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anymore: a mixed-methods
approach on human perception
of Al-generated images

Malte Ho6gemann'?*, Jonas Betke! and Oliver Thomas®?

tInformation Management and Business Informatics, Universitat Osnabruck, Osnabrick, Germany,
2Smart Enterprise Engineering, Deutsches Forschungszentrum fur Kunstliche Intelligenz GmbH
Standort Niedersachsen, Osnabruck, Germany

The rapid development of text-to-image (TTI) models has made it increasingly
difficult to distinguish between Al-generated and authentic photographs. This
study explores human perception and detection capabilities regarding Al-generated
images of landscapes, architecture, and interiors using a mixed-methods approach.
A total of 104 participants took part in an online survey, classifying 50 images (25
real, 25 Al-generated) from five leading TTI models. Alongside their classifications,
participants rated their level of confidence and provided optional justifications for
their choices. A quantitative analysis revealed that participants correctly identified
Al-generated images in 63.7% of cases overall and notably in only 29% of cases
when FLUX.1-dev was used. The hierarchical model estimated lower odds of
correct detection with increasing age, while education, gender, Al-tool use,
media work, and editing experience showed no significant effects. Respective
confidence scores highlight calibration issues and suggest potential overconfidence
in more experienced groups. The qualitative analysis of 511 textual justifications
uncovered several classic visual flaws such as geometric inconsistencies, unrealistic
lighting, and semantic anomalies, while simultaneously showing a shift toward
tacit judgments. Participants often characterized newer outputs as 'too perfect’
or faintly uncanny. Therefore, this study emphasizes the need for visual literacy
and regulatory mechanisms, especially in contexts susceptible to disinformation.
The findings provide insights into vulnerable groups and raise awareness of the
social risks posed by hyper-realistic synthetic media.

KEYWORDS

generative Al, disinformation, deepfakes, synthetic images, authenticity, photorealism,
Al and society

1 Introduction

The rapid advancement of artificial intelligence (AI) has led to significant progress in the
field of image generation. Recent text-to-image (TTI) models, including Generative
Adversarial Networks (GANSs) and diffusion models, have achieved a level of photorealism in
their output that makes it increasingly difficult to differentiate from authentic photographs
(Meyer, 2022). Whilst these developments offer novel possibilities across a variety of domains,
including design, media, advertising and entertainment, they also give rise to significant
ethical and societal concerns. Recent studies have demonstrated that AI-generated images are
increasingly being used for cultural, political, and societal misuse with implications for trust
in media and democracy, including the intentional spread of disinformation, content
manipulation, and character defamation (Ferrara, 2024; Marchal et al., 2024; Nightingale and
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Farid, 2022). A frequently cited example is that of a manipulated
image depicting an explosion near the Pentagon, which was
distributed via verified social media accounts and led to short-term
fluctuations in financial markets (O’Sullivan and Passantino, 2023).
Other viral examples of Al-generated images include Pope Francis
wearing a puffer jacket by Balenciaga, Donald Trump getting arrested
by police, and Vladimir Putin behind prison bars (Kamali et al., 2025;
Lajka and Marcelo, 2023). Meanwhile, this deepfake phenomenon has
also spread to video and audio media. In 2022, a deepfake video
emerged of Volodymyr Zelenskyy, in which he appeared to call on
Ukrainian troops to lay down their arms and stop fighting Russia (Roy
and Roy, 2025). In January 2024, ahead of the November United States
presidential election, it was estimated that tens of thousands of
Democratic Party voters received Al-generated calls in Biden’s voice
instructing them not to vote in the upcoming New Hampshire
primaries (Barrington et al., 2025).

Despite the efforts of major technology firms to mitigate the
dissemination of such content, Al-generated imagery continues to pose
serious risks, particularly due to its scalability, virality, and the growing
difficulty of distinguishing real from synthetic media (Wendling, 2024).
On another note, this issue is further underscored by the “Dead Internet
Theory,” which suggests that an increasing share of online content,
especially on social media platforms, is no longer generated by humans
but by AI (Walter, 2024). Emerging phenomena, such as Al influencers,
who autonomously produce and tailor content to specific audiences, are
accelerating this trend. Consequently, platforms are becoming saturated
with machine-generated content, thereby undermining the authenticity
of digital interactions and eroding trust in visual information (Walter,
2024). Muzumdar et al. (2025) also demonstrate, within the framework
of the “Dead Internet Theory; that AI can be utilized for engagement
and so-called content farming. It can be used to produce clickbait
articles, auto-generated blogs and to flood social media feeds, which
further exacerbate concerns about authenticity and quality.

These developments highlight the necessity to analyze the
challenges humans face in differentiating between authentic images
and Al-generated images. With the development of more sophisticated
TTI models, human perception and the cognitive ability to distinguish
between real and synthetic images are gaining further scientific
relevance. While previous studies focus on faces and full body images
(Cooke et al., 2024; Frank et al., 2024; Kamali et al., 2025; Liidemann
et al., 2024; Meyer, 2022; Nightingale and Farid, 2022; Pocol et al.,
2024), we explicitly focus on images without people. As demonstrated
in the research by Kamali et al. (2024), there is a high degree of
specificity in the elements that comprise Al-generated images of
people. Therefore, this study explores how realistic and convincing
synthetic content has become in everyday visual domains, which are
increasingly used in digital communication, marketing, and media.
To this end, we pose the following question:

RQ1: To what extent can individuals distinguish between real and
Al-generated images, particularly in the categories of landscapes,
architecture, and interiors and how well are their confidence
judgments calibrated?

We aim to identify the demographic and visual factors that
influence an individual’s ability to recognize Al-generated images.
Understanding which groups are particularly susceptible to synthetic
media, such as deepfakes, is crucial for developing targeted
technical, countermeasures.

educational, and policy-driven

Simultaneously, analyzing which visual cues are frequently associated
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with Al-generated imagery can inform the design of future detection
strategies and media literacy programs. Therefore, we formulate:

RQ2: How do specific TTI models and selected demographics
relate to detection and miscalibration?

In order to address these questions, a two-stage experimental design
was employed. A quantitative online survey was conducted to assess
participants’ ability to classify real vs. Al-generated images and their
individual confidence level. Open questions on the reasons for the image
classification provide insights into the visual cues and model-specific
artefacts that guided the participants’ decisions. This study goes beyond
the aforementioned research and aims to determine not only how well
humans can distinguish AI-generated images from real ones, but also
whether there are calibration errors in the area of individual confidence
judgments, in order to derive potential epistemic vulnerabilities from
this. Therefore, the objective of the present study is twofold: firstly, to
enhance our understanding of human perception in the context of
synthetic media, and secondly, to provide practical strategies for raising
public awareness about the risks associated with AI-generated images.

2 Text-to-image models: capabilities,
limitations, and ethical concerns

TTI models represent a key branch of generative Al aimed at
transforming natural language descriptions into coherent visual
content. These models have gained significant momentum across
fields such as design, advertising, and entertainment (Bie et al., 2024;
Grewal et al., 2025; Hartmann et al., 2025). Their appeal lies in their
ability to produce visually compelling, often photorealistic images
from abstract textual prompts enhancing creativity, accelerating
content production, and enabling synthetic data generation (Bie et al.,
2024). Technically, TTI models are based on deep neural architectures
such as Generative Adversarial Networks (GANs), diffusion models,
and transformer-based systems. GANS, first introduced by Goodfellow
etal. (2014), have demonstrated remarkable capabilities in generating
high-resolution, photorealistic images, particularly of human faces.
However, they are often limited by issues such as training instability,
mode collapse and a lack of sample diversity, which can hinder their
generalizability (Salimans et al., 2016). Although notable extensions
such as StyleGAN2 (Karras et al., 2019) have addressed some of these
limitations, GAN-based TTI approaches are increasingly being
outperformed in terms of semantic alignment. Diffusion models have
emerged as the dominant paradigm for image generation (Li X. et al.,
2024). These models, including DALL-E 2 (Ramesh et al., 2022), Stable
Diffusion (Rombach et al., 2022) and Imagen 2 (Saharia et al., 2022),
operate via a gradual denoising process. This involves transforming
random noise into coherent images over multiple iterations. This
iterative refinement enables superior alignment with textual prompts
and visual consistency. Nevertheless, diffusion models are
computationally intensive and pose challenges for deployment in real-
time applications or on edge devices (Shen et al., 2025). Transformer-
based models, inspired by breakthroughs in natural language
processing, aim to improve compositional reasoning and contextual
understanding in image generation. Google’s PARTT (Yu et al., 2022)
and Muse (Chang et al., 2023) are examples of autoregressive and
masked transformer architectures.

Despite these advances, the images generated with TTI models
exhibit persistent weaknesses, which can help to identify AI-generated
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images. Common failure patterns include geometrical distortions,
violations of physical laws and misinterpretations of complex spatial
or semantic relations as well as incorrect or unreadable text rendering
(Borji, 2023; Kamali et al., 2025). Moreover, synthetic humans often
display anatomical abnormalities, such as distorted hands or
inconsistent facial symmetry, highlighting unresolved challenges in
fine-grained generation (Borji, 2023; Kamali et al., 2025). However,
recent advances in TTI models have already minimized some of these
common errors. For example, OpenAT’s 40 image model produces
coherent text and made advancements in photorealism with correct
shadows and reflections (OpenAl, 2025). Black Forest Labs’ recent
image model FLUX.1 Kontext introduces better character consistency
and the possibility to modify images with simple text instructions
allowing to tell stories with the same character in different settings
(Batifol et al., 2025). While technical limitations are diminishing in
newer models, ethical concerns in TTI models are rising. Their ability
to create highly realistic but entirely fictional imagery enables misuse
in the form of synthetic disinformation and deepfakes. Such content
can be weaponized to spread false narratives, manipulate public
opinion, or impersonate individuals in political, journalistic, or
commercial contexts (Ferrara, 2024; Marchal et al., 2024). Cases of
Al-generated images falsely depicting real-world events such as
explosions or fabricated identities demonstrate how synthetic content
can undermine public trust and even impact financial markets
(Kamali et al., 2025; O’Sullivan and Passantino, 2023). Furthermore,
there is a growing risk that social media platforms will be flooded with
Al-generated imagery. This development could blur the boundaries
between authentic and synthetic content, undermining trust in visual
media and contributing to a decline in the perceived credibility of
genuine information and content (Walter, 2024).

3 Related works

Several recent studies have examined the human ability to
distinguish between AI-generated and real images, with a particular
focus on facial or person-related content. For example, Kamali et al.
(2025) reported an overall recognition accuracy of 76% for
synthetic photographs and 74% for authentic photographs in a
large-scale study comprising 749,828 observations of 50,444
participants. Their dataset included portraits, full-figure shots and
group scenes generated by models such as Midjourney, Stable
Diffusion and Adobe Firefly. However, no demographic data on the
participants was collected, and thus, no conclusions about
potentially vulnerable groups could be drawn. Nightingale and
Farid (2022) conducted a series of experiments with 315 and 219
participants, asking them to classify Al-generated and real human
faces. In the first experiment, participants achieved an accuracy rate
of 48.2% without prior training; this increased to 59% after
exposure to training material that highlighted flaws in AI-generated
images, which demonstrated that awareness can be cultivated
through a targeted learning strategy. Frank et al. (2024) extended
this research to a broader media context in a transnational study
involving 3,002 participants and multiple content types. For images,
the average detection accuracy fell slightly below chance level
(50%). Pocol et al. (2024) conducted a more targeted study in which
260 participants were tested on their ability to classify ten real and
ten Al-generated images (produced by Stable Diffusion and
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DALL-E 2). The overall accuracy achieved was 61%. Participants
were more accurate in identifying real images (68.5%) than
synthetic images (52.6%), and no statistically significant differences
were found across gender or age groups. Cooke et al. (2024)
conducted a study with 1,276 participants and widened the focus
from images to audio, videos and audio-visual media types. In their
sample, the accuracy was 51% overall and 49.4% on just image-
based content. The findings indicated that the level of accuracy was
found to be lower for images of human faces (46.6%) in comparison
to landscape images (54.4%). In contrast, another study by Lu et al.
(2023) with 50 participants report an average accuracy rate of 64.33
and 66.37% for images of men and women but an accuracy rate of
56.50% for landscapes and 50.83% for other objects. Despite the
differentiation in these two studies, AI-generated images beyond
the domain of human faces, such as landscapes, architecture and
objects, remain comparatively under-explored. Given their
potential role in disinformation campaigns, commercial
manipulation, and visual persuasion, this non-human image types
warrant greater attention in future studies on the perceptual and

ethical implications of synthetic media.

4 Methodology

To address the research questions of this study, a mixed-methods
approach was adopted, integrating both quantitative and qualitative
methods. This combination increases the validity of findings through
methodological triangulation and offsets the limitations inherent in
each individual approach (Bryman, 2006). In this context, a mixed-
methods design is particularly suitable, as neither purely qualitative
nor purely quantitative methods alone can adequately capture the
complexity of the research questions. Quantitative analysis is essential
for evaluating detection performance, confidence calibration, and
statistical relationships with demographic variables. However, the
qualitative component provides deeper insights into the visual cues
that participants relied on to identify Al-generated images. This dual
approach ensures that measurable patterns and subjective reasoning
processes are both taken into account.

In April 2025, 104 German-speaking adults completed an online
survey. Participants were recruited via professional networks, social
media, email distribution lists and newsletters in research networks.
Inclusion required age >18 and German language proficiency. Each
person saw 50 images in random order: 25 were real photos and 25
were Al-generated (five images from each of five models). For every
image, participants chose real or Al-generated and rated their
confidence from 0 (not confident at all) to 100 (very confident).
Participants could optionally provide a textual explanation for why
they believe an image is AI-generated. Before the task, we collected
demographic information such as age, gender, education, experience
with Al-based image tools, frequency of AI usage, and self-assessed
competence in detecting Al-generated content. Participants were not
informed about the exact distribution of real and AI generated images.
Participation was voluntary, consent was obtained on the landing
page, and data were handled under GDPR. The structure of the survey
is provided in the Supplementary materials.

Quantitatively, we used statistical methods that consider each
decision and account for differences between people and images.
Rather than averaging everything together, this model estimates how
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recognition accuracy varies by model and by participant
characteristics. We evaluated discrimination, or how well confidence
scores separate correct from incorrect judgments, and we evaluated
calibration, or how well confidence matches reality, Qualitatively,
we coded the written explanations to identify the visual cues people
relied on, such as geometry, lighting, and textures.

4.1 Model selection

The TTI models used in the experiments were selected from the
GenAl Arena, a comprehensive benchmarking framework designed
to evaluate the latest image generation models. The GenAl Arena was
selected because of its systematic methodology, transparent evaluation
criteria and regular updates, which ensure the inclusion of the most
recent and high performing models (Jiang et al., 2024). The framework
combines automated performance assessments using standardized
benchmark datasets with human evaluations, resulting in a robust and
multidimensional evaluation of models. Key evaluation dimensions
include image quality, semantic coherence and computational
efficiency, providing a nuanced view of model performance in various
contexts. A core criterion for inclusion in the GenAl Arena is public
accessibility. Only openly available models are admitted, supporting
the reproducibility of research findings and transparent model
comparisons. In addition to meeting these requirements, eligible
models must demonstrate strong performance across core quality
benchmarks and be compatible with the GenAlI Arena’s evaluation
protocols (Jiang et al., 2024).

In contrast to alternative platforms, such as artificialanalysis.ai,
which includes both open-source and closed-source models, but lacks
methodological transparency, the GenAl Arena offers a clearly
defined, reproducible framework. Unlike older benchmarks, such as
the HEIM Framework (Lee et al., 2023), the GenAl Arena provides a
more up-to-date basis for selecting and comparing top-performing
TTI models. By providing this consistent comparison environment
and emphasizing transparency, the GenAI Arena offers a scientifically
validated framework for selecting models for this study (Jiang et al.,
2024; TIGER-Lab, 2025).

The top five selected models based on ranking are:

1 FLUX.1-dev (Black Forest Labs, 2025)

2 Playground v2.5 (Li D. et al., 2024)

3 FLUX.1-schnell (Black Forest Labs, 2025)
4 Playground v2 (Li et al., 2023)

5 Kolors (Kolors Team, 2025)

4.2 Image generation

Image generation was guided by structured prompts based on Liu
and Chilton (2022). Prompts followed the format “A [SUBJECT] in the
[STYLE]” with the goal of producing photorealistic images of
landscapes, buildings, and interiors. Styles such as “high-resolution
photography” and “unreal engine” were selected for their effectiveness
in generating realistic outputs. Metadata-like suffixes (e.g., “IMG_87234.
CR2”) were appended to some prompts to imitate filenames from real
digital cameras. No images containing text were produced due to
limitations in the selected models’ capabilities at the time of image
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generation. After generating images, we curated the 25 images used in
this study. The 25 authentic photographs were sourced from Unsplash
(2025) (unsplash.com) and Pixabay (2025) (pixabay.com), platforms
providing royalty-free images. All selected images were published under
an open license, which permits free use for scientific and academic
purposes without the need for additional permission or attributions.
Figure 1 shows a selection of the chosen images.

4.3 Quantitative analysis

Subsequent analysis includes descriptive statistics, overall and
per-model classification accuracy, and comparison of detection rates
between models. To account for clustering, we first quantified the
intraclass correlation (ICC) at participant and image levels, deriving
a corresponding design effect to quantify the loss of independent
information. This assessment revealed significant stimulus-level
clustering, prompting hierarchical trial-level analysis. Consequently,
all confirmatory inferences were based on a mixed-effects logistic
regression model with crossed random intercepts for participants and
images and fixed effects for image type, generator and prespecified
covariates. This specification preserves trial-level information and
yields valid standard errors under the crossed structure (Gelman and
Hill, 2007). Furthermore, the Brier score (Brier, 1950) was used to
evaluate the accuracy of the confidence-weighted decisions made by
the participants. The score ranges from 0 (perfect calibration) to 1
(maximum miscalibration), with lower values indicating better
alignment between confidence and correctness. As a scoring rule for
binary outcomes, it quantifies the mean squared difference between
predicted probabilities and actual outcomes and is widely used in
probabilistic classification tasks (Wilks, 2011). To assess the
alignment between participants’ confidence levels and their actual
performance, confidence calibration curves were plotted. These
curves visualize the relationship between predicted confidence and
observed accuracy, providing insight into systematic over- or
underconfidence (Niculescu-Mizil and Caruana, 2005; Guo et al.,
2017). Receiver operating characteristic (ROC) analysis with area
under the curve (AUC) was also used to further support this
(Fawcett, 2006).

4.4 Qualitative analysis

The qualitative analysis focuses on participants’ optional
explanations for why they classified an image as Al-generated. To
support the qualitative interpretation of the free-text responses, a
word cloud was generated to highlight the most frequently mentioned
terms as an exploratory tool (McNaught and Lam, 2010). Similar
approaches have been adopted in related studies, including those by
Lago etal. (2022) and Pocol et al. (2024). All responses are categorized
according to common types of errors and visual cues based on the
frameworks of Kamali et al. (2024, 2025) and Borji (2023).
Categories include:

o Geometry: Unrealistic proportions, perspective errors, or
dysfunctional object layouts.

o Stylistic Artifacts: Blurred textures, plastic surfaces, or
digital aberrations.
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Kolors

FIGURE 1

Selection of images shown in the survey ("Authentic photograph”, gray steel 3 door refrigerator near modular kitchen by Naomi Hébert, reproduced
with permission from Unsplash, https://unsplash.com/photos/gray-steel-3-door-refrigerator-near-modular-kitchen-MPObgaS_d1c. FLUX.1-dev image
created using generative text-to-image Al under CC-BY-NC license, https://huggingface.co/black-forest-labs/FLUX.1-dev. FLUX.1-schnell image
created using generative text-to-image Al licensed under Apache 2.0, https://huggingface.co/black-forest-labs/FLUX.1-schnell. Kolors image created
using generative text-to-image Al licensed under Apache 2.0, https://huggingface.co/Kwai-Kolors/Kolors. Playground v2 image created using
generative text-to-image Al; Playground v2 is licensed under the Playground v2 Community License, https://huggingface.co/playgroundai/
playground-v2-1024px-aesthetic. Playground v2.5 image created using generative text-to-image Al; Playground v2.5 is licensed under the Playground
v.2.5 Community License, https://huggingface.co/playgroundai/playground-v2.5-1024px-aesthetic).

7 PlayGround v2

o Physics: Implausible shadows, gravity-defying elements, or
incorrect reflections.

« Semantics and Logic: Contextual implausible elements, illogical
spatial reasoning or scene composition.

« Intuition: Gut feelings or unarticulated reasoning.

The frequency distribution of categories was visualized using a
pie chart, in line with standard qualitative content analysis practices
(Zhang and Wildemuth, 2009). This visualization enables a clearer
understanding of which visual cues participants most frequently
relied on when identifying Al-generated content, offering insights
into common reasoning patterns. The five categories were used as
deductive classes, and respective mentions were assigned to them
according to the subclasses. Two coders independently coded a
stratified subset of the data (approximately 20% or 100 comments).
After the initial double-coding pass, the coders met to compare their
decisions, resolve disagreements, and refine the definitions and
examples of the codes. Overall, coding was straightforward within
the deductive categories. The main source of ambiguity arose from
longer comments that warranted multiple categories. Inter-coder
reliability on this subset was quantified using Krippendorff’s alpha

Frontiers in Artificial Intelligence

(Krippendorff, 2018) yielding an alpha value of 0.8601, indicating
substantial agreement. After reaching a consensus on the scheme and
procedures, the two coders divided and single-coded the
remaining comments.

5 Results

A total of 104 participants took part in the online study and fully
completed it. 74 aborted or incomplete questionnaires were not
included. This led to a total of 5,200 observations of Al-generated
images and real images. The largest age group was 25-34 years old
(n = 34), followed by 18-24-year-olds (n = 31). 18 participants were
aged 35-44 years, while 11 and 10 participants were in the 45-54 and
55-64 age brackets, respectively. A total of 67 people who identify as
male and 37 who identify as female took part in the survey. No
respondents selected the ‘diverse’ option or chose to withhold their
gender. In terms of educational background, most participants had
advanced secondary or higher qualifications. Specifically, 48
respondents reported having an equivalent to the High school
diploma, 29 held a bachelor’s degree and 15 held a master’s degree.
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One participant indicated having a lower secondary school certificate,
and 11 had an intermediate secondary school certificate. No
participants reported having completed a doctorate or having no
formal education. When asked about their prior experience with
Al-based image tools, 62 participants stated that they had experience,
while 42 reported having none. Regarding the usage of Al tools usage
patterns varied: 44 participants reported regular use, 46 used such
tools occasionally, and 14 did not use Al-based tools at all. Only 15
participants indicated that they work professionally or privately with
visual media while 89 respondents reported no regular engagement
in this area. Finally, participants were asked to self-assess their ability
to distinguish between real and Al-generated images using a 7-point
Likert scale. Most responses were clustered around 4 and 5, resulting
in an average confidence rating of 4.03 (SD=1.27). Fewer
participants rated their ability as either very high or very low
(Figure 2).

5.1 Quantitative results

Participants correctly identified an average of 17 Al-generated
images, with a standard deviation of approximately 3. The minimum
number of correct classifications was six, while the maximum was 23.
The 25th and 75th percentiles were 15.75 and 19 respectively,
suggesting that the majority of participants performed within this
range. In contrast, the results for authentic photographs show slightly
lower average recognition performance. The mean number of correct
identifications was 14.78 and a standard deviation of 3.27. Performance
ranged from six to 24 correct responses, with a 25th percentile of 13
and a 75th percentile of 17. Considering combined recognition
performance (the sum of correctly identified real and Al-generated
images) the mean total score was 31.83, with a standard deviation of
3.97. The range extended from a minimum of 19 to a maximum of 41
correct identifications. The 25th percentile was 29.75 and the 75th
percentile was 34, indicating that most participants clustered around

10.3389/frai.2025.1707336

this central range with one significant outlier (Figure 3). Based on
descriptive statistics it can be seen that younger participants tended to
achieve higher recognition scores.: Participants in the 18-24 and
25-34 age categories attained average scores of 32.55 and 32.94,
respectively, while those in the 55-64 age group demonstrated lower
average performance (M =29.40). With regard to gender, male
participants achieved a higher mean performance than their female
counterparts (M = 32.43 vs. M = 30.73). Participants in possession of
a master’s degree achieved the highest average score (M = 32.60),
followed by those with a bachelor’s degree (M =32.10), while
individuals with lower secondary education performed lowest
(M =30.00). Experience with Al-based image tools has also
demonstrated a positive tendency. Participants who reported such
experiences demonstrated a higher mean performance (M = 32.44) in
comparison to those who did not (M = 30.93). Regular and occasional
users demonstrated higher average scores (M =32.11-32.26)
compared to those who reported never using such tools (M = 29.50).
Participants with professional experience in visual media showed
marginally higher performance (M =32.20) compared to those
without (M = 31.76). While not statistically significant, a positive
trend was observed between participants’ self-assessed competence in
recognizing Al-generated content and their actual performance. The
mean recognition scores exhibited a gradual increase from 27.25
among those who rated themselves as least confident to 34.00 among
those who rated themselves as most confident.

Table 1 presents the mean recognition rate, standard deviation,
and mean confidence rating for each of the five TTI models included
in the study. The findings indicate considerable heterogeneity across
models: while images generated by the Kolors model were correctly
identified in 86.73% of cases on average, those produced by
FLUX.1-dev achieved a substantially lower accuracy rate of 29.04%.
In contrast, the confidence rating of 65.42 for this model is only
marginally lower than that of the other models.

Prior to testing, we estimated the ICC, which yielded the following
results: Participant = 0.007 and Image = 0.243, based on a one-way
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Self-assessment in the recognition of Al-generated images.
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TABLE 1 Mean accuracy, standard deviation and mean confidence per TTI model (5 images x 104 participants = 520 trials per model).

Model Mean Accuracy Rate Std. Deviation Accuracy Rate Mean Confidence Rating
FLUX.1-dev 29.04% 17.73 65.42
Playground v2.5 68.27% 19.70 66.69
FLUX.1-schnell 74.23% 1051 69.01
Playground v2 82.69% 12.87 71.24
Kolors 86.73% 6.45 7117

random-effects decomposition. Given the study design (50 trials per
participant and 104 judgments per image), these values imply a design
effect of approximately 26.34 and an effective sample size of
approximately 197 out of 5,200 trials. Accordingly, all confirmatory
inferences were conducted at the trial level using a mixed-effects
logistic model with crossed random intercepts for participants and
images (Gelman and Hill, 2007). In doing so, we fit a hierarchical
logistic mixed-effects model to predict trial-level correctness (1/0)
using a Bernoulli-logit mixed-effects regression. We employed the
Bayesian estimation with Hamiltonian Monte Carlo (No-U-Turn
Sampler) via PyMC v15.4.1, using Bambi v0.15.0 (Capretto et al.,
2022) and ArviZ v0.22.0 (Kumar et al., 2019). We chose 4 chains, 2,000
warmup (tuning) iterations and 2,000 posterior draws per chain
(8,000 post-warmup draws total), with target accept=0.99 and
random seed = 42 (Betancourt, 2017; Hoffman and Gelman, 2014).
We used weakly informative Bambi defaults on the logit scale: the
intercept had a Normal (0, 3.5355) prior and fixed-effect slopes had
Normal (0, 5.0) priors. For the hierarchical terms, the group-level
standard deviations were HalfNormal (3.5355), and the random
intercept deviations for participants and images were Normal (0, 6_
group), with 6_group drawn from the respective HalfNormal prior
(Capretto et al., 2022). Convergence diagnostics were satisfactory for
all fixed and group-level parameters (max R = 1.01; minimum
effective sample sizes: bulk = 523, tail = 945). No divergent transitions
occurred, the fraction of iterations at the tree-depth limit was
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negligible (0.013%), and E-BFMI values were > 0.3 for all chains (~
0.67-0.74), indicating adequate energy mixing (Betancourt, 2017;
Kumar et al., 2019; Vehtari et al., 2021).

Using posterior draws, we computed pairwise model contrasts on
the log-odds scale, reported as odds ratios (OR) with 95% credible
intervals and Holm-adjusted two-sided tail probabilities. With
FLUX.1-dev as the baseline, participants were substantially less likely
to classify FLUX.1-dev images correctly compared to Kolors (OR =
0.05,95% CI [0.01, 0.17], Holm = 0.0025), Playground v2 (OR = 0.07,
95% CI [0.01, 0.21], Holm = 0.0045), and FLUX.1-schnell (OR = 0.14,
95% CI [0.03, 0.46], Holm = 0.034). The difference vs. Playground v2.5
(OR = 0.17, 95% CI [0.03, 0.58]) did not survive multiplicity
correction (Holm = 0.07) and should be treated as exploratory. No
other pairwise comparisons among non-baseline models were
statistically reliable after correction (all 95% ClIs included 1; all Holm
> 0.60). The posterior distribution indicated a small and uncertain
advantage for Al-generated images (log-odds = 0.54, 95% highest
density interval (HDI) [—0.19, 1.29]; OR = 1.71, 95% HDI [0.83,
3.62]). Age showed a robust negative association with accuracy (per
category: log odds = —0.13, 95% HDI [—0.23, —0.03]); OR = 0.88, 95%
HDI [0.80, 0.97]). The HDIs of all other covariates included zero,
suggesting no clear effects. Posterior predictive checks indicated an
excellent absolute and relative fit. The observed overall accuracy
(0.637) was virtually identical to the posterior predictive median
(0.637; 95% CI [0.621, 0.652]), with a symmetric Bayesian p-value of
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approximately 0.998, suggesting there is no discrepancy for this
statistic. At the image level, the posterior predictive means closely
tracked the observed accuracies (r ~ 1.00), indicating that the model
effectively captures cross-image difficulty (Kumar et al., 2019; Gelman
etal., 2013).

A calibration analysis was conducted to assess the alignment
between participants’ subjective confidence and their actual
recognition performance. The confidence ratings, which were
provided on a scale from 0 to 100 for each classification decision, were
normalized and grouped into 10 bins of equal width. For each bin, the
mean confidence level was plotted against the corresponding empirical
accuracy level, yielding a calibration curve (Figure 4). This curve
shows the extent to which participants’ confidence levels reflected
their actual accuracy. Ideal calibration would align with the diagonal
reference line, where subjective confidence matches observed accuracy
perfectly. The observed curve deviates from the ideal, particularly in
the lower and higher confidence range. This discrepancy can
be quantified using the Expected Calibration Error (ECE), which
summarizes the average absolute difference between confidence and
accuracy across bins. ECE was 0.142 with 10 bins and 0.146 with 20
bins, indicating conclusions robust to bin choice and suggesting a
moderate  degree  of  miscalibration in  participants’
confidence judgements.

In Figure 5, calibration curves are presented for each of the five
models separately, with participants’ average confidence being
compared with their actual classification accuracy across bins. Four of
the models demonstrate a moderate or good alignment between
confidence and accuracy in higher confidence ranks, while exhibiting
underconfidence in lower ranks. FLUX.1-dev, however, demonstrates
a significant discrepancy, with accuracy diminishing with higher
confidence, suggesting a substantial degree of overconfidence. This
assumption is substantiated by an ECE of 0.396 [95% CI, 0.356, 0.440]
which is notably higher than that of the other models. In contrast,
Playground v2.5 (ECE = 0.119 [95% CI, 0.085, 0.161]), Playground v2
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(ECE = 0.127 [95% CI, 0.1, 0.161]), and FLUX.1-schnell (ECE = 0.135
[95% CI, 0.100, 0.171]) demonstrate more consistent calibration.
Kolors, despite having the highest overall recognition rates, shows
marginally diminished stability in calibration (ECE = 0.174
[95% CI, 0.145, 0.206]), particularly within the mid-confidence
range. Figure 5 with the respective 95% Cls can be found in the
Supplementary materials. We complemented this with ROC and the
area under the curve AUC computed from trial-level confidence as the
score (Fawcett, 2006). Overall, discrimination was modest (AUC =
0.57,95% CI [0.55, 0.59]). By image type, the AUC was higher for AI
images (0.61, [0.59, 0.63]) than for real images (0.53, [0.50, 0.55]).
Among the TTI models, confidence reliably discriminated between
correct and incorrect images for Playground v2 (AUC = 0.69), Kolors
(AUC = 0.67), Playground v2.5 (AUC = 0.65), and FLUX.1-schnell
(AUC = 0.63). However, FLUX.1-dev showed below-chance
discrimination (AUC = 0.42, [0.36, 0.48]), indicating overconfidence
errors within this model.

Lastly, we evaluate the correlation between participants’ perceived
confidence and their actual recognition performance. To achieve this,
Brier scores (Brier, 1950; Wilks, 2011) were calculated for various
demographic and experiential subgroups. The overall Brier score was
0.259, indicating moderate calibration accuracy across the sample.
Age-related differences emerged, with the 18-24 age group (Brier =
0.238) exhibiting better calibration than older groups, particularly the
55-64 age group (0.317). Regarding gender, male participants
demonstrated slightly more accurate calibration (0.245) than female
participants (0.285). Educational background also appeared to play a
role, with participants who received an intermediate level of education
demonstrating better calibration (Brier = 0.230; 0.242) than those with
higher qualifications (Brier = 0.282; 0.279). Those without prior
experience in Al-based image tools showed better alignment between
confidence and accuracy (0.228) than those with experience (0.280).
A similar pattern emerged in Al tool usage: individuals who had never
used Al tools achieved the lowest Brier score (0.207), compared to
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FIGURE 5
Confidence calibration curve aggregated on each model.

those who used them rarely (0.262) or regularly (0.272). Regarding
professional experience with visual media, those without such a
background were more accurately calibrated (0.253) than those with
it (0.296). Finally, an analysis by self-assessed competence revealed
that participants with lower confidence levels (ratings 2-3) exhibited
the lowest Brier scores (0.217 and 0.197), while those with very low or
very high self-assessments showed poorer calibration (e.g., rating 1:
0.287; rating 7: 0.376).

5.2 Qualitative results

To enable an in-depth qualitative analysis of participants’
assessments of images, we examined all free-text comments in which
participants explained why they believed an image to be AI-generated.
Although optional explanations were collected for every image,
regardless of whether it was real or synthetic, only comments referring
to Al-generated images were included in the analysis. In total, 511
valid comments were evaluated, ranging from single words to detailed,
multi-sentence explanations. Following a qualitative review and
coding process, a total of 576 distinct mentions were extracted, as
some comments contained multiple identifiable aspects. These
mentions were then categorized thematically and structured according
to a hierarchical classification scheme inspired by Borji (2023) and
Kamali et al. (2025). To explore and visualize the most common terms,
we generated a word cloud before reviewing (Supplementary material)
and complemented it with a sunburst chart after reviewing (Figure 6).
Frequently cited aspects in the word cloud include details, texture,
lighting, and colors, which suggests that many participants relied on
general visual cues not specific to the image contents. Other terms,

» «

such as “heaven,

»

mirror, “blurred,” and “distorted,;” indicate attention
to image-specific anomalies. Mentions of objects such as tables, plants,
and fire extinguishers show that semantic elements and details in

certain objects also played a role in the participants’ judgments.
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Categorizing 576 coded mentions from participants’
explanations revealed a diverse range of visual features referenced
when classifying images as Al-generated, which complements most
of the findings in the word cloud. The largest group of references was
categorized as stylistic artefacts (n=190), with texture-related
aspects (e.g., smoothness, irregular surfaces or overly polished
materials) being the most frequently noted (n = 108), followed by
color (n=48) and blur (n =28). The second-largest group of
mentions was assigned to semantics and logic (n = 178), including
observations related to plants (n = 82), interior elements such as
furniture or decor (n = 50), and representations of water (n = 29)
and sky (n = 14). This indicates that object placement and contextual
relationships were commonly referenced in the classification
process. Mentions categorized under physics (n = 82) primarily
referred to light and shadow conditions (n = 59) and reflections
(n =21), while the geometry category (n = 78) included comments
on lines (n=42), distortion (n=26) and perspective (n=10).
Additionally, 48 comments were grouped under the intuition
category, capturing responses in which participants described a
general impression or subjective sense that the image was artificial
without specifying concrete visual elements. Beyond exploratory
visualizations with existing taxonomies, we found that a large part
of comments across all models referred more to subtle errors and
clues, as they focus on stylistic irregularities like to smooth or
polished materials, oversaturated or picturesque colors or too evenly
arranged objects. Overall FLUX.1-dev received 35 comments of
which several comments referred to an uncanny, unnatural feeling
or a too perfect look: “The lanes look too clean”; “The street looks
artificial”; “lines that are too perfect”; “The whole style reminds me
of AL I cannot explain it exactly”; “everything perfectly aligned”;
“The image somehow makes me feel uncomfortable and gives me a
headache”; “The floor has a strange texture. Parts of the image look
too perfect in some areas”; “Too perfectly arranged”; It looks
extremely unnatural”; “Has kind of an uncanny valley vibe”
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On the other side rather obvious and classic errors still prevail in
the other models, especially in the areas of physics, logic and
geometry: “The reflections in the window do not reflect a palm tree”;
“The reflection in the window looks very clear, but at the same time
you can still see through the window very clearly”; “The shadow
angles do not match at all”; “Serious errors in things such as

», «

proportion, sharpness, shape, etc”; “Building appears structurally
flawed.” One response sums up the situation, pointing out that several
errors only become apparent upon closer inspection.: “It looks
extremely unnatural. Shapes are distorted, things that should
be straight are crooked. The longer you look, the more you find” We
provide an additional codebook in the Supplementary data with the

respective categories, subcodes and anchor examples from the data.

6 Discussion

While most previous studies focus on human faces and bodies
(Frank et al., 2024; Kamali et al., 2025; Liiddemann et al., 2024; Meyer,
2022; Nightingale and Farid, 2022; Pocol et al., 2024), we focused on
landscapes, architecture and interior to show that images on the
internet and especially on social media may no longer be identified
with certainty as authentic or fake. Regarding RQ1, our findings align
with several previous studies, revealing an overall recognition
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accuracy of 63.7%. Notably, one model (FLUX.1-dev) emerged as an
outlier which was confirmed by the mixed-effects analysis. Overall,
participants performed significantly above chance level,
demonstrating a moderate reliable ability to distinguish between real
and Al-generated images. Compared to other studies, we used more
sophisticated, state-of-the-art models that are less error-prone than
models like DALL-E2 or older Stable Diffusion models, which were
mostly employed in previous studies. Still, a similar outcome in terms
of overall accuracy was achieved, which could suggest that people are
becoming better or more careful at detecting anomalies in
Al-generated images. Directly comparing the accuracy and respective
confidence rating per model (Table 1) shows that, except for
FLUX.1-dev, participants estimated their average confidence to
be lower than their actual accuracy. Our findings in the confidence
calibration curves (Figure 4) further support the idea of increased
caution. The overall accuracy in the lower reported confidence
brackets (0-0.6) fluctuated between 53 and 60%, showing that
participants may underestimate their abilities. This is clearer when
comparing the models (Figure 5), where underconfidence is shown
up to the 0.9 bracket for Playground v2 and Kolors. In the higher
confidence brackets (0.7-1.0), it can be seen that, except for
FLUX.1-dev, accuracy and confidence almost align. This reveals that,
most of the time, participants were right when they were confident.

In the case of FLUX.1-dev, however, the opposite is true. The higher
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the confidence, the worse the accuracy, with a discrepancy of almost
0.8 in the highest bracket and an ECE of 0.396. The findings are
further supported by the ROC/AUC. This suggests that this particular
model opens avenues for epistemic vulnerability. Findings regarding
the Brier score show that the calibration between confidence and
actual accuracy is better for groups of people who tend to have less
experience in using Al, image processing or working with visual
media than for the group with more experience. These findings
suggest that individuals with more experience in Al or visual media
may exhibit an overconfidence bias when evaluating Al-generated
imagery, leading to a weaker alignment between their perceived
certainty and actual performance. In contrast, less experienced
participants appear to demonstrate more cautious judgment,
resulting in a better-calibrated relationship between confidence and
correctness. The qualitative analysis confirms that, when identifying
Al-generated images, participants frequently referred to well-
documented visual artifacts, such as issues with texture, lighting, and
geometry. However, models like FLUX.1-dev demonstrate that some
of these indicators are becoming less reliable. Overall, images of
FLUX.1-dev received only 35 comments in which participants rarely
mentioned classic flaws related to shadows, perspective, or reflections.
This observation aligns with recent advancements in image
generation technologies, which have minimized many previously
common artifacts. They focused either on specific objects in the
images or mentioned that some aspects seemed too perfect to be real.
While classic errors prevailed in several images of other models, they
got more subtle, which suggests that the way we perceive
Al-generated images is shifting, with people now relying more on
their instincts and finding images that seem too perfect uncanny.
These patterns align with socio-technical accounts of the impact of
Al on human interpretive agency (Di Plinio, 2025). Sustained
exposure to Al-mediated environments can gradually shift decision-
making heuristics away from the detection of discrete artefacts and
towards uncanny or ‘too-perfect’ regularities, thereby reshaping
perceived agency (Di Plinio, 2025). These developments underscore
the increasing difficulty of detecting synthetic content and highlight
the need for ongoing research aligned with the rapidly evolving state
of the art. Overall, the analysis of confidence scores suggests that
participants focused on identifying specific artifacts or relied on
intuition indicating that an image was AI-generated, which were less
prevalent in FLUX.1-dev and consequently might felt too safe. This
could lead to rather harmless consequences when AlI-generated
images are used to draw attention on websites and social media or for
unfair advertising of non-existent landscapes or buildings. A greater
danger could come from the use of harmful images to manipulate
groups of people, especially in politics, including spreading fear.
The demographic analysis shows that participants in higher age
brackets demonstrate a statistically significant worse accuracy
performance, which supports similar findings by Liidemann et al.
(2024). This indicates a need for training or intervention for
particularly prone populations to minimize negative effects. On the
basis of descriptive stats male participants, individuals with higher
formal education, those with experience in AI-based image tools, and
those who rated their skills as higher on a 7-point scale all
demonstrated higher recognition accuracy on average. Overall,
we therefore recommend further research to identify particularly
vulnerable user groups in the context of Al-generated content.
Tailored training and educational materials could strengthen these
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users detection capabilities. Evidence from Nightingale and Farid
(2022) shows that training can significantly improve classification
accuracy. Furthermore, previous studies have found a link between
media literacy and susceptibility to misinformation, emphasizing the
importance of media education in reducing risks (Frank et al., 2024;
Hwang et al., 2021; Jeong et al., 2012). With a view to Brier scores and
self-assessment, our findings suggest that even participants with
higher expertise might feel too confident and struggle to reliably
detect Al-generated images, indicating that training efforts and
media literacy must be seen as a collective cultural task, not only an
individual competence.

Although progress is being made in the field of automated
Al-generated image detection (Konstantinidou et al., 2025), with
good results being achieved in test environments, these approaches
are not yet suitable for application to online content (Corvi et al.,
2023; Karageorgiou et al., 2024). While these technical solutions
might play an important role in detecting Al-generated images,
we argue that a complementary, socio-technical approach is essential.
Specifically, human-centered strategies such as media literacy
programs, targeted training, and awareness campaigns can help
individuals better identify synthetic content and reduce susceptibility
to deception. In addition to technical and educational measures,
regulatory frameworks are beginning to address the challenges posed
by synthetic media. The EU AI Act, for example, includes provisions
that require clear labeling of Al-generated content, including images,
to ensure transparency for end-users (European Union, 2024).
Complementing this, researchers have called for the establishment of
ethical guidelines for the development and distribution of TTI
models (Al-Kfairy et al., 2024; Ferrara, 2024; Nightingale and
Farid, 2022).

We present a compilation of visual anomalies and inconsistencies
that identified their
We categorized these using a content analysis approach (Zhang and

participants in free-text responses.
Wildemuth, 2009) and established classification frameworks by Borji
(2023) and Kamali et al. (2025). Our analysis shows that participants
most frequently referenced stylistic artifacts and semantic or logical
inconsistencies. Next were physical violations and geometric errors.
Least frequently referenced were intuitive or gut-feeling based
judgments. An important insight from our data is that participants
most often explicitly referenced observable flaws or uncertainties
within the images rather than relying on general assumptions,
indicating a relatively high level of critical engagement with the
visual content. However, our results also suggest that traditional
categories become increasingly less applicable, especially in the case
of more sophisticated models, such as FLUX.1-dev. As image
generation technology continues to advance rapidly, previously well-
established taxonomies may no longer capture the full range of
current model behaviors. In this context, continuously tested and
refined taxonomies and classification frameworks may serve as
valuable foundations for the design of aforementioned educational
interventions, enabling structured guidance on typical image flaws
and cognitive detection cues. Therefore, given our finding that
higher AI and media literacy is associated with inflated confidence
at a given level of accuracy, as well as the practical reality of rapidly
evolving generative models where yesterday’s artifacts quickly
become obsolete, we conclude that training and UI should emphasize
calibration feedback, adversarial examples, and uncertainty
elicitation rather than categorical accuracy alone.
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Limitations of this study include the sample size of participants and
unequal distribution in demographic data, as the sample is a German
speaking convenience sample, which limits generalizability and the
found effects should be treated exploratory on broader population. A
further limitation of the sample is that we showed five images per model.
However, we were still able to show that there is statistical significance in
the comparison of accuracy between the respective models. Nevertheless,
we would like to point out that aspects relating to epistemic vulnerability
in the case of FLUX.1-dev should be considered exploratory. It cannot
be completely ruled out that random effects within the sample played a
role in the case of the five images. Furthermore, we did not include paid
models but rather focused on open-source models with APIs that are
accessible to everyone and could be utilized without major effort even
on local devices. Therefore, models such as Imagen 4 or the TTT model
of GPT-40 were excluded despite their superior performance evaluations
on artificialanalysis.ai. Another limitation of this study is that participants
were given a clear task and unlimited time. In real-life scenarios, such as
visiting a website or scrolling through social media, the accuracy rate
may be lower because people pay less attention to potential errors in
images. Cooke et al. (2024) addressed this factor in their study by
developing a design that emulated online platforms and utilized a variety
of stimuli. Similarly demonstrated by Kamali et al. (2025), implementing
a time restraint results in lower accuracy scores. This design could
be tested in future research.

7 Conclusion

This study examines individuals’ ability to detect Al-generated
images in photorealistic landscapes, architecture, and interiors.
While participants achieved moderate overall recognition accuracy,
substantial differences were observed among models, with certain
advanced systems, such as FLUX.1-dev, yielding significantly lower
detection rates. Qualitative analysis further revealed that
participants often relied on stylistic artifacts and semantic
inconsistencies to make judgments. Though these cues might be less
reliable due to recent model advancements and more subtle and
gut-feeling heuristics could become more relevant. Although
technical detection methods will continue to be vital for identifying
synthetic content, we argue that a complementary socio-technical
approach is also necessary. Specifically, human-centered strategies,
such as media literacy programs, targeted training, and awareness
campaigns, can empower individuals to recognize Al-generated
imagery more effectively and reduce their susceptibility to
deception. Well-defined, empirically tested taxonomies might
provide a basis for these educational efforts. In parallel, regulatory
frameworks are beginning to respond to the societal challenges
posed by synthetic media. The EU AI Act already mandates the
labeling of Al-generated content to ensure transparency and
minimize risk of disinformation. Beyond compliance, there is a
need for ethical guidelines to govern the development and
distribution of TTI models in the future to maintain a balance
between development and progress while reducing negative aspects.

As TTI models continue to evolve, the boundaries between reality
and fiction online are blurring. The flood of hyper realistic,
Al-generated visuals threatens to erode trust in digital imagery and
raises pressing questions about the future of human-authored content.
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If we fail to act, we must ask: will genuine visual content on the
internet gradually cease to exist?
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