In 2022, a deepfake video 
emerged of Volodymyr Zelenskyy, in which he appeared to call on 
Ukrainian troops to lay down their arms and stop fighting Russia (Roy 
and Roy, 2025). In January 2024, ahead of the November United States 
presidential election, it was estimated that tens of thousands of 
Democratic Party voters received AI-generated calls in Biden’s voice 
instructing them not to vote in the upcoming New Hampshire 
primaries (Barrington et al., 2025).

Despite the efforts of major technology firms to mitigate the 
dissemination of such content, AI-generated imagery continues to pose 
serious risks, particularly due to its scalability, virality, and the growing 
difficulty of distinguishing real from synthetic media (Wendling, 2024). 
On another note, this issue is further underscored by the “Dead Internet 
Theory,” which suggests that an increasing share of online content, 
especially on social media platforms, is no longer generated by humans 
but by AI (Walter, 2024). Emerging phenomena, such as AI influencers, 
who autonomously produce and tailor content to specific audiences, are 
accelerating this trend. Consequently, platforms are becoming saturated 
with machine-generated content, thereby undermining the authenticity 
of digital interactions and eroding trust in visual information (Walter, 
2024). Muzumdar et al. (2025) also demonstrate, within the framework 
of the “Dead Internet Theory,” that AI can be utilized for engagement 
and so-called content farming. It can be  used to produce clickbait 
articles, auto-generated blogs and to flood social media feeds, which 
further exacerbate concerns about authenticity and quality.

These developments highlight the necessity to analyze the 
challenges humans face in differentiating between authentic images 
and AI-generated images. With the development of more sophisticated 
TTI models, human perception and the cognitive ability to distinguish 
between real and synthetic images are gaining further scientific 
relevance. While previous studies focus on faces and full body images 
(Cooke et al., 2024; Frank et al., 2024; Kamali et al., 2025; Lüdemann 
et al., 2024; Meyer, 2022; Nightingale and Farid, 2022; Pocol et al., 
2024), we explicitly focus on images without people. As demonstrated 
in the research by Kamali et  al. (2024), there is a high degree of 
specificity in the elements that comprise AI-generated images of 
people. Therefore, this study explores how realistic and convincing 
synthetic content has become in everyday visual domains, which are 
increasingly used in digital communication, marketing, and media. 
To this end, we pose the following question:

RQ1: To what extent can individuals distinguish between real and 
AI-generated images, particularly in the categories of landscapes, 
architecture, and interiors and how well are their confidence 
judgments calibrated?

We  aim to identify the demographic and visual factors that 
influence an individual’s ability to recognize AI-generated images. 
Understanding which groups are particularly susceptible to synthetic 
media, such as deepfakes, is crucial for developing targeted 
educational, technical, and policy-driven countermeasures. 
Simultaneously, analyzing which visual cues are frequently associated 

with AI-generated imagery can inform the design of future detection 
strategies and media literacy programs. Therefore, we formulate:

RQ2: How do specific TTI models and selected demographics 
relate to detection and miscalibration?

In order to address these questions, a two-stage experimental design 
was employed. A quantitative online survey was conducted to assess 
participants’ ability to classify real vs. AI-generated images and their 
individual confidence level. Open questions on the reasons for the image 
classification provide insights into the visual cues and model-specific 
artefacts that guided the participants’ decisions. This study goes beyond 
the aforementioned research and aims to determine not only how well 
humans can distinguish AI-generated images from real ones, but also 
whether there are calibration errors in the area of individual confidence 
judgments, in order to derive potential epistemic vulnerabilities from 
this. Therefore, the objective of the present study is twofold: firstly, to 
enhance our understanding of human perception in the context of 
synthetic media, and secondly, to provide practical strategies for raising 
public awareness about the risks associated with AI-generated images.

2 Text-to-image models: capabilities, 
limitations, and ethical concerns

TTI models represent a key branch of generative AI aimed at 
transforming natural language descriptions into coherent visual 
content. These models have gained significant momentum across 
fields such as design, advertising, and entertainment (Bie et al., 2024; 
Grewal et al., 2025; Hartmann et al., 2025). Their appeal lies in their 
ability to produce visually compelling, often photorealistic images 
from abstract textual prompts enhancing creativity, accelerating 
content production, and enabling synthetic data generation (Bie et al., 
2024). Technically, TTI models are based on deep neural architectures 
such as Generative Adversarial Networks (GANs), diffusion models, 
and transformer-based systems. GANs, first introduced by Goodfellow 
et al. (2014), have demonstrated remarkable capabilities in generating 
high-resolution, photorealistic images, particularly of human faces. 
However, they are often limited by issues such as training instability, 
mode collapse and a lack of sample diversity, which can hinder their 
generalizability (Salimans et al., 2016). Although notable extensions 
such as StyleGAN2 (Karras et al., 2019) have addressed some of these 
limitations, GAN-based TTI approaches are increasingly being 
outperformed in terms of semantic alignment. Diffusion models have 
emerged as the dominant paradigm for image generation (Li X. et al., 
2024). These models, including DALL-E 2 (Ramesh et al., 2022), Stable 
Diffusion (Rombach et al., 2022) and Imagen 2 (Saharia et al., 2022), 
operate via a gradual denoising process. This involves transforming 
random noise into coherent images over multiple iterations. This 
iterative refinement enables superior alignment with textual prompts 
and visual consistency. Nevertheless, diffusion models are 
computationally intensive and pose challenges for deployment in real-
time applications or on edge devices (Shen et al., 2025). Transformer-
based models, inspired by breakthroughs in natural language 
processing, aim to improve compositional reasoning and contextual 
understanding in image generation. Google’s PARTI (Yu et al., 2022) 
and Muse (Chang et al., 2023) are examples of autoregressive and 
masked transformer architectures.

Despite these advances, the images generated with TTI models 
exhibit persistent weaknesses, which can help to identify AI-generated 
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images. Common failure patterns include geometrical distortions, 
violations of physical laws and misinterpretations of complex spatial 
or semantic relations as well as incorrect or unreadable text rendering 
(Borji, 2023; Kamali et al., 2025). Moreover, synthetic humans often 
display anatomical abnormalities, such as distorted hands or 
inconsistent facial symmetry, highlighting unresolved challenges in 
fine-grained generation (Borji, 2023; Kamali et al., 2025). However, 
recent advances in TTI models have already minimized some of these 
common errors. For example, OpenAI’s 4o image model produces 
coherent text and made advancements in photorealism with correct 
shadows and reflections (OpenAI, 2025). Black Forest Labs’ recent 
image model FLUX.1 Kontext introduces better character consistency 
and the possibility to modify images with simple text instructions 
allowing to tell stories with the same character in different settings 
(Batifol et al., 2025). While technical limitations are diminishing in 
newer models, ethical concerns in TTI models are rising. Their ability 
to create highly realistic but entirely fictional imagery enables misuse 
in the form of synthetic disinformation and deepfakes. Such content 
can be  weaponized to spread false narratives, manipulate public 
opinion, or impersonate individuals in political, journalistic, or 
commercial contexts (Ferrara, 2024; Marchal et al., 2024). Cases of 
AI-generated images falsely depicting real-world events such as 
explosions or fabricated identities demonstrate how synthetic content 
can undermine public trust and even impact financial markets 
(Kamali et al., 2025; O’Sullivan and Passantino, 2023). Furthermore, 
there is a growing risk that social media platforms will be flooded with 
AI-generated imagery. This development could blur the boundaries 
between authentic and synthetic content, undermining trust in visual 
media and contributing to a decline in the perceived credibility of 
genuine information and content (Walter, 2024).

3 Related works

Several recent studies have examined the human ability to 
distinguish between AI-generated and real images, with a particular 
focus on facial or person-related content. For example, Kamali et al. 
(2025) reported an overall recognition accuracy of 76% for 
synthetic photographs and 74% for authentic photographs in a 
large-scale study comprising 749,828 observations of 50,444 
participants. Their dataset included portraits, full-figure shots and 
group scenes generated by models such as Midjourney, Stable 
Diffusion and Adobe Firefly. However, no demographic data on the 
participants was collected, and thus, no conclusions about 
potentially vulnerable groups could be  drawn. Nightingale and 
Farid (2022) conducted a series of experiments with 315 and 219 
participants, asking them to classify AI-generated and real human 
faces. In the first experiment, participants achieved an accuracy rate 
of 48.2% without prior training; this increased to 59% after 
exposure to training material that highlighted flaws in AI-generated 
images, which demonstrated that awareness can be  cultivated 
through a targeted learning strategy. Frank et al. (2024) extended 
this research to a broader media context in a transnational study 
involving 3,002 participants and multiple content types. For images, 
the average detection accuracy fell slightly below chance level 
(50%). Pocol et al. (2024) conducted a more targeted study in which 
260 participants were tested on their ability to classify ten real and 
ten AI-generated images (produced by Stable Diffusion and 

DALL·E 2). The overall accuracy achieved was 61%. Participants 
were more accurate in identifying real images (68.5%) than 
synthetic images (52.6%), and no statistically significant differences 
were found across gender or age groups. Cooke et  al. (2024) 
conducted a study with 1,276 participants and widened the focus 
from images to audio, videos and audio-visual media types. In their 
sample, the accuracy was 51% overall and 49.4% on just image-
based content. The findings indicated that the level of accuracy was 
found to be lower for images of human faces (46.6%) in comparison 
to landscape images (54.4%). In contrast, another study by Lu et al. 
(2023) with 50 participants report an average accuracy rate of 64.33 
and 66.37% for images of men and women but an accuracy rate of 
56.50% for landscapes and 50.83% for other objects. Despite the 
differentiation in these two studies, AI-generated images beyond 
the domain of human faces, such as landscapes, architecture and 
objects, remain comparatively under-explored. Given their 
potential role in disinformation campaigns, commercial 
manipulation, and visual persuasion, this non-human image types 
warrant greater attention in future studies on the perceptual and 
ethical implications of synthetic media.

4 Methodology

To address the research questions of this study, a mixed-methods 
approach was adopted, integrating both quantitative and qualitative 
methods. This combination increases the validity of findings through 
methodological triangulation and offsets the limitations inherent in 
each individual approach (Bryman, 2006). In this context, a mixed-
methods design is particularly suitable, as neither purely qualitative 
nor purely quantitative methods alone can adequately capture the 
complexity of the research questions. Quantitative analysis is essential 
for evaluating detection performance, confidence calibration, and 
statistical relationships with demographic variables. However, the 
qualitative component provides deeper insights into the visual cues 
that participants relied on to identify AI-generated images. This dual 
approach ensures that measurable patterns and subjective reasoning 
processes are both taken into account.

In April 2025, 104 German-speaking adults completed an online 
survey. Participants were recruited via professional networks, social 
media, email distribution lists and newsletters in research networks. 
Inclusion required age ≥18 and German language proficiency. Each 
person saw 50 images in random order: 25 were real photos and 25 
were AI-generated (five images from each of five models). For every 
image, participants chose real or AI-generated and rated their 
confidence from 0 (not confident at all) to 100 (very confident). 
Participants could optionally provide a textual explanation for why 
they believe an image is AI-generated. Before the task, we collected 
demographic information such as age, gender, education, experience 
with AI-based image tools, frequency of AI usage, and self-assessed 
competence in detecting AI-generated content. Participants were not 
informed about the exact distribution of real and AI generated images. 
Participation was voluntary, consent was obtained on the landing 
page, and data were handled under GDPR. The structure of the survey 
is provided in the Supplementary materials.

Quantitatively, we  used statistical methods that consider each 
decision and account for differences between people and images. 
Rather than averaging everything together, this model estimates how 
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recognition accuracy varies by model and by participant 
characteristics. We evaluated discrimination, or how well confidence 
scores separate correct from incorrect judgments, and we evaluated 
calibration, or how well confidence matches reality, Qualitatively, 
we coded the written explanations to identify the visual cues people 
relied on, such as geometry, lighting, and textures.

4.1 Model selection

The TTI models used in the experiments were selected from the 
GenAI Arena, a comprehensive benchmarking framework designed 
to evaluate the latest image generation models. The GenAI Arena was 
selected because of its systematic methodology, transparent evaluation 
criteria and regular updates, which ensure the inclusion of the most 
recent and high performing models (Jiang et al., 2024). The framework 
combines automated performance assessments using standardized 
benchmark datasets with human evaluations, resulting in a robust and 
multidimensional evaluation of models. Key evaluation dimensions 
include image quality, semantic coherence and computational 
efficiency, providing a nuanced view of model performance in various 
contexts. A core criterion for inclusion in the GenAI Arena is public 
accessibility. Only openly available models are admitted, supporting 
the reproducibility of research findings and transparent model 
comparisons. In addition to meeting these requirements, eligible 
models must demonstrate strong performance across core quality 
benchmarks and be compatible with the GenAI Arena’s evaluation 
protocols (Jiang et al., 2024).

In contrast to alternative platforms, such as artificialanalysis.ai, 
which includes both open-source and closed-source models, but lacks 
methodological transparency, the GenAI Arena offers a clearly 
defined, reproducible framework. Unlike older benchmarks, such as 
the HEIM Framework (Lee et al., 2023), the GenAI Arena provides a 
more up-to-date basis for selecting and comparing top-performing 
TTI models. By providing this consistent comparison environment 
and emphasizing transparency, the GenAI Arena offers a scientifically 
validated framework for selecting models for this study (Jiang et al., 
2024; TIGER-Lab, 2025).

The top five selected models based on ranking are:

	 1	 FLUX.1-dev (Black Forest Labs, 2025)
	 2	 Playground v2.5 (Li D. et al., 2024)
	 3	 FLUX.1-schnell (Black Forest Labs, 2025)
	 4	 Playground v2 (Li et al., 2023)
	 5	 Kolors (Kolors Team, 2025)

4.2 Image generation

Image generation was guided by structured prompts based on Liu 
and Chilton (2022). Prompts followed the format “A [SUBJECT] in the 
[STYLE]” with the goal of producing photorealistic images of 
landscapes, buildings, and interiors. Styles such as “high-resolution 
photography” and “unreal engine” were selected for their effectiveness 
in generating realistic outputs. Metadata-like suffixes (e.g., “IMG_87234. 
CR2”) were appended to some prompts to imitate filenames from real 
digital cameras. No images containing text were produced due to 
limitations in the selected models’ capabilities at the time of image 

generation. After generating images, we curated the 25 images used in 
this study. The 25 authentic photographs were sourced from Unsplash 
(2025) (unsplash.com) and Pixabay (2025) (pixabay.com), platforms 
providing royalty-free images. All selected images were published under 
an open license, which permits free use for scientific and academic 
purposes without the need for additional permission or attributions. 
Figure 1 shows a selection of the chosen images.

4.3 Quantitative analysis

Subsequent analysis includes descriptive statistics, overall and 
per-model classification accuracy, and comparison of detection rates 
between models. To account for clustering, we first quantified the 
intraclass correlation (ICC) at participant and image levels, deriving 
a corresponding design effect to quantify the loss of independent 
information. This assessment revealed significant stimulus-level 
clustering, prompting hierarchical trial-level analysis. Consequently, 
all confirmatory inferences were based on a mixed-effects logistic 
regression model with crossed random intercepts for participants and 
images and fixed effects for image type, generator and prespecified 
covariates. This specification preserves trial-level information and 
yields valid standard errors under the crossed structure (Gelman and 
Hill, 2007). Furthermore, the Brier score (Brier, 1950) was used to 
evaluate the accuracy of the confidence-weighted decisions made by 
the participants. The score ranges from 0 (perfect calibration) to 1 
(maximum miscalibration), with lower values indicating better 
alignment between confidence and correctness. As a scoring rule for 
binary outcomes, it quantifies the mean squared difference between 
predicted probabilities and actual outcomes and is widely used in 
probabilistic classification tasks (Wilks, 2011). To assess the 
alignment between participants’ confidence levels and their actual 
performance, confidence calibration curves were plotted. These 
curves visualize the relationship between predicted confidence and 
observed accuracy, providing insight into systematic over- or 
underconfidence (Niculescu-Mizil and Caruana, 2005; Guo et al., 
2017). Receiver operating characteristic (ROC) analysis with area 
under the curve (AUC) was also used to further support this 
(Fawcett, 2006).

4.4 Qualitative analysis

The qualitative analysis focuses on participants’ optional 
explanations for why they classified an image as AI-generated. To 
support the qualitative interpretation of the free-text responses, a 
word cloud was generated to highlight the most frequently mentioned 
terms as an exploratory tool (McNaught and Lam, 2010). Similar 
approaches have been adopted in related studies, including those by 
Lago et al. (2022) and Pocol et al. (2024). All responses are categorized 
according to common types of errors and visual cues based on the 
frameworks of Kamali et  al. (2024, 2025) and Borji (2023). 
Categories include:

	•	 Geometry: Unrealistic proportions, perspective errors, or 
dysfunctional object layouts.

	•	 Stylistic Artifacts: Blurred textures, plastic surfaces, or 
digital aberrations.
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	•	 Physics: Implausible shadows, gravity-defying elements, or 
incorrect reflections.

	•	 Semantics and Logic: Contextual implausible elements, illogical 
spatial reasoning or scene composition.

	•	 Intuition: Gut feelings or unarticulated reasoning.

The frequency distribution of categories was visualized using a 
pie chart, in line with standard qualitative content analysis practices 
(Zhang and Wildemuth, 2009). This visualization enables a clearer 
understanding of which visual cues participants most frequently 
relied on when identifying AI-generated content, offering insights 
into common reasoning patterns. The five categories were used as 
deductive classes, and respective mentions were assigned to them 
according to the subclasses. Two coders independently coded a 
stratified subset of the data (approximately 20% or 100 comments). 
After the initial double-coding pass, the coders met to compare their 
decisions, resolve disagreements, and refine the definitions and 
examples of the codes. Overall, coding was straightforward within 
the deductive categories. The main source of ambiguity arose from 
longer comments that warranted multiple categories. Inter-coder 
reliability on this subset was quantified using Krippendorff ’s alpha 

(Krippendorff, 2018) yielding an alpha value of 0.8601, indicating 
substantial agreement. After reaching a consensus on the scheme and 
procedures, the two coders divided and single-coded the 
remaining comments.

5 Results

A total of 104 participants took part in the online study and fully 
completed it. 74 aborted or incomplete questionnaires were not 
included. This led to a total of 5,200 observations of AI-generated 
images and real images. The largest age group was 25–34 years old 
(n = 34), followed by 18-24-year-olds (n = 31). 18 participants were 
aged 35–44 years, while 11 and 10 participants were in the 45–54 and 
55–64 age brackets, respectively. A total of 67 people who identify as 
male and 37 who identify as female took part in the survey. No 
respondents selected the ‘diverse’ option or chose to withhold their 
gender. In terms of educational background, most participants had 
advanced secondary or higher qualifications. Specifically, 48 
respondents reported having an equivalent to the High school 
diploma, 29 held a bachelor’s degree and 15 held a master’s degree. 

FIGURE 1

Selection of images shown in the survey (“Authentic photograph”, gray steel 3 door refrigerator near modular kitchen by Naomi Hébert, reproduced 
with permission from Unsplash, https://unsplash.com/photos/gray-steel-3-door-refrigerator-near-modular-kitchen-MP0bgaS_d1c. FLUX.1-dev image 
created using generative text-to-image AI under CC-BY-NC license, https://huggingface.co/black-forest-labs/FLUX.1-dev. FLUX.1-schnell image 
created using generative text-to-image AI licensed under Apache 2.0, https://huggingface.co/black-forest-labs/FLUX.1-schnell. Kolors image created 
using generative text-to-image AI licensed under Apache 2.0, https://huggingface.co/Kwai-Kolors/Kolors. Playground v2 image created using 
generative text-to-image AI; Playground v2 is licensed under the Playground v2 Community License, https://huggingface.co/playgroundai/
playground-v2-1024px-aesthetic. Playground v2.5 image created using generative text-to-image AI; Playground v2.5 is licensed under the Playground 
v.2.5 Community License, https://huggingface.co/playgroundai/playground-v2.5-1024px-aesthetic).
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One participant indicated having a lower secondary school certificate, 
and 11 had an intermediate secondary school certificate. No 
participants reported having completed a doctorate or having no 
formal education. When asked about their prior experience with 
AI-based image tools, 62 participants stated that they had experience, 
while 42 reported having none. Regarding the usage of AI tools usage 
patterns varied: 44 participants reported regular use, 46 used such 
tools occasionally, and 14 did not use AI-based tools at all. Only 15 
participants indicated that they work professionally or privately with 
visual media while 89 respondents reported no regular engagement 
in this area. Finally, participants were asked to self-assess their ability 
to distinguish between real and AI-generated images using a 7-point 
Likert scale. Most responses were clustered around 4 and 5, resulting 
in an average confidence rating of 4.03 (SD = 1.27). Fewer 
participants rated their ability as either very high or very low 
(Figure 2).

5.1 Quantitative results

Participants correctly identified an average of 17 AI-generated 
images, with a standard deviation of approximately 3. The minimum 
number of correct classifications was six, while the maximum was 23. 
The 25th and 75th percentiles were 15.75 and 19 respectively, 
suggesting that the majority of participants performed within this 
range. In contrast, the results for authentic photographs show slightly 
lower average recognition performance. The mean number of correct 
identifications was 14.78 and a standard deviation of 3.27. Performance 
ranged from six to 24 correct responses, with a 25th percentile of 13 
and a 75th percentile of 17. Considering combined recognition 
performance (the sum of correctly identified real and AI-generated 
images) the mean total score was 31.83, with a standard deviation of 
3.97. The range extended from a minimum of 19 to a maximum of 41 
correct identifications. The 25th percentile was 29.75 and the 75th 
percentile was 34, indicating that most participants clustered around 

this central range with one significant outlier (Figure 3). Based on 
descriptive statistics it can be seen that younger participants tended to 
achieve higher recognition scores.: Participants in the 18–24 and 
25–34 age categories attained average scores of 32.55 and 32.94, 
respectively, while those in the 55–64 age group demonstrated lower 
average performance (M = 29.40). With regard to gender, male 
participants achieved a higher mean performance than their female 
counterparts (M = 32.43 vs. M = 30.73). Participants in possession of 
a master’s degree achieved the highest average score (M = 32.60), 
followed by those with a bachelor’s degree (M = 32.10), while 
individuals with lower secondary education performed lowest 
(M = 30.00). Experience with AI-based image tools has also 
demonstrated a positive tendency. Participants who reported such 
experiences demonstrated a higher mean performance (M = 32.44) in 
comparison to those who did not (M = 30.93). Regular and occasional 
users demonstrated higher average scores (M = 32.11–32.26) 
compared to those who reported never using such tools (M = 29.50). 
Participants with professional experience in visual media showed 
marginally higher performance (M = 32.20) compared to those 
without (M = 31.76). While not statistically significant, a positive 
trend was observed between participants’ self-assessed competence in 
recognizing AI-generated content and their actual performance. The 
mean recognition scores exhibited a gradual increase from 27.25 
among those who rated themselves as least confident to 34.00 among 
those who rated themselves as most confident.

Table 1 presents the mean recognition rate, standard deviation, 
and mean confidence rating for each of the five TTI models included 
in the study. The findings indicate considerable heterogeneity across 
models: while images generated by the Kolors model were correctly 
identified in 86.73% of cases on average, those produced by 
FLUX.1-dev achieved a substantially lower accuracy rate of 29.04%. 
In contrast, the confidence rating of 65.42 for this model is only 
marginally lower than that of the other models.

Prior to testing, we estimated the ICC, which yielded the following 
results: Participant = 0.007 and Image = 0.243, based on a one-way 

FIGURE 2

Self-assessment in the recognition of AI-generated images.
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random-effects decomposition. Given the study design (50 trials per 
participant and 104 judgments per image), these values imply a design 
effect of approximately 26.34 and an effective sample size of 
approximately 197 out of 5,200 trials. Accordingly, all confirmatory 
inferences were conducted at the trial level using a mixed-effects 
logistic model with crossed random intercepts for participants and 
images (Gelman and Hill, 2007). In doing so, we fit a hierarchical 
logistic mixed-effects model to predict trial-level correctness (1/0) 
using a Bernoulli–logit mixed-effects regression. We employed the 
Bayesian estimation with Hamiltonian Monte Carlo (No-U-Turn 
Sampler) via PyMC v15.4.1, using Bambi v0.15.0 (Capretto et al., 
2022) and ArviZ v0.22.0 (Kumar et al., 2019). We chose 4 chains, 2,000 
warmup (tuning) iterations and 2,000 posterior draws per chain 
(8,000 post-warmup draws total), with target accept = 0.99 and 
random seed = 42 (Betancourt, 2017; Hoffman and Gelman, 2014). 
We used weakly informative Bambi defaults on the logit scale: the 
intercept had a Normal (0, 3.5355) prior and fixed-effect slopes had 
Normal (0, 5.0) priors. For the hierarchical terms, the group-level 
standard deviations were HalfNormal (3.5355), and the random 
intercept deviations for participants and images were Normal (0, σ_
group), with σ_group drawn from the respective HalfNormal prior 
(Capretto et al., 2022). Convergence diagnostics were satisfactory for 
all fixed and group-level parameters (max R^ = 1.01; minimum 
effective sample sizes: bulk = 523, tail = 945). No divergent transitions 
occurred, the fraction of iterations at the tree-depth limit was 

negligible (0.013%), and E-BFMI values were > 0.3 for all chains (≈ 
0.67–0.74), indicating adequate energy mixing (Betancourt, 2017; 
Kumar et al., 2019; Vehtari et al., 2021).

Using posterior draws, we computed pairwise model contrasts on 
the log-odds scale, reported as odds ratios (OR) with 95% credible 
intervals and Holm-adjusted two-sided tail probabilities. With 
FLUX.1-dev as the baseline, participants were substantially less likely 
to classify FLUX.1-dev images correctly compared to Kolors (OR = 
0.05, 95% CI [0.01, 0.17], Holm = 0.0025), Playground v2 (OR = 0.07, 
95% CI [0.01, 0.21], Holm = 0.0045), and FLUX.1-schnell (OR = 0.14, 
95% CI [0.03, 0.46], Holm = 0.034). The difference vs. Playground v2.5 
(OR = 0.17, 95% CI [0.03, 0.58]) did not survive multiplicity 
correction (Holm = 0.07) and should be treated as exploratory. No 
other pairwise comparisons among non-baseline models were 
statistically reliable after correction (all 95% CIs included 1; all Holm 
≥ 0.60). The posterior distribution indicated a small and uncertain 
advantage for AI-generated images (log-odds = 0.54, 95% highest 
density interval (HDI) [−0.19, 1.29]; OR = 1.71, 95% HDI [0.83, 
3.62]). Age showed a robust negative association with accuracy (per 
category: log odds = −0.13, 95% HDI [−0.23, −0.03]); OR = 0.88, 95% 
HDI [0.80, 0.97]). The HDIs of all other covariates included zero, 
suggesting no clear effects. Posterior predictive checks indicated an 
excellent absolute and relative fit. The observed overall accuracy 
(0.637) was virtually identical to the posterior predictive median 
(0.637; 95% CI [0.621, 0.652]), with a symmetric Bayesian p-value of 

FIGURE 3

Distribution of the total number of correct answers per participant.

TABLE 1  Mean accuracy, standard deviation and mean confidence per TTI model (5 images × 104 participants = 520 trials per model).

Model Mean Accuracy Rate Std. Deviation Accuracy Rate Mean Confidence Rating

FLUX.1-dev 29.04% 17.73 65.42

Playground v2.5 68.27% 19.70 66.69

FLUX.1-schnell 74.23% 10.51 69.01

Playground v2 82.69% 12.87 71.24

Kolors 86.73% 6.45 71.17
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approximately 0.998, suggesting there is no discrepancy for this 
statistic. At the image level, the posterior predictive means closely 
tracked the observed accuracies (r ≈ 1.00), indicating that the model 
effectively captures cross-image difficulty (Kumar et al., 2019; Gelman 
et al., 2013).

A calibration analysis was conducted to assess the alignment 
between participants’ subjective confidence and their actual 
recognition performance. The confidence ratings, which were 
provided on a scale from 0 to 100 for each classification decision, were 
normalized and grouped into 10 bins of equal width. For each bin, the 
mean confidence level was plotted against the corresponding empirical 
accuracy level, yielding a calibration curve (Figure  4). This curve 
shows the extent to which participants’ confidence levels reflected 
their actual accuracy. Ideal calibration would align with the diagonal 
reference line, where subjective confidence matches observed accuracy 
perfectly. The observed curve deviates from the ideal, particularly in 
the lower and higher confidence range. This discrepancy can 
be  quantified using the Expected Calibration Error (ECE), which 
summarizes the average absolute difference between confidence and 
accuracy across bins. ECE was 0.142 with 10 bins and 0.146 with 20 
bins, indicating conclusions robust to bin choice and suggesting a 
moderate degree of miscalibration in participants’ 
confidence judgements.

In Figure 5, calibration curves are presented for each of the five 
models separately, with participants’ average confidence being 
compared with their actual classification accuracy across bins. Four of 
the models demonstrate a moderate or good alignment between 
confidence and accuracy in higher confidence ranks, while exhibiting 
underconfidence in lower ranks. FLUX.1-dev, however, demonstrates 
a significant discrepancy, with accuracy diminishing with higher 
confidence, suggesting a substantial degree of overconfidence. This 
assumption is substantiated by an ECE of 0.396 [95% CI, 0.356, 0.440] 
which is notably higher than that of the other models. In contrast, 
Playground v2.5 (ECE = 0.119 [95% CI, 0.085, 0.161]), Playground v2 

(ECE = 0.127 [95% CI, 0.1, 0.161]), and FLUX.1-schnell (ECE = 0.135 
[95% CI, 0.100, 0.171]) demonstrate more consistent calibration. 
Kolors, despite having the highest overall recognition rates, shows 
marginally diminished stability in calibration (ECE = 0.174  
[95% CI, 0.145, 0.206]), particularly within the mid-confidence  
range. Figure  5 with the respective 95% CIs can be found in the 
Supplementary materials. We complemented this with ROC and the 
area under the curve AUC computed from trial-level confidence as the 
score (Fawcett, 2006). Overall, discrimination was modest (AUC = 
0.57, 95% CI [0.55, 0.59]). By image type, the AUC was higher for AI 
images (0.61, [0.59, 0.63]) than for real images (0.53, [0.50, 0.55]). 
Among the TTI models, confidence reliably discriminated between 
correct and incorrect images for Playground v2 (AUC = 0.69), Kolors 
(AUC = 0.67), Playground v2.5 (AUC = 0.65), and FLUX.1-schnell 
(AUC = 0.63). However, FLUX.1-dev showed below-chance 
discrimination (AUC = 0.42, [0.36, 0.48]), indicating overconfidence 
errors within this model.

Lastly, we evaluate the correlation between participants’ perceived 
confidence and their actual recognition performance. To achieve this, 
Brier scores (Brier, 1950; Wilks, 2011) were calculated for various 
demographic and experiential subgroups. The overall Brier score was 
0.259, indicating moderate calibration accuracy across the sample. 
Age-related differences emerged, with the 18–24 age group (Brier = 
0.238) exhibiting better calibration than older groups, particularly the 
55–64 age group (0.317). Regarding gender, male participants 
demonstrated slightly more accurate calibration (0.245) than female 
participants (0.285). Educational background also appeared to play a 
role, with participants who received an intermediate level of education 
demonstrating better calibration (Brier = 0.230; 0.242) than those with 
higher qualifications (Brier = 0.282; 0.279). Those without prior 
experience in AI-based image tools showed better alignment between 
confidence and accuracy (0.228) than those with experience (0.280). 
A similar pattern emerged in AI tool usage: individuals who had never 
used AI tools achieved the lowest Brier score (0.207), compared to 

FIGURE 4

Confidence calibration curve aggregated on all models and participants with 95% CIs.
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those who used them rarely (0.262) or regularly (0.272). Regarding 
professional experience with visual media, those without such a 
background were more accurately calibrated (0.253) than those with 
it (0.296). Finally, an analysis by self-assessed competence revealed 
that participants with lower confidence levels (ratings 2–3) exhibited 
the lowest Brier scores (0.217 and 0.197), while those with very low or 
very high self-assessments showed poorer calibration (e.g., rating 1: 
0.287; rating 7: 0.376).

5.2 Qualitative results

To enable an in-depth qualitative analysis of participants’ 
assessments of images, we examined all free-text comments in which 
participants explained why they believed an image to be AI-generated. 
Although optional explanations were collected for every image, 
regardless of whether it was real or synthetic, only comments referring 
to AI-generated images were included in the analysis. In total, 511 
valid comments were evaluated, ranging from single words to detailed, 
multi-sentence explanations. Following a qualitative review and 
coding process, a total of 576 distinct mentions were extracted, as 
some comments contained multiple identifiable aspects. These 
mentions were then categorized thematically and structured according 
to a hierarchical classification scheme inspired by Borji (2023) and 
Kamali et al. (2025). To explore and visualize the most common terms, 
we generated a word cloud before reviewing (Supplementary material) 
and complemented it with a sunburst chart after reviewing (Figure 6). 
Frequently cited aspects in the word cloud include details, texture, 
lighting, and colors, which suggests that many participants relied on 
general visual cues not specific to the image contents. Other terms, 
such as “heaven,” “mirror,” “blurred,” and “distorted,” indicate attention 
to image-specific anomalies. Mentions of objects such as tables, plants, 
and fire extinguishers show that semantic elements and details in 
certain objects also played a role in the participants’ judgments.

Categorizing 576 coded mentions from participants’ 
explanations revealed a diverse range of visual features referenced 
when classifying images as AI-generated, which complements most 
of the findings in the word cloud. The largest group of references was 
categorized as stylistic artefacts (n = 190), with texture-related 
aspects (e.g., smoothness, irregular surfaces or overly polished 
materials) being the most frequently noted (n = 108), followed by 
color (n = 48) and blur (n = 28). The second-largest group of 
mentions was assigned to semantics and logic (n = 178), including 
observations related to plants (n = 82), interior elements such as 
furniture or decor (n = 50), and representations of water (n = 29) 
and sky (n = 14). This indicates that object placement and contextual 
relationships were commonly referenced in the classification 
process. Mentions categorized under physics (n = 82) primarily 
referred to light and shadow conditions (n = 59) and reflections 
(n = 21), while the geometry category (n = 78) included comments 
on lines (n = 42), distortion (n = 26) and perspective (n = 10). 
Additionally, 48 comments were grouped under the intuition 
category, capturing responses in which participants described a 
general impression or subjective sense that the image was artificial 
without specifying concrete visual elements. Beyond exploratory 
visualizations with existing taxonomies, we found that a large part 
of comments across all models referred more to subtle errors and 
clues, as they focus on stylistic irregularities like to smooth or 
polished materials, oversaturated or picturesque colors or too evenly 
arranged objects. Overall FLUX.1-dev received 35 comments of 
which several comments referred to an uncanny, unnatural feeling 
or a too perfect look: “The lanes look too clean”; “The street looks 
artificial”; “lines that are too perfect”; “The whole style reminds me 
of AI. I cannot explain it exactly”; “everything perfectly aligned”; 
“The image somehow makes me feel uncomfortable and gives me a 
headache.”; “The floor has a strange texture. Parts of the image look 
too perfect in some areas”; “Too perfectly arranged”; It looks 
extremely unnatural”; “Has kind of an uncanny valley vibe.”

FIGURE 5

Confidence calibration curve aggregated on each model.
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On the other side rather obvious and classic errors still prevail in 
the other models, especially in the areas of physics, logic and 
geometry: “The reflections in the window do not reflect a palm tree”; 
“The reflection in the window looks very clear, but at the same time 
you  can still see through the window very clearly”; “The shadow 
angles do not match at all”; “Serious errors in things such as 
proportion, sharpness, shape, etc.”; “Building appears structurally 
flawed.” One response sums up the situation, pointing out that several 
errors only become apparent upon closer inspection.: “It looks 
extremely unnatural. Shapes are distorted, things that should 
be straight are crooked. The longer you look, the more you find.” We 
provide an additional codebook in the Supplementary data with the 
respective categories, subcodes and anchor examples from the data.

6 Discussion

While most previous studies focus on human faces and bodies 
(Frank et al., 2024; Kamali et al., 2025; Lüdemann et al., 2024; Meyer, 
2022; Nightingale and Farid, 2022; Pocol et al., 2024), we focused on 
landscapes, architecture and interior to show that images on the 
internet and especially on social media may no longer be identified 
with certainty as authentic or fake. Regarding RQ1, our findings align 
with several previous studies, revealing an overall recognition 

accuracy of 63.7%. Notably, one model (FLUX.1-dev) emerged as an 
outlier which was confirmed by the mixed-effects analysis. Overall, 
participants performed significantly above chance level, 
demonstrating a moderate reliable ability to distinguish between real 
and AI-generated images. Compared to other studies, we used more 
sophisticated, state-of-the-art models that are less error-prone than 
models like DALL-E2 or older Stable Diffusion models, which were 
mostly employed in previous studies. Still, a similar outcome in terms 
of overall accuracy was achieved, which could suggest that people are 
becoming better or more careful at detecting anomalies in 
AI-generated images. Directly comparing the accuracy and respective 
confidence rating per model (Table  1) shows that, except for 
FLUX.1-dev, participants estimated their average confidence to 
be lower than their actual accuracy. Our findings in the confidence 
calibration curves (Figure 4) further support the idea of increased 
caution. The overall accuracy in the lower reported confidence 
brackets (0–0.6) fluctuated between 53 and 60%, showing that 
participants may underestimate their abilities. This is clearer when 
comparing the models (Figure 5), where underconfidence is shown 
up to the 0.9 bracket for Playground v2 and Kolors. In the higher 
confidence brackets (0.7–1.0), it can be  seen that, except for 
FLUX.1-dev, accuracy and confidence almost align. This reveals that, 
most of the time, participants were right when they were confident. 
In the case of FLUX.1-dev, however, the opposite is true. The higher 

FIGURE 6

Sunburst diagram on qualitative analysis of cues.

https://doi.org/10.3389/frai.2025.1707336
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Högemann et al.� 10.3389/frai.2025.1707336

Frontiers in Artificial Intelligence 11 frontiersin.org

the confidence, the worse the accuracy, with a discrepancy of almost 
0.8  in the highest bracket and an ECE of 0.396. The findings are 
further supported by the ROC/AUC. This suggests that this particular 
model opens avenues for epistemic vulnerability. Findings regarding 
the Brier score show that the calibration between confidence and 
actual accuracy is better for groups of people who tend to have less 
experience in using AI, image processing or working with visual 
media than for the group with more experience. These findings 
suggest that individuals with more experience in AI or visual media 
may exhibit an overconfidence bias when evaluating AI-generated 
imagery, leading to a weaker alignment between their perceived 
certainty and actual performance. In contrast, less experienced 
participants appear to demonstrate more cautious judgment, 
resulting in a better-calibrated relationship between confidence and 
correctness. The qualitative analysis confirms that, when identifying 
AI-generated images, participants frequently referred to well-
documented visual artifacts, such as issues with texture, lighting, and 
geometry. However, models like FLUX.1-dev demonstrate that some 
of these indicators are becoming less reliable. Overall, images of 
FLUX.1-dev received only 35 comments in which participants rarely 
mentioned classic flaws related to shadows, perspective, or reflections. 
This observation aligns with recent advancements in image 
generation technologies, which have minimized many previously 
common artifacts. They focused either on specific objects in the 
images or mentioned that some aspects seemed too perfect to be real. 
While classic errors prevailed in several images of other models, they 
got more subtle, which suggests that the way we  perceive 
AI-generated images is shifting, with people now relying more on 
their instincts and finding images that seem too perfect uncanny. 
These patterns align with socio-technical accounts of the impact of 
AI on human interpretive agency (Di Plinio, 2025). Sustained 
exposure to AI-mediated environments can gradually shift decision-
making heuristics away from the detection of discrete artefacts and 
towards uncanny or ‘too-perfect’ regularities, thereby reshaping 
perceived agency (Di Plinio, 2025). These developments underscore 
the increasing difficulty of detecting synthetic content and highlight 
the need for ongoing research aligned with the rapidly evolving state 
of the art. Overall, the analysis of confidence scores suggests that 
participants focused on identifying specific artifacts or relied on 
intuition indicating that an image was AI-generated, which were less 
prevalent in FLUX.1-dev and consequently might felt too safe. This 
could lead to rather harmless consequences when AI-generated 
images are used to draw attention on websites and social media or for 
unfair advertising of non-existent landscapes or buildings. A greater 
danger could come from the use of harmful images to manipulate 
groups of people, especially in politics, including spreading fear.

The demographic analysis shows that participants in higher age 
brackets demonstrate a statistically significant worse accuracy 
performance, which supports similar findings by Lüdemann et al. 
(2024). This indicates a need for training or intervention for 
particularly prone populations to minimize negative effects. On the 
basis of descriptive stats male participants, individuals with higher 
formal education, those with experience in AI-based image tools, and 
those who rated their skills as higher on a 7-point scale all 
demonstrated higher recognition accuracy on average. Overall, 
we therefore recommend further research to identify particularly 
vulnerable user groups in the context of AI-generated content. 
Tailored training and educational materials could strengthen these 

users’ detection capabilities. Evidence from Nightingale and Farid 
(2022) shows that training can significantly improve classification 
accuracy. Furthermore, previous studies have found a link between 
media literacy and susceptibility to misinformation, emphasizing the 
importance of media education in reducing risks (Frank et al., 2024; 
Hwang et al., 2021; Jeong et al., 2012). With a view to Brier scores and 
self-assessment, our findings suggest that even participants with 
higher expertise might feel too confident and struggle to reliably 
detect AI-generated images, indicating that training efforts and 
media literacy must be seen as a collective cultural task, not only an 
individual competence.

Although progress is being made in the field of automated 
AI-generated image detection (Konstantinidou et al., 2025), with 
good results being achieved in test environments, these approaches 
are not yet suitable for application to online content (Corvi et al., 
2023; Karageorgiou et  al., 2024). While these technical solutions 
might play an important role in detecting AI-generated images, 
we argue that a complementary, socio-technical approach is essential. 
Specifically, human-centered strategies such as media literacy 
programs, targeted training, and awareness campaigns can help 
individuals better identify synthetic content and reduce susceptibility 
to deception. In addition to technical and educational measures, 
regulatory frameworks are beginning to address the challenges posed 
by synthetic media. The EU AI Act, for example, includes provisions 
that require clear labeling of AI-generated content, including images, 
to ensure transparency for end-users (European Union, 2024). 
Complementing this, researchers have called for the establishment of 
ethical guidelines for the development and distribution of TTI 
models (Al-Kfairy et  al., 2024; Ferrara, 2024; Nightingale and 
Farid, 2022).

We present a compilation of visual anomalies and inconsistencies 
that participants identified in their free-text responses. 
We categorized these using a content analysis approach (Zhang and 
Wildemuth, 2009) and established classification frameworks by Borji 
(2023) and Kamali et al. (2025). Our analysis shows that participants 
most frequently referenced stylistic artifacts and semantic or logical 
inconsistencies. Next were physical violations and geometric errors. 
Least frequently referenced were intuitive or gut-feeling based 
judgments. An important insight from our data is that participants 
most often explicitly referenced observable flaws or uncertainties 
within the images rather than relying on general assumptions, 
indicating a relatively high level of critical engagement with the 
visual content. However, our results also suggest that traditional 
categories become increasingly less applicable, especially in the case 
of more sophisticated models, such as FLUX.1-dev. As image 
generation technology continues to advance rapidly, previously well-
established taxonomies may no longer capture the full range of 
current model behaviors. In this context, continuously tested and 
refined taxonomies and classification frameworks may serve as 
valuable foundations for the design of aforementioned educational 
interventions, enabling structured guidance on typical image flaws 
and cognitive detection cues. Therefore, given our finding that 
higher AI and media literacy is associated with inflated confidence 
at a given level of accuracy, as well as the practical reality of rapidly 
evolving generative models where yesterday’s artifacts quickly 
become obsolete, we conclude that training and UI should emphasize 
calibration feedback, adversarial examples, and uncertainty 
elicitation rather than categorical accuracy alone.
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Limitations of this study include the sample size of participants and 
unequal distribution in demographic data, as the sample is a German 
speaking convenience sample, which limits generalizability and the 
found effects should be treated exploratory on broader population. A 
further limitation of the sample is that we showed five images per model. 
However, we were still able to show that there is statistical significance in 
the comparison of accuracy between the respective models. Nevertheless, 
we would like to point out that aspects relating to epistemic vulnerability 
in the case of FLUX.1-dev should be considered exploratory. It cannot 
be completely ruled out that random effects within the sample played a 
role in the case of the five images. Furthermore, we did not include paid 
models but rather focused on open-source models with APIs that are 
accessible to everyone and could be utilized without major effort even 
on local devices. Therefore, models such as Imagen 4 or the TTI model 
of GPT-4o were excluded despite their superior performance evaluations 
on artificialanalysis.ai. Another limitation of this study is that participants 
were given a clear task and unlimited time. In real-life scenarios, such as 
visiting a website or scrolling through social media, the accuracy rate 
may be lower because people pay less attention to potential errors in 
images. Cooke et  al. (2024) addressed this factor in their study by 
developing a design that emulated online platforms and utilized a variety 
of stimuli. Similarly demonstrated by Kamali et al. (2025), implementing 
a time restraint results in lower accuracy scores. This design could 
be tested in future research.

7 Conclusion

This study examines individuals’ ability to detect AI-generated 
images in photorealistic landscapes, architecture, and interiors. 
While participants achieved moderate overall recognition accuracy, 
substantial differences were observed among models, with certain 
advanced systems, such as FLUX.1-dev, yielding significantly lower 
detection rates. Qualitative analysis further revealed that 
participants often relied on stylistic artifacts and semantic 
inconsistencies to make judgments. Though these cues might be less 
reliable due to recent model advancements and more subtle and 
gut-feeling heuristics could become more relevant. Although 
technical detection methods will continue to be vital for identifying 
synthetic content, we argue that a complementary socio-technical 
approach is also necessary. Specifically, human-centered strategies, 
such as media literacy programs, targeted training, and awareness 
campaigns, can empower individuals to recognize AI-generated 
imagery more effectively and reduce their susceptibility to 
deception. Well-defined, empirically tested taxonomies might 
provide a basis for these educational efforts. In parallel, regulatory 
frameworks are beginning to respond to the societal challenges 
posed by synthetic media. The EU AI Act already mandates the 
labeling of AI-generated content to ensure transparency and 
minimize risk of disinformation. Beyond compliance, there is a 
need for ethical guidelines to govern the development and 
distribution of TTI models in the future to maintain a balance 
between development and progress while reducing negative aspects.

As TTI models continue to evolve, the boundaries between reality 
and fiction online are blurring. The flood of hyper realistic, 
AI-generated visuals threatens to erode trust in digital imagery and 
raises pressing questions about the future of human-authored content. 

If we  fail to act, we  must ask: will genuine visual content on the 
internet gradually cease to exist?
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