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A B S T R A C T

Brain aging is an inevitable process in adulthood, yet there is a lack of objective measures to accurately assess its 
extent. This study aims to develop brain age prediction model using magnetic resonance imaging (MRI), which 
includes structural information of gray matter and integrity information of white matter microstructure. 
Multiparameter MRI was performed on two population cohorts. We collected structural MRI data from T1- and 
T2-sequences, including gray matter volume, surface area, and thickness in different areas. For diffusion tensor 
imaging (DTI), we derived four white matter parameters: fractional anisotropy, mean diffusivity, axial diffu
sivity, and radial diffusivity. To achieve reliable brain age prediction based on structure and white matter 
integrity, we employed LASSO regression. We successfully constructed a brain age prediction model based on 
multiparameter brain MRI (Mean absolute error of 3.87). Using structural and diffusion metrics, we identified 
and visualized which brain areas were notably involved in brain aging. Simultaneously, we discovered that 
lateralization during brain aging is a significant factor in brain aging models. We have successfully developed a 
brain age estimation model utilizing white matter and gray matter metrics, which exhibits minimal errors and is 
suitable for adults.

1. Introduction

Aging and its related degenerative diseases, particularly those 
affecting the central nervous system, pose significant challenges for in
dividuals, regions, and countries globally. However, the lack of effective 
evaluation indices for overall or organ aging in the human body un
doubtedly hinders the quantitative assessment of biological status and 
degenerative changes. The search for reliable indicators of biological 
age has been ongoing for nearly forty years, with the aim of objectively 
evaluating the degree of biological development or aging. Current multi- 
omics methods enable accurate age prediction based on various bio
logical datasets (Jylhävä et al., 2017). When studying the biological age 
of the central nervous system, the concept of “brain age” (Mishra et al., 
2023), based on magnetic resonance imaging, has been proposed to non- 
invasively evaluate the aging status of brain structure or function. The 

normal brain is utilized as a model to identify brain aging related 
modifications to evaluate premature or late aging. Therefore, using 
parameters derived from normal human brain images, a regression 
model is established, labeled with the actual age. The complex, multi
dimensional aging patterns of the brain are condensed into a single 
numerical value referred to as “brain age” for each distinctive brain 
image.

To prevent or postpone the onset and progression of neurodegener
ative disorders, it is crucial to identify age-related health conditions as 
soon as possible using the genuine anatomical structure of the brain. In 
recent years, research on brain age has shown exponential growth 
(Baecker et al., 2021). When developing a brain age model with healthy 
individuals, the accuracy of the prediction model is evaluated using the 
mean absolute error (MAE), representing the average absolute differ
ence in brain age between subjects. For the assessment of brain age, the 
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primary outcome of brain age prediction is the difference between an 
individual’s predicted age and their actual age, which is called the 
“brain age gap” (BAG). The fact that brain-age disparities strongly 
correlate with other age-related measures (Cole et al., 2018), such as a 
reduction in intellectual function and a weakened grip, supports the 
credibility of brain age as a predictive ageing biomarker. At the same 
time, research on brain age is increasingly incorporating multiple 
magnetic resonance imaging (MRI) modalities to depict brain health, 
which can help achieve smaller MAEs and accurately depict healthy 
brain morphology (Baecker et al., 2021; Rokicki et al., 2021).

Various age-related factors constantly affect the entire brain, with 
the most obvious being the discovery of a decrease in volume and 
cortical thickness (Weerasekera et al., 2023) in specific brain regions as 
age increases. Many studies use T1-weighted imaging (T1WI) (Soumya 
Kumari and Sundarrajan, 2024; Peng et al., 2021), which reflects brain 
structure, to construct brain age models, whether in machine learning or 
deep learning. However, a single mode could not fully describe the aging 
state of the brain, but in the face of clinical applications, it could not 
endlessly scan MRI. Study had suggested that the combination of T1WI 
and diffusion tensor imaging (DTI) holds promise as the optimal pairing 
(Cole, 2020), of which was because T1WI primarily reflected gray 
matter atrophy, while DTI mainly captured microstructural damage in 
white matter, offering complementary insights for a refined character
ization of brain aging.

In summary, the purpose of this paper is to build a new brain age 
estimation framework based on brain structure and white matter in
formation based on multimodal MRI data and two-centers data from 
healthy individuals. The goal is to comprehensively characterize the 
healthy brains of people and provide accurate assessment strategies for 
brain aging in populations. Based on the experimental purpose, we 
designed a data screening and experimental process within the database 
(Fig. 1).

2. Materials and methods

2.1. Dataset

We followed the principles proposed by the reporting guideline of 
the Strengthening the Reporting of Observational Studies in Epidemi
ology (STROBE). Neuroimaging data were acquired using 3.0 Tesla MRI 
scanner with the same model (General Electric 750 W, Milwaukee, WI, 
USA) in this multicenter study. Data from the study were acquired from 

2020 to 2022. The data used for this analysis was derived from the 
following databases: 

(1) Baseline and follow-up clinical data were collected from the 
KaiLuan study and the Multi-modality MEdical imaging sTudy 
bAsed on the KaiLuan Study (META-KLS) (Sun et al., 2023). 
KaiLuan Research and the META-KLS were approved by the 
Medical Ethics Committee of KaiLuan General Hospital (IRB 
numbers 2008 No.1 and 2021002). Written informed consent was 
obtained from each participant. We selected over 1200 healthy 
individuals without mental illness and ultimately included data 
from 900 healthy individuals based on image quality. The specific 
parameters for T1WI were as follows: a total of 170 slices were 
acquired with a slice thickness of 1 mm; repetition time (TR)/ 
echo time (TE) = 6.7 ms/2.6 ms; flip angle = 15◦; field of view 
(FOV) = 256 × 256 mm2; and matrix = 256 × 256. For DTI, the 
specific parameters were as follows: data were acquired along 15 
directions with b = 1000 mm2/s; a total of 29 slices were scanned 
with a slice thickness of 5 mm; TR/TE = 8000 ms/97.9 ms; flip 
angle = 90◦; FOV = 240 × 240 mm2; and matrix = 128 × 130. For 
more detailed information on imaging acquisition parameters in 
the META-KLS cohort, please refer to the supplementary mate
rials in the database (https://bmjopen.bmj. 
com/content/13/2/e067283.long#supplementary-materials).

(2) Complete three dimensional (3D)-T1 MRI and DTI scans were 
obtained from 105 healthy individuals (age from 30-60 years) 
recruited from the External Center in Beijing (Data Source: Bei
jing Friendship Hospital, Beijing, China). The specific parameters 
for T1WI were as follows: a total of 192 slices were acquired with 
a slice thickness of 1 mm; repetition time (TR)/echo time (TE) =
2530 ms/2.98 ms; flip angle = 7◦; field of view (FOV) = 256 ×
256 mm2; and matrix = 256 × 256. For DTI, the parameters were 
as follows: data were acquired along 64 directions with b = 1000 
mm2/s; a total of 64 slices were scanned with a slice thickness of 
2 mm; TR/TE = 8500 ms/63 ms; flip angle = 90◦; FOV = 224 ×
224 mm2; and matrix = 128 × 128.

The inclusion criteria for this study were as follows: participants 
were selected from the aforementioned two cohorts with complete 
clinical baseline data; they underwent comprehensive MRI scans, 
including T1-weighted imaging (T1WI) and diffusion tensor imaging 
(DTI); and they had no history of major neurological or psychiatric 

Fig. 1. Overall scheme design diagram. In this study, we mainly utilized data from different centers to jointly construct a brain age model and validated it.
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disorders, such as stroke, dementia, or neuropsychiatric conditions. The 
exclusion criteria were as follows: participants with incomplete or 
missing images that could not be processed; those missing essential 
clinical data, such as gender or age; and those with conditions such as 
cancer, limb loss, or major trauma affecting the central nervous system.

2.2. Image processing

This study mainly used 3D-T1 and DTI sequences from healthy in
dividuals. Regardless of the database type, we implemented a stan
dardized image data processing procedure to minimize variations 
between sites. For image processing, we mainly used tools such as FSL 
and FreeSurfer. We cropped and registered T1 images to the Montreal 
Neurological Institute 152 (MNI152) “non-linear 6th generation” stan
dard space T1 Template (https://www.bic.mni.mcgill.ca/ServicesAtla 
ses/ICBM152NLin6). The regions of interest (ROIs) were defined in 
the MNI152 space, combining parcellations from the HarvardOxford 
cortical and subcortical atlases. Cortical reconstruction, region of in
terest (ROI) segmentation, and metric calculation were conducted uti
lizing Freesuffer. The segmentation outcomes were then subjected to 
manual verification for accuracy. For DTI images, we used the eddy tool 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/EDDY). Eddy current and head 
motion artifacts were removed, and abnormal slices were corrected. The 
mean value of four DTI metrics—fractional anisotropy (FA), mean 
diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD)— 
were calculated on each white matter fiber to represent the fiber 
situation.

2.3. Model establishment

To constructed a brain age prediction model using 377 metrics 
extracted from T1 and DTI images. This included the volume of 45 
subcortical regions, the area and thickness of 68 cortical regions (34 per 
brain hemisphere), and the mean FA, MD, axial diffusivity (AD), and 
radial diffusivity (RD) of 49 brain regions. The cerebral cortex was 
reconstructed and subcortical and cortical metrics were calculated using 
Freesurfer. The mean DTI metrics were calculated based on the brain 
regions delineated in the International Consortium for Brain Mapping 
DTI-81 white-matter labels atlas.

In this study, the relationship between the age and the metrics 
extracted from MRI images was assumed to be linear. Therefore, we 
employed multiple linear regression models to investigate the extent to 
which MRI metrics influence the brain aging process. Before establishing 
the regression model, all indicators were standardized by the Z-score, 
thus the importance of each metric in predicting brain age can be 
compared according to the magnitude of the regression coefficients.

Due to collinearity of metrics, brain age prediction models were built 
using Least Absolute Shrinkage and Selection Operator (LASSO) 
regression. The objective function of Lasso regression is based on ordi
nary least squares regression, augmented by an additional L1 regulari
zation term:

minβ0 ,β1 ,⋯,βp

(
∑n

i=1

(
yi − β0 −

∑p
j=1βjxij

)2
+α

∑n
j=1

(
βj

))

, where α is 

the regularization parameter, which controls the intensity of regulari
zation, and βj is the regression coefficient. Due to the nature of L1 reg
ularization, Lasso automatically filters out the most important variables 
and reduces the coefficients of other irrelevant or redundant variables to 
0. Therefore, Lasso is particularly suitable for high-dimensional datasets, 
especially when the number of independent variables is larger than the 
sample size.

The full set of subjects was randomly divided into a training set and a 
validation set (8:2). In the training set, nine-tenths of the samples were 
used to build multiple models with varying alpha values in the range of 
0.01 to 1, and the optimal alpha was determined by assessing the MAE of 
the model’s predicted age on the remaining samples. After determining 

the model in the training set, we use the data from the testing set to test 
it.

To better visualize the impact of DTI metrics on the brain age model, 
we assigned the FA and MD values to each voxel of the image and per
formed linear regression of age at the voxel level. The distribution of 
MAE from the voxel-wise regression analysis was then used to further 
illustrate the association between DTI metrics and aging.

3. Results

After screening, we ultimately selected 1005 healthy individuals 
(Supplementary 1) for modelling, by randomization, comprising a 
training set with 804 subjects and a test set with 201 subjects 
(Supplementary 2). The brain volume and white matter related features 
of each individual were calculated from complete T1-w MRI and DTI.

One-tenth of the training set sample is selected for validation, and 
the rest is used to train the model. By adjusting the parameters of LASSO 
regression, we ultimately chose the model with the smallest MAE in 
validation set (Fig. 2) to represent the final result. In the training set, the 
MAE consistently decreased as the alpha reduced, while in the validation 
set, the MAE reached its minimum at an alpha value of 0.06. At this 
point, the lasso regression yielded 27 non-zero coefficients, resulting in a 
MAE of 3.87 and R2 of 0.84 (p < 0.05) in the training set and 4.94 and R2 

of 0.60 (p < 0.05) in the validation set. Six subcortical regions influenced 
the prediction of brain age (Table 1). The volume of the left thalamus, 
left putamen, left cerebellum cortex, right thalamus, and mid-anterior 
corpus callosum were negatively correlated with brain age, and the 
volume of the left thalamus exhibited the greatest effect on the predic
tion of age in all metrics. The optic chiasm volume was positively 
correlated with brain age, but the magnitude of its regression coefficient 
was small. Cortical and regional volumes exhibited a negative correla
tion between brain age and the degree of correlation (Fig. 3). Mean
while, the damage to the white matter fiber transport tract is also 
reflected in the contribution to brain age regression, with specific fiber 
bundles highlighted in Fig. 4.

In this subsection, models for brain age prediction were built at the 
voxel level. Subcutaneous volume, as well as cortical thickness and area, 
were excluded from the modelling process, as discussing them as the 
single voxel level is not meaningful. The FA and MD were available for 
each voxel of each subject, and a linear regression model aiming at 
assessing physiological age was built. The average MAE of all voxels was 
9.76 ± 0.08, which is significantly higher than the result based on 
measures extracted from brain structures. Fig. 5 illustrates the spatial 

Fig. 2. Illustrates the curves of mae with alpha for the training sets. in the 
training set, the data is randomly divided equally, with one portion used to 
construct the model and the other portion used to form a direct relationship 
between the regularization parameter alpha and mae.
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distribution of MAE at the voxel level. The lower MAE observed in the 
corpus callosum, caudate, and hippocampus suggests a stronger asso
ciation of these regions with the aging process of the brain, aligning with 
previous findings.

4. Discussion

In this study, we established a multimodal imaging brain age model 
based on brain MRI, which can effectively predict the true brain age of 
individuals. The parameters of this model are all obtained based on 

brain structure or white matter fiber link parameters, which means that 
this model can accurately describe the biological age of the brain based 
on information from the cortex and white matter. At the same time, we 
also used multi-center data for validation to demonstrate the general
izability of the model.

Brain age (Soumya Kumari and Sundarrajan, 2024; Wilms et al., 
2022; Wen et al., 2024) is more than a simple mathematical model based 
on brain MRI, it serves as a comprehensive assessment of brain health. It 
is increasingly recognized as a widely applied imaging-based biomarker 
for neural aging and a potential proxy for brain integrity. Research has 
shown that MRI can reflect aging at the level of both functional and 
structural brain connectivity (Damoiseaux, 2017). Meanwhile, a study 
based on the United Kingdom Biobank showed that in multimodal im
aging, T1 based cortical imaging parameters and DTI derived related 
imaging parameters contribute the most to the brain aging model (Cole, 
2020), undoubtedly demonstrating the enormous potential of 3D-T1-w 
MRI combined with DTI to accurately predict brain age. Meanwhile, 
multimodal imaging studies have shown a small correlation between 
functional connectivity features and brain age (de Lange et al., 2020). 
Recently, researchers have analyzed the brain age formula from the 
perspective of genetic association (Satizabal et al., 2019; Brouwer et al., 
2022), and unsupervised methods have also been applied to explore 
brain aging (Yang et al., 2024). It is well known that MRI is time- 
consuming and costly, and therefore cannot be included as a scanning 
modality for brain assessments without limitations. Therefore, the best 
modality combination for predicting brain age using MRI may be T1-w 
and DTI, given their ability to reflect indicators with high age correla
tion and sensitivity.

According to previous studies, multiple prediction methods can 
accurately predict brain age. For instance, M. Tanveer and colleagues 
(Ganaie et al., 2023) categorized deep learning architectures according 
to input data based on slices and voxels as well as according to models 
for estimating brain age. Then, they conducted comparisons across the 
datasets utilized, simultaneously assessing performance, data volumes, 
and patterns. Meanwhile, a novel approach (Sone and Beheshti, 2022) 
has been developed to calculate “brain age” based on neuroimaging at 
the local level within the brain. This targeted approach offers more 
comprehensive spatial insights into the structural patterns of brain aging 

Table 1 
Demonstrates the non-zero regression coefficients obtained from lasso regres
sion using the optimal alpha.

Metrics Coef.

1 Volume of thalamus (left) − 2.4032
2 Average FA of genu of corpus callosum − 1.7080
3 Average RD of unclassified region 1.3655
4 Average AD of fornix 1.1223
5 Average AD of cingulum gyrus (right) 1.1217
6 Average AD of posterior thalamic radiation (right) 0.9176
7 Average FA of superior cerebellar peduncle (left) 0.8367
8 Thickness of superior frontal (left) − 0.6633
9 Volume of putamen (left) − 0.6626
10 Thickness of superior temporal (left) − 0.4951
11 Average AD of cingulum hippocampus (left) 0.4293
12 Average FA of unclassified region − 0.3983
13 Thickness of medial orbitofrontal (left) − 0.3197
14 Average FA of superior cerebellar peduncle (right) 0.2462
15 Thickness of rostral anterior cingulate (left) − 0.1522
16 Thickness of insula (left) − 0.1439
17 Average AD of superior longitudinal fasciculus (left) 0.1301
18 Area of middle temporal (right) − 0.1251
19 Volume of Cerebellum-Cortex (left) − 0.1128
20 Volume of Thalamus (right) − 0.0929
21 Average AD of sagittal stratum 0.0813
22 Volume of optic-chiasm 0.0621
23 Average AD of external capsule (right) 0.0580
24 Average AD of anterior limb of internal capsule (left) 0.0567
25 Thickness of insula (right) − 0.0472
26 Volume of CC_mid_anterior − 0.0389
27 Thickness middle temporal (left) − 0.0120

Fig. 3. Illustrate the effect of thickness and area of each region of the cerebral cortex on predicted age. after screening by lasso regression, the thickness of seven 
cortical regions was retained as a predictor variable, and except for the right insula, the remaining six regions were in the left hemisphere. as can be seen from the 
regression coefficients, cortical thickness and predicted age were always negatively correlated. the area of only one cortical region, the right middle temporal, was 
retained and had little effect on predicting brain age.
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than earlier techniques. Using brain MRI data from more than 3000 
healthy subjects, a U-Net model was built, progressively creating a 
customized 3D brain age prediction map. It is interesting to note that 
they achieved a higher accuracy, with a MAE of 7 years, in the peri
ventricular and prefrontal cortical areas. Furthermore, they imple
mented an image voxel analysis-based phase to address age-related 
biases and local brain age disparities. A simple fully convolutional 
network (SFCN) (Peng et al., 2021; Gong et al., 2021), based on the VGG 
(Visual Geometry Group) Net and featuring a fully convolutional 
structure, has gained prominence in brain age analysis and challenge 
competitions. This model reduces the number of parameters to about 3 
million whilst retaining a smaller number of layers. Lastly, one of the 
most promising models is the completely linked model, which signifi
cantly reduces the amount of space and processing resources needed. 

This model employs a deep convolutional neural network architecture to 
successfully utilize T1-w structural scans and reliably estimate brain 
age.

Compared to other well-known deep network designs, SFCN has 
fewer parameters, making it more suited for smaller file sizes and 3D 
volume data. Network development is integrated with many techniques, 
such as data augmentation, regularization of early training models, 
model assembly, and prediction error reduction, to increase efficiency. 
Simultaneously, the model generates a fully operational framework 
capable of managing diverse data quantities. The SFCN system can use 
dropout layers and information gain to accomplish the maximum MAE 
training under specific conditions. The constructed model employs one 
of three normalization techniques. The work of Iman Beheshti (Beheshti 
et al., 2019) presents a straightforward and efficient technique to reduce 

Fig. 4. Shows the effect of the average dti metrics for the white matter regions. in critical white matter regions (except unclassified region), all md and rd metrics 
were discarded in the lasso regression, and ad in 8 regions and fa in 4 regions were retained. among them, the average ad of fornix, cingulum and posterior thalamic 
radiation and the average fa of genu of corpus callosum and left superior cerebellar peduncle were more influential in predicting brain age. notably, both average rd 
and fa for unclassified region were retained in the lasso regression, especially mean rd, which ranked fourth in importance among all indicators.

Fig. 5. Distribution of MAE in regression analysis at the voxel level.
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prediction bias in frameworks for estimating brain age. This approach 
highlights the connection between the reliability of statistical reasoning 
and the accuracy of forecasting brain age estimate frameworks though 
regression models. It achieves this by combining real age during training 
to counteract bias. The integration of this bias mitigation strategy into a 
machine learning-based brain age framework produced a notably robust 
framework for estimating brain age, with a remarkable correlation (R2) 
of 0.81 between the anticipated and real brain ages. When the technique 
was used on a separate group of seventy-five individuals with good 
cognitive health, the average absolute error was a remarkable 2.66 
years. Without deviation correction, the R2 will drop to 0.24. The 
simulation further demonstrates the efficacy of this approach in 
reducing prediction errors, particularly within the framework’s control 
environment. In healthy individuals, reviews (Baecker et al., 2021; 
Soumya Kumari and Sundarrajan, 2024; More et al., 2023; Cole and 
Franke, 2017; Beheshti et al., 2022) utilizing voxel-based morphometry 
to determine brain age claimed prediction errors of 5–8 years. Even 
though the prediction error of the test set was less than five years, we 
were still able to drop the average MAE to 3.87 years in this work by 
utilizing cortical structural information and DTI data, which is the 
lowest MAE that can be achieved based on neuroimaging parameters at 
present. Our model combined data from two centers, with an 80/20 
random split for training and validation. Training and parameter tuning 
were restricted to the training set, ensuring that the validation set was 
exclusively used for unbiased performance assessment (Varoquaux and 
Cheplygina, 2022). While this approach demonstrates robust internal 
validation, we acknowledge the lack of external multi-centres’ valida
tion as a limitation. External validation on independent multi-centres’ 
datasets would provide a stronger demonstration of the model’s gener
alizability and clinical applicability (Luo et al., 2016). Future studies 
will prioritize external validation to further establish the robustness of 
our findings.

As shown in the results of this article, the prominent features in 
structural imaging are the reduction of volume and thinning of the 
cortex, which is in line with mainstream academic views (MacDonald 
and Pike, 2021). It is important to note that the left hemisphere of the 
brain experiences the majority of the effects of cortical thinning. Addi
tionally, previous research could indicate that the left hemisphere, 
which is often the hemisphere predominately used for language and 
motor functions, may be more susceptible to neurodegenerative alter
ations associated with aging and illness (Minkova et al., 2017; Michaelis 
et al., 2020; Shan et al., 2005). The left thalamus volume demonstrated 
the most significant effect on brain age prediction, consistent with its 
established role in aging-related sensorimotor integration, cognitive 
functions, and global brain connectivity (Fama and Sullivan, 2015). As a 
critical information relay hub, the thalamus is particularly vulnerable to 
age-related structural changes (Tullo et al., 2019), explaining its 
prominent predictive power in our model. However, the substantial ef
fect of the thalamus does not diminish the contributions of other regions, 
such as the prefrontal cortex and temporal lobe (Filippi et al., 2023). 
These areas are well-known to undergo significant age-related atrophy 
and play crucial roles in higher-order cognitive processes (Naya et al., 
2017), including executive functions, memory, and emotion regulation. 
While their impact on age prediction may appear less pronounced in our 
analysis, this could be attributed to the distributed and interconnected 
nature of these regions, resulting in their contributions being captured 
more diffusely across multiple features. Additionally, methodological 
factors, such as feature aggregation and regularization (Vinga, 2021) in 
the model, may have influenced the relative importance of these regions. 
The incorporation of DTI metrics, particularly FA and MD, aimed to 
capture microstructural brain changes associated with aging, com
plementing the macroscopic insights provided by structural MRI. Our 
findings revealed that the most pronounced DTI changes occurred in the 
white matter surrounding the hippocampus, a region critical for memory 
and cognitive functions. These results align with prior research high
lighting hippocampal vulnerability to age-related degeneration. 

Meanwhile, damage to white matter connections mainly occurs around 
the hippocampus, for example in the cingulate gyrus. This is also 
consistent with earlier scholarly opinions that show significant and early 
aging-related alterations, underscoring the importance of studying their 
role in aging for potential therapeutic implications (Fan et al., 2019; 
Archer et al., 2023; Bubb et al., 2018). White matter integrity (Tian 
et al., 2017; Li et al., 2022), as another aspect of white matter, undergoes 
fluctuations as we age, particularly in regions like the genu of the corpus 
callosum and postmolar thalamic radiation. By identifying region- 
specific microstructural alterations, our study underscores the value of 
DTI in enhancing brain age prediction models and offers a nuanced 
perspective compared to approaches that focus on global metrics (Hsieh 
and Yang, 2022; Beck et al., 2021). Future studies could further explore 
the interplay between hippocampal microstructure and brain aging 
using multimodal imaging integration (Metzler-Baddeley et al., 2019). 
In summary, the regions with significant structural and connectivity 
changes associated with aging are essentially covered by our brain age 
model.

The structural brain changes observed in this study, such as re
ductions in cortical thickness and alterations in white matter integrity, 
are consistent with known neurobiological mechanisms of aging. A 
major hallmark of neuroaging is the atrophy of brain tissue, particularly 
in the reduction of gray and white matter volumes. As people age, 
cortical thickness decreases, especially in regions linked to cognitive 
functions, such as the prefrontal cortex and temporal lobe (Proskovec 
et al., 2020). These structural changes reflect neuronal and synaptic loss, 
as well as myelin degradation and increased neuroinflammation 
(Andronie-Cioara et al., 2023). This atrophy is often accompanied by a 
decline in cognitive functions, particularly executive functions, mem
ory, and attention (Price and Duman, 2020; Du et al., 2023). Brain age 
prediction models quantify these structural changes to estimate an in
dividual’s biological brain age, providing a direct indicator of brain 
aging.

White matter plays a crucial role in transmitting neural signals, and 
as individuals age, the integrity of white matter fiber tracts significantly 
declines. DTI studies show that white matter integrity decreases with 
age (Elmers et al., 2023; Molloy et al., 2021; Groechel et al., 2023), 
particularly in areas related to cognitive functions, such as the corpus 
callosum, hippocampus, and cingulate gyrus. And brain age prediction 
models that incorporate the diffusion characteristics of white matter can 
detect these microstructural degradations, thereby serving as markers of 
neuroaging. As the aging process progresses, neuroinflammation be
comes one of the core driving factors of brain degenerative changes 
(Voet et al., 2019). Activation of microglial cells and chronic inflam
matory responses could damage neurons and accelerate brain aging. 
Neuroinflammation not only affects synaptic function (Lecca et al., 
2022) but also compromises the integrity of the blood–brain barrier 
(Candelario-Jalil et al., 2022), allowing more harmful substances to 
enter the brain (Mowry et al., 2021; Parsi et al., 2024), which further 
exacerbates inflammation and neuronal damage, leading to various 
neurodegenerative diseases. The information extracted from magnetic 
resonance signals (Wang et al., 2017) reflects, to a certain extent, the 
correlation with neuroimmune activities in the brain, which represents a 
potential biological link for the brain age model. While most brain age 
research have employed MRI data, DTI has been overlooked despite its 
capacity to detect microstructural changes that are important in aging 
and age-related illnesses. Recent research had shown that DTI has the 
ability to estimate brain age (Wen et al., 2024). Advanced reconstruction 
approaches, such as multishell free-water correction, have greatly 
improved age prediction accuracy by separating white matter signals 
from extracellular fluid (Nemmi et al., 2022). Furthermore, methodol
ogies like 3D convolutional neural networks (3D-CNN) have shown the 
capability to predict brain age using DTI features alone (Wang et al., 
2023), while low-rank tensor fusion approaches have successfully inte
grated DTI into multimodal frameworks, improving both predictive 
accuracy and interpretability (Liu et al., 2024). Clinically, DTI-based 
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brain age estimation (Sone et al., 2024) had been applied in diverse 
conditions such as epilepsy and interictal psychosis, demonstrating its 
utility in identifying deviations in white matter aging that are linked to 
neurological and psychiatric disorders. These findings highlight the 
unique contributions of DTI to understanding the complex mechanisms 
of brain aging, particularly in capturing subtle changes in white matter 
that may precede macrostructural alterations observed with conven
tional MRI. By integrating DTI into brain age models, future studies 
could leverage its sensitivity to microstructural changes, thereby 
enriching the predictive power and clinical applicability of brain age as 
a biomarker. This emphasizes how crucial it is to develop methodolog
ical frameworks that use DTI in addition to other imaging modalities in 
order to more accurately depict the complex nature of brain aging.

Studies have shown that individuals from different ethnic back
grounds (Moonen et al., 2022; Manly and Mungas, 2015) exhibit distinct 
patterns of brain aging, likely due to a combination of genetic, envi
ronmental, and lifestyle factors (Amariglio et al., 2020; Elbasheir et al., 
2024; Munro et al., 2023). Meanwhile, socioeconomic status (Busby 
et al., 2023; Avila-Rieger et al., 2022) is also an important factor 
affecting the aging process. However, by focusing on an Asian popula
tion, this study provides new insights into the aging processes specific to 
this demographic, addressing a gap in the literature dominated by 
studies on European and North American populations.

We conducted cross center data collection and increased the model’s 
generalizability through random grouping, but this study has a few 
limitations. Firstly, our brain atlas template was not segmented based on 
Asians, because in future research, we need to unify image processing 
methods, so we can only choose a unified segmentation template. Sec
ondly, our MAE has not reached the minimum term under current 
investigation. This is because we abandoned deep learning modeling 
methods with black box effects (Haight and Eshaghi, 2023) and opted 
for traditional machine learning methods that are scalable and highly 
applicable. This highlights the positive significance of various brain 
regions for aging. Thirdly, due to material limitations, our brain age 
model is more applicable to the Asian population. We will promote its 
use in future research to enhance its generalizability. Fourth, we have 
observed that a greater number of visual patterns improves the accuracy 
of brain age regression (Niu et al., 2020); however, as indicated by the 
study above and the constraints of the databases, we have selected the 
two modes that provide the most contributions (reflecting brain fibers 
and structure). Simultaneously, studies utilizing additional modalities, 
greater sample sizes, and sophisticated data processing techniques are 
being conducted. The choice of analytical techniques is the subject of the 
sixth point. While deep learning can dramatically lower the MAE, it 
comes at the cost of interpretability, visualization, and control over
fitting. Future research is needed to identify machine learning systems 
that are even more efficient. A potential limitation of this study lies in 
the variability introduced by the use of imaging data from multiple sites 
and scanner types. Additionally, differences in imaging protocols, such 
as sequence parameters and magnetic field strengths, may have influ
enced the generalizability of our findings. However, future studies could 
benefit from further standardization of imaging protocols or advanced 
harmonization techniques to better account for inter-site variability. 
Meanwhile, more interpretable work in the future should be included in 
the study of brain age models.

5. Conclusion

Multimodal brain MRI can accurately depict the degree of brain 
aging. The various structural parameters based on T1-w imaging and the 
parameters of various white matter fibers can effectively predict the 
brain age of healthy individuals. These parameters constitute brain age 
models through machine learning methods and are applicable to refined 
evaluate the degree of brain aging.

6. Declarations

a) Ethics approval and consent to participate.
The study has been approved by the Medical Ethics Committee of 

Kailuan General Hospital (IRB number: 2008 No. 1 and 2021002, 
respectively). All the procedures will be performed in accordance with 
the principles of the Declaration of Helsinki. Written informed consent 
must be obtained from each participant.

b) Availability of data and materials.
All data are available when are needed. The data can be accessed 

according to the request from corresponding authors.
c) Declaration of conflicting interests.
The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper.

d) Funding
This work was supported by Grant No. 61931013, 62171297, 

82,202,258 and 82,302,284 from the National Natural Science Foun
dation of China, 7,242,267 from Beijing Natural Science Foundation, 
No. [2015] 160 from the Beijing Scholars Program, National Key R&D 
Program of China (No.2023YFC2411100), National Key R&D Program 
of China (No.2023YFC2411104), Capital’s Funds for Health Improve
ment and Research (No.2022-1-1111), and Space Medical Experiment 
Project of China Manned Space Program (No. HYZHXM01012). At the 
same time, this work has also received support from the China Schol
arship Council (202308110230).

g) Declaration of Generative AI and AI-assisted technologies in the 
writing process

We did not use AI-assisted technologies in the writing process.

CRediT authorship contribution statement

Xinghao Wang: Writing – review & editing, Writing – original draft, 
Visualization, Validation, Software, Resources, Investigation, Funding 
acquisition, Formal analysis, Data curation, Conceptualization. Zaimin 
Zhu: Writing – review & editing, Writing – original draft, Visualization, 
Validation, Software, Project administration, Funding acquisition, 
Conceptualization. Xinyuan Xu: Writing – original draft, Visualization, 
Software, Resources, Methodology, Funding acquisition, Formal anal
ysis, Data curation. Jing Sun: Writing – original draft, Validation, 
Software, Resources, Formal analysis, Data curation. Li Jia: . Yan 
Huang: Writing – original draft, Visualization, Supervision, Software, 
Resources, Data curation, Conceptualization. Qian Chen: Writing – re
view & editing, Writing – original draft, Visualization, Supervision, 
Software, Resources, Investigation, Funding acquisition, Formal anal
ysis, Data curation. Zhenghan Yang: Validation, Supervision, Re
sources, Methodology, Funding acquisition, Data curation. Pengfei 
Zhao: Writing – original draft, Supervision, Software, Methodology, 
Formal analysis, Data curation, Conceptualization. Xinyu Huang: 
Writing – original draft, Validation, Supervision, Resources, Project 
administration, Methodology, Formal analysis, Data curation. Marcin 
Grzegorzek: Writing – original draft, Visualization, Validation, Re
sources, Project administration, Methodology, Data curation, Concep
tualization. Yong Liu: Writing – original draft, Validation, Resources, 
Methodology, Funding acquisition, Data curation, Conceptualization. 
Han Lv: Writing – review & editing, Writing – original draft, Visuali
zation, Validation, Supervision, Software, Project administration, 
Funding acquisition, Data curation, Conceptualization. Fangrong Zong: 
Writing – review & editing, Writing – original draft, Visualization, 
Validation, Supervision, Resources, Project administration, Investiga
tion, Funding acquisition, Formal analysis, Data curation, Conceptuali
zation. Zhenchang Wang: Writing – review & editing, Writing – 
original draft, Visualization, Validation, Supervision, Resources, Project 
administration, Funding acquisition, Data curation, Conceptualization.

X. Wang et al.                                                                                                                                                                                                                                   Brain Research 1851 (2025) 149458 

7 



Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgement

Thank you very much to the META-KLS queue staff for their exten
sive work.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.brainres.2025.149458.

Data availability

Data will be made available on request.

References

Amariglio, R.E., Buckley, R.F., Rabin, J.S., Papp, K.V., Quiroz, Y.T., Mormino, E.C., et al., 
2020. Examining cognitive decline across black and white participants in the 
harvard aging brain study. J. Alzheimer’s Disease : JAD. 75 (4), 1437–1446.

Andronie-Cioara, F.L., Ardelean, A.I., Nistor-Cseppento, C.D., Jurcau, A., Jurcau, M.C., 
Pascalau, N., et al., 2023. Molecular mechanisms of neuroinflammation in aging and 
alzheimer’s disease progression. Int. J. Mol. Sci. 24 (3).

Archer, D.B., Schilling, K., Shashikumar, N., Jasodanand, V., Moore, E.E., Pechman, K.R., 
et al., 2023. Leveraging longitudinal diffusion MRI data to quantify differences in 
white matter microstructural decline in normal and abnormal aging. Alzheimer’s & 
Dementia (amsterdam, Netherlands). 15 (4), e12468.

Avila-Rieger, J., Turney, I.C., Vonk, J.M.J., Esie, P., Seblova, D., Weir, V.R., et al., 2022. 
Socioeconomic status, biological aging, and memory in a diverse national sample of 
older us men and women. Neurology 99 (19), e2114–e2124.

Baecker, L., Garcia-Dias, R., Vieira, S., Scarpazza, C., Mechelli, A., 2021. Machine 
learning for brain age prediction: Introduction to methods and clinical applications. 
EBioMedicine 72, 103600.

Beck, D., de Lange, A.G., Maximov, I.I., Richard, G., Andreassen, O.A., Nordvik, J.E., 
et al., 2021. White matter microstructure across the adult lifespan: A mixed 
longitudinal and cross-sectional study using advanced diffusion models and brain- 
age prediction. Neuroimage 224, 117441.

Beheshti, I., Nugent, S., Potvin, O., Duchesne, S., 2019. Bias-adjustment in neuroimaging- 
based brain age frameworks: A robust scheme. NeuroImage Clinical. 24, 102063.

Beheshti, I., Ganaie, M.A., Paliwal, V., Rastogi, A., Razzak, I., Tanveer, M., 2022. 
Predicting brain age using machine learning algorithms: a comprehensive 
evaluation. IEEE J. Biomed. Health Inform. 26 (4), 1432–1440.

Brouwer, R.M., Klein, M., Grasby, K.L., Schnack, H.G., Jahanshad, N., Teeuw, J., et al., 
2022. Genetic variants associated with longitudinal changes in brain structure across 
the lifespan. Nat. Neurosci. 25 (4), 421–432.

Bubb, E.J., Metzler-Baddeley, C., Aggleton, J.P., 2018. The cingulum bundle: Anatomy, 
function, and dysfunction. Neurosci. Biobehav. Rev. 92, 104–127.

Busby, N., Newman-Norlund, S., Sayers, S., Newman-Norlund, R., Wilmskoetter, J., 
Rorden, C., et al., 2023. Lower socioeconomic status is associated with premature 
brain aging. Neurobiol. Aging 130, 135–140.

Candelario-Jalil, E., Dijkhuizen, R.M., Magnus, T., 2022. Neuroinflammation, stroke, 
blood-brain barrier dysfunction, and imaging modalities. Stroke 53 (5), 1473–1486.

Cole, J.H., 2020. Multimodality neuroimaging brain-age in UK biobank: relationship to 
biomedical, lifestyle, and cognitive factors. Neurobiol. Aging 92, 34–42.

Cole, J.H., Franke, K., 2017. Predicting age using neuroimaging: innovative brain ageing 
biomarkers. Trends Neurosci. 40 (12), 681–690.

Cole, J.H., Ritchie, S.J., Bastin, M.E., Valdés Hernández, M.C., Muñoz Maniega, S., 
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