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Abstract—With over 80% of the world’s oceans remaining
unmapped and unexplored, the advancement of robust under-
water perception technologies is becoming more important than
ever before. This vast frontier cannot be reliably observed with
optical cameras mounted on Autonomous Underwater Vehicles
(AUVs), which struggle in turbid, low-light conditions common to
marine environments. Acoustic sensors like the Forward-Looking
Sonar (FLS) are essential alternatives, yet progress in the field
is significantly hampered by a profound scarcity of large-scale,
publicly available sonar datasets. To address this critical gap, we
introduce the SonarCloud Dataset, a comprehensive synthetic
dataset generated to accelerate research in underwater percep-
tion. Our dataset consists of FLS and depth imagery of 19 distinct
objects, totaling approximately 500,000 images, along with a 3D
point cloud for each object generated from the corresponding
depth maps in various orientations. As technical validation, we
selected object detection and 3D reconstruction to evaluate the
effectiveness of our dataset. We demonstrate that state-of-the-
art models trained solely on simulated data from our dataset
can successfully detect objects in real-world sonar images and
reconstruct their 3D shapes. The SonarCloud Dataset is presented
as a valuable tool for the research community, and it can be found
publicly in: https://doi.org/10.5281/zenodo.16645568,

I. INTRODUCTION

Advancements in underwater robotics increasingly rely on
robust perception capabilities for different tasks ranging from
object detection to detailed 3D reconstruction. However, the
underwater environment presents significant challenges that
complicate data collection and limit the effectiveness of com-
mon sensing techniques like optical imaging [1].

While optical cameras are widely used in terrestrial appli-
cations, they come with many impracticalities when utilized
underwater. Certain factors frequently render visual inspection
impracticable [2], such as: 1) the rapid scattering of light,
leading to color loss and distortion, 2) the lack of natural
lighting at depth, and 3) the existence of turbidity and mobile
sediments; particularly in coastal or disturbed waters, after
storm events [3|] and in harbor areas [4]].

These limitations means it is necessary to use alternative
sensors, with acoustic methods like 2D sonars being par-
ticularly well-suited for underwater imaging due to sound’s
superior propagation in water. Sonar systems can provide
valuable information about underwater scenes regardless of
optical clarity [5)]. In our work, we look specifically at the
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Forward Looking Sonar (FLS) which is known for its high
resolution in range-sensing and its compact size, allowing
it to be mounted on underwater robots easily. However, the
FLS has a major hardware limitation, which is the loss of
the elevation angle. That is the reason why objects appear
in 2D from the FLS. Moreover, progress in developing and
evaluating sophisticated perception algorithms using sonar
data is significantly brought back by a critical factor, which is
the scarcity of comprehensive, publicly available datasets.

Real-world underwater data collection, whether optical or
acoustic, remains a complex task, often constrained by high
operational costs, logistical challenges associated with access-
ing marine environments, and potential legal or environmental
regulations [6]]. Furthermore, even when sonar data is acquired,
existing datasets are often hidden from the public eye, lack
the precise ground truth information (e.g., accurate sensor
poses) required for rigorous algorithm validation, or cover only
limited scenarios and object types []1].

To address all the previously mentioned limitations, we
introduce a dataset, generated using the Stonefish simula-
tor [7]], focusing on different objects in realistic underwater
scenarios to provide a reproducible platform for developing
and validating underwater perception algorithms. Given that
object representations in sonar images are highly dependent
on the sensor’s position, affecting both geometric appearance
and shadow casting; this dataset provides simulated acoustic
images captured from linear approaches to target objects,
enabling the analysis of feature variations with viewpoint
changes. We further provide simulated depth images of the
scanned objects from multiple viewpoints, and a groundtruth
reconstructed pointcloud. This dataset is created to provide
the research community a valuable resource based on FLS
data. The dataset can be utilized for training different machine
learning models that involve sonars as a sensing modality,
and in a wide range of perception applications such as: object
detection, segmentation, pose estimation, and 3D reconstruc-
tion. As a technical validation of the dataset’s real-world
applicability, two of the most recent object detection models
trained solely on the synthetic data were tested directly on
real FLS images, which were able to detect the target objects.
A 3D reconstruction framework was used to 3D reconstruct
the objects from their 2D appearance in the sonar image. A
python-based visualization tool was also produced as part of
this work called ’SonarCloudViz’.
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II. RELATED WORK

There are only a select number of real-world, state-of-the-art
Forward Looking Sonar datasets that have been made publicly
available, and these are: NKSID [8|], UATD [9], UXO [1]],
and MDT [10] datasets with each using real sonar systems
to capture different underwater scenarios ranging from debris-
laden, underwater infrastructure to search-and-rescue missions
and spanning target objects of: propellers, boxes, bottles,
mortar shells, mannequins, chains etc.

These datasets are extremely useful but also pinpoint a
fundamental trade-off in underwater data collection. On one
hand, datasets collected in uncontrolled sea environments like
NKSID, accurately reflect real-world conditions but conse-
quently suffer from severe class imbalance. For instance,
common debris like ”Tires” are found in abundance on the
seafloor but the same thing cannot be said about “Fishing
Nets”. This makes it difficult to train robust models. On the
other hand, when experiments are done in a controlled water
tank like in UXO and MDT, this can ensure class balance and
precise ground truth. However, they face different limitations;
as noted by [11]], objects are often captured from limited
viewpoints, and the sterile tank environment fails to replicate
the complex acoustic terrains and clutter found in natural
bodies of water.

This is where simulation comes into play. It provides the
ability to generate vast, diverse datasets and offers complete
control over the object viewpoints and angles as well as
the complexity of the environment and class distribution.
This reliance on simulation is increasingly viable due to the
emergence of advanced open-source tools [12]. Platforms,
like the Stonefish simulator [[7] offer robust customization
for acoustic data. While simulators like HoloOcean [13] -
[14] utilize powerful game engines like the Unreal Engine to
generate highly realistic sonar and camera imagery bridging
that ’Sim-to-real’ gap more and more.

One such work that has utilised these sort of simulations
is Oliveira et al. [15] who used the HoloOcean simulator to
synthesize their own dataset consisting of primitive shapes,
anchors and propellers in a water tank environment. Another
piece of work that have synthesized their own data, but
this time using the Gazebo simulator [[16] is gciegienka and
Blachnik [17] who curated a large-scale dataset of 69,444
images but was limited to only Unexploded Ordnance models
(UXO) objects. In the work by Wang et al. [18] and Jaber
et al. [2] the respective authors tackle the inherent problem
of missing 3D information in 2D sonar images. To train
their distinct deep learning models, they developed a custom
acoustic camera simulator. This simulator was used to generate
a paired dataset where each standard 2D sonar image had
a corresponding ground truth “pseudo front view,” which is
essentially equivalent to a depth map from a standard optical
camera.

As established in the literature review, a notable disparity
exists: despite the availability of several powerful simulators
and a handful of real-world datasets, simulated datasets remain
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Fig. 1: A schematic illustrating the scanning procedure of
target objects.

scarce. The main application for these datasets in the literature
is to train robust deep learning models on several different
tasks, specifically for perception in the field of Computer
Vision. For example, these models can do tasks like: object
detection, classification, image segmentation, simultaneous lo-
calization and mapping (SLAM), and 3D reconstruction [12].

Focusing on object detection, there exists many works in
the literature where several well-known 2D object detection
models are used in the underwater domain to detect objects
of different types from optical images. [19]-[23]], all worked
on the object detection of different sea creatures (starfish, sea
cucumbers, sea urchins etc.) from the URPC dataset [24].
Many other papers are specialized in applying object detection
underwater to man-made infrastructures like pipelines and ca-
bles which is useful for detecting leaks, defects or obstructions
[25]-[27]]. Other works in the literature are dedicated to the
monitoring and analysis of the quality of marine ecosystems
so in order to know the biodiversity of a species of fish for
example, marine biologists would need to utilise deep learning
techniques for fish detection and classification [28]—[30].

In the acoustic domain, 2D object detection is also well-
established, with research heavily focused on imagery from
two primary sensors: Side-Scan Sonar (SSS) and FLS. Appli-
cations involve several different objects, such as: pipes, chains,
tires, mines, hulls, walls, etc. [31]-[36]. Zhang et al. focused
his work on more primitive shaped objects in SSS scans [37].
Other work was done on unexploded ordnance and underwater
mines [38]], [39].

Another prominent perception task is the 3D reconstruction
of objects underwater from both optical and sonar images.
By combining the visual detail from optical cameras and
the geometric accuracy of sonar, this method creates 3D
models/pointclouds of submerged objects and terrain. This is
invaluable to marine science as a whole and again in tasks like
industrial inspection or underwater archaeology. This can be
found in many papers including the following ones: [2], [18]],
[40[]—[47].



Fig. 2: Sample acoustics images, depthmaps, and their resulting reconstructed pointcloud from a scan of a stairs model. The
first row displays samples of simulated acoustic images: the first three represent the initial scans, while the last three correspond
to the final scans captured along the linear trajectory. The second row shows the eight corresponding depth maps captured
over a span of 180 degrees. The figure on the right illustrates the 3D point cloud reconstructed from the eight acquired depth

maps.
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Fig. 3: Visual representations of the CAD models for all
dataset objects

III. DATASET GENERATION
A. Stonefish Simulator

This work utilizes a synthetic dataset generated using
the Stonefish underwater robotics simulator. Stonefish has
the ability to model realistic underwater physics, including
hydrodynamic effects, sensor behavior, and environmental
conditions like turbidity and currents. It allows for precise
definition of object properties and incorporates a GPU-based
sonar simulation module for generating acoustic data. For this
dataset, a FLS was simulated and configured with parameters
matching the high-frequency mode of the Oculus M1200d:
0.1m minimum and 10m maximum range, 60° horizontal and
12° vertical aperture, and 512 beams.

B. Environment and setup

A forward-looking sonar performed a linear sweep toward
each target in 24 equal steps, capturing one acoustic frame
per step. The sequence begins when the object first appears in
the sonar field of view and ends when it is no longer visible,
ensuring that the target is fully scanned. Simultaneously, eight
depth cameras (256x256 resolution, 60° FOV) were mounted
at regular intervals on a circular arc of approximately 3 m
radius around each object, providing eight distinct viewpoints

for depth-map capture. This method of taking a batch of
images in a linear manner is deliberately chosen to account
for the changing shadow casts behind the objects based on
the viewpoint. These changing shadow patterns, as well as the
object geometry itself changing in the sonar images, provide
valuable features to be learnt on the sonar image data by
learning-based models. The 8 depth cameras are used to give
a 180° perspective of the object so that it is not only limited
to a single front-facing view. Given the fixed configuration
of the depth cameras in simulation, a transformation matrix
(Rn,t,)~! was applied to the eight captured depth images
creating a 3D pointcloud of the scanned object. Fig[I] gives an
illustration of the data capturing process, while Fig [2] shows
sample simulation data for a stairs model. The data collection
configuration was adapted from our previous work on multi-
view 3D reconstruction [48]], where this setup was successfully
employed and demonstrated its effectiveness.

To simulate realistic seabed conditions, target objects were
situated on varied sand terrains, including rugged, moderately
flat, and smooth topographies, alongside a baseline scenario of
a completely flat and untextured terrain. This generated around
48,000 scenarios, with objects placed in various orientations
and on varied terrains, corresponding in a total number of
142,080 acoustic images with 8 depth images per scenario
case.

C. Target Objects

The collected dataset consists of acoustic scans captured
for 19 different objects; ranging from basic shapes: sphere,
semi-sphere, cylinder, pipe, cube, triangular prism, trapezoidal
prism, rectangle; to more complex geometries: U-shape, L-
shape, boat, stairs, and tire. The dataset was further enhanced
with UXOs such as: Land-mine, mortar shells, deformed
artillery-shell, 100lbs UXO, and 500lbs UXO. The aim of
their inclusion is to improve their detection and identifica-
tion, enabling more effective removal of unexploded ordnance
from underwater environments. This application is critically
important, not only for ensuring safer navigation and human
activity in marine environments, but also for protecting marine



ecosystems from the long-term ecological damage caused by
these hazardous remnants [49]. Table |I| shows the dimensions
and sizes of the dataset’s objects. Figure 3| shows the 3D CAD
models of all dataset objects.

TABLE I: Overview of objects in the dataset with their labels,
categories, dimensions, and corresponding image counts

Object Name Category | Di i (m) No. of Sonar Images
Sphere Simple d=04,r=02 3840
Semisphere Simple d=06,r=03 3840
Cylinder Simple d=08,r=02 3840
Pipe Simple d=31,r=0.832 3840
Cube Simple 1=03,w=03,h=03 3840
Rectangle Simple 1=04,w=09,h=04 3840
Triangle Simple 1=047,w=05,h=08 3840
Trapezoid Simple 1=06,w=04,h=04 3840
U-Shape Complex 1=05,w=04,h=04 3840
L-Shape Complex 1=04,w=04,h=08 3840
Boat Complex 1=0563,w=18,h=03 3840
Tire Complex d=0.655,r=0.113 3840
Stairs Complex 1=035w=099,h=045 3840
Mine UXxo d=0.12,r=0.15 15360
Artillery Shell UXxo d=0.58, r=0.06 15360
Deformed Atrtillery Shell | UXO d=040,r=0.05 15360
Large Mortar Shell UXxo d=0.36,r=0.06 15360
Small Mortar Shell UXxo d=031,1r=004 15360
500Ibs UXO0 d =0.56, r = 0.09 15360

D. SonarCloudViz

To facilitate the visualization of the dataset contents, a
Python-based Graphical User Interface (GUI) named Sonar-
CloudViz was developed. For each recorded scan within the
dataset, the tool displays the 24 captured sonar images, their
eight corresponding ground truth depthmaps, and a 3D plot
of the corresponding pointcloud. The GUI allows users to
interactively manipulate the 3D point cloud view to better
inspect the object’s geometry. This tool serves as a valuable
utility for understanding the dataset’s structure and visualizing
its synchronized multi-modal components. Fig ] showcases a
sample of how SonarCloudViz shows the data of a scan.
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Fig. 4: An illustration of the GUI visualizing a scan of the
stairs model.

IV. TECHNICAL VALIDATION

In this work, we validate the effectiveness of our dataset
through two key applications: 2D object detection and 3D
reconstruction. This evaluation confirms the dataset’s practical

value in training models for multiple sonar-based perception
tasks.

A. Object Detection

To validate the dataset’s utility and benchmark its chal-
lenges for underwater perception, a technical evaluation was
conducted using state-of-the-art (SOTA) 2D object detection
methods. Modern deep learning architectures, particularly
those based on Convolutional Neural Networks (CNNs) and
Transformers, have become the standard for this task, largely
supplanting earlier methods that relied on handcrafted features
[50]. The You Only Look Once (YOLO) series [51] , for
instance, works by splitting the image into S x S grid of
cells with each grid cell responsible for detecting an object
if the center of that object falls within it. The grid cells
are then responsible for predicting the coordinates of the
bounding box and its confidence score whilst simultaneously
also predicting the probability of the detected object being
part of each class. The results then undergo non-maximum
suppression which eliminates the excess presence of bounding
boxes. The final output is then a prediction vector containing
the x,y values which are the coordinates of the centre of the
bounding box with respect to the grid cells and w, h being
the width and height of the box relative to the whole image,
as well as probabilities of the detected object being part of
each class. The evolution of 2D object detection models did
not stop there however, since after the emergence of single-
shot object detectors, research made another breakthrough
when they introduced transformer-based 2D object detection
models - taking these transformers from the Natural Lan-
guage Processing world to the Computer Vision field. The
DEtection TRansformer (DETR) [52]] was one of the most
important examples representing this class. DETR utilises a
hybrid architecture of a Convolutional Neural Network which
outputs a low-resolution feature map. This is then inputted
into an encoder-decoder transformer. The encoder uses a self-
attention mechanism to weigh the importance of the features
found, while the decoder processes a fixed number of learnable
“object queries” to probe for the presence of objects in
images. This architecture is trained end-to-end using a bipartite
matching loss, which enforces a one-to-one match between
predicted and ground-truth objects. This means it does not
need to carry out post-processing techniques like the non-
maximum suppression.

1) Experiements and Results: In this paper, we specifically
train the latest version of YOLO - the YoloV12 model [53]
- which incorporates the self-attention mechanism into the
classic YOLO architecture, as well as the RF-DETR model
on our dataset to carry out our 2D object detection. The RF-
DETR model combines a pretrained DINOv2 backbone with
the structure of the LW-DETR [54]]. This makes it highly
effective at being fine-tuned and used for different tasks and
real-world data. The models were trained specifically on the
flat, untextured terrain portion of the dataset, which included
all orientations of each object in simulation.



The dataset comprised 9,694 images, augmented through
vertical flipping, 90° rotations (clockwise and counter-
clockwise), and £15° rotations. The data was split into train-
ing (80%), validation (10%), and testing (10%) sets. The test
set included both simulated and real underwater images. The
real images were collected in a water basin at the DFKI facility
in Bremen, Germany, and featured three distinct objects:
stairs, L-shape, and U-shape. Data acquisition was performed
using an Oculus M1200 in high-frequency mode, scanning
the objects placed on the basin floor. The YOLOvV12 model
achieved an average mAP of 94%, an Fl-score of 88.8%, a
precision of 93.6%, and a recall of 87.7% at a 50% confidence
threshold. Its learning curve plateaued after approximately 50
epochs. In comparison, the RF-DETR model converged after
just 23 epochs and achieved an average mAP of 82.8%, an F1-
score of 86.2%, a precision of 88.5%, and a recall of 85.3%
at the same threshold. Both models were trained using a batch
size of 16 images. Fig [5] shows sample detection results from
the evaluation of RF-DETR model on real sonar images of the
U-shape, L-shape, and Stairs.

TABLE II: Average Precision (mAP@50) by object class for
the two evaluated models

Object Class YOLOv12 mAP (%) RF-DETR mAP (%)

All Classes (Overall) 94.0 82.8
Sphere 85.8 36.8
Semisphere 76.8 39.8
Cylinder 97.8 96.8
Pipe 99.8 96.8
Cube 99.8 93.0
Rectangle 96.8 94.8
Triangle 100 36.8
Trapezoid 100 92.8
U-shape 78.8 80.8
L-shape 89.8 66.8
Boat 100 100
Tire 91.8 93.8
Stairs 100 89.8
Mine 100 89.8
Artillery Shell 96.8 92.8
Deformed Artillery Shell 98.8 98.8
Large Mortar Shell 99.8 99.8
Small Mortar Shell 93.8 85.8
5001bs 97.8 95.8

2) Discussion: Looking over Table[fl] a clear trend emerges
when analyzing performance based on object geometry and
size. For classes with simple, well-defined geometric shapes;
such as Cube, Trapezoid, and Triangle; both models achieved
perfect or near-perfect scores. These shapes are characterized
by sharp edges and clear boundaries, which likely make them
easier to detect consistently.

Both models also performed exceptionally well on the Big
UXO class and achieved perfect scores on the Boat class.
These objects are large and prominent in the imagery, which
minimizes ambiguity and allows for highly reliable detection.
Similarly, the consistently high scores for the Deformed Ar-
tillery Shell class indicate that, despite their irregular structure,
these objects contain distinctive features that make them easily
distinguishable from the background.

Fig. 5: The figure showcases sample 2D detections from
testing the RF-DETR model on real sonar images of each of
the 3 objects: Stairs, L-shape and U-shape corresponding to
rows 1,2, and 3 respectively

The Stairs class is another noteworthy example of high
performance. Although stairs are structurally more complex
than primitive shapes, their strong, repetitive, and periodic
pattern appears to provide a highly reliable signal for detection.

In contrast, smaller or more geometrically ambiguous ob-
jects, such as Semisphere and Sphere, showed a noticeable
drop in performance. These objects have smoother surfaces
and fewer distinctive edges, making them harder to separate
from the background and more susceptible to minor variations
in viewpoint or noise.

The Tire and U-shape classes also highlight the effect of
geometry on detection performance. Their hollow or open
structures introduce additional complexity, which in some
cases appears to reduce detection accuracy. Similarly, the
confusion between L-shape and U-shape can be attributed to
their geometric similarity; both share two prominent right-
angled segments, with the absence of the third side in the
L-shape providing only a subtle geometric difference that is
sometimes misclassified.

The evaluation results for the U-shape, L-shape, and Stairs
classes are especially noteworthy, as these are the only classes
for which the test set included a substantial number of real
images alongside synthetic data. Despite the presence of real-
world variations not seen during training, both models per-
formed well, demonstrating strong generalization capabilities.

YOLOVI12 achieved high mAP scores on all three classes,
notably reaching 100 on Stairs and above 78 on both U-
shape and L-shape. RF-DETR also showed competitive re-
sults, particularly excelling on U-shape with an 80.8 mAP,
although its performance on L-shape was somewhat lower.
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Fig. 6: 3D reconstruction result from evaluation on real sonar images of the mine. The left panel shows a representative real
sonar image. The middle panel displays the predicted 3D reconstruction, with the point cloud on top and the corresponding
mesh below. The right panel shows the ground-truth point cloud (top) and its generated mesh (bottom).

The ability of both models to maintain solid detection accuracy
on these mixed real-synthetic datasets underscores the quality
and diversity of the dataset and suggests that the models can
effectively transfer knowledge learned from synthetic data to
real-world sonar imagery. These results reflect the strength
and representativeness of the dataset used for training, demon-
strating that the models were able to learn robust features
that generalize well to real sonar images. The consistent
performance on these classes during testing indicates that the
dataset provides effective coverage of both synthetic and real-
world variations, supporting reliable detection across diverse
object geometries and conditions.

B. 3D Reconstruction

To validate the usefulness of the dataset, we reference its
prior application in a deep learning—based 3D reconstruction
framework, MV3D [48]. In that work, an encoder—decoder
network was trained and evaluated on a subset of the dataset,
using 24-view sonar image sequences as input and the corre-
sponding 8-view depth maps as ground truth. This data format
proved valuable for 3D reconstruction from 2D FLS images,
enabling the model to extract meaningful spatial features from
batched multi-view inputs and predict complete object shapes
through its multi-depth map supervision. Accurate and dense
reconstructions of selected underwater objects demonstrated
the effectiveness of the dataset structure. Notably, the model
was trained exclusively on the synthetic dataset and success-
fully generalized to real FLS images, highlighting both the
realism of the simulated data and the robustness of the dataset
design for learning-based 3D reconstruction.

In this dataset paper, we extend this validation by applying
the same reconstruction framework to a new object: a landmine
UXO, which was not included in the original publication. This
complementary evaluation further demonstrates the dataset’s
consistency, diversity, and applicability across a broader range

of object shapes and categories. For this experiment, a subset
of the dataset containing the mine data was used for training.
To assess the model’s performance on real sonar images,
additional data of a mine placed on the basin floor was
acquired using the same water basin and sensor setup as for
the U-shape, L-shape, and stairs.

The metrics commonly used for evaluating 3D reconstruc-
tion results are Chamfer Distance (CD) and Hausdorff Dis-
tance (HD), defined as follows:

N
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HD(A, B) = max (sup inf d(a,b),sup inf d(a, b)) (2)
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where Dy, (A, B) represents the Hausdorff distance between
sets A and B. d(a,b) is the distance function used to measure
the distance between elements a and b in the underlying metric
space. sup denotes the supremum (least upper bound) of a set,
and inf denotes the infimum (greatest lower bound) of a set.

After being trained exclusively on synthetic data and eval-
vated directly on real sonar images of the mine, the model
achieved a CD of 0.028 m and an HD of 0.09 m, reflecting a
dense and accurate reconstruction of the 3D shape. Figure []
illustrates representative real sonar test images, the predicted
point cloud, and the corresponding ground-truth point cloud,
with both point clouds also converted to meshes for improved
visualization. These reconstruction results further confirm the
dataset’s suitability for training and benchmarking 3D percep-
tion models under realistic sonar-based sensing conditions.



V. CONCLUSION

In this paper, we introduced a novel, publicly available
synthetic dataset designed to address the critical scarcity of
comprehensive data for underwater perception. By pairing
simulated FLS imagery captured along a linear trajectory with
ground truth depth maps from a 180-degree field of view, our
dataset provides rich, multi-modal information that captures
viewpoint-dependent geometric features and shadow dynam-
ics. This resource offers a robust platform for developing
and validating a wide range of algorithms, including object
detection, pose estimation, and 3D reconstruction.

To demonstrate the dataset’s practical value, we validated
it on two key applications: 2D object detection and 3D
reconstruction. Models trained solely on the dataset’s synthetic
data were evaluated on real sonar images and achieved strong
performance in both tasks. These results highlight the dataset’s
robustness and generalizability, underscoring its potential to
accelerate research in critical underwater applications such
as the safe removal of Unexploded Ordnance (UXO), marine
habitat monitoring, restoration, and beyond.

Future work will focus on further enhancing the dataset’s
realism by simulating more complex underwater environments
and sensor conditions. Additionally, we plan to expand the
object variety to cover a broader range of shapes and materials,
improving the dataset’s diversity and applicability.
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