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ARTICLE INFO ABSTRACT

Keywords: Brain aging is an inevitable process in adulthood, yet there is a lack of objective measures to accurately assess its
Brain age extent. This study aims to develop brain age prediction model using magnetic resonance imaging (MRI), which
MRI includes structural information of gray matter and integrity information of white matter microstructure.
E:;Lralization Multiparameter MRI was performed on two population cohorts. We collected structural MRI data from T1- and
Aging T2-sequences, including gray matter volume, surface area, and thickness in different areas. For diffusion tensor

imaging (DTI), we derived four white matter parameters: fractional anisotropy, mean diffusivity, axial diffu-
sivity, and radial diffusivity. To achieve reliable brain age prediction based on structure and white matter
integrity, we employed LASSO regression. We successfully constructed a brain age prediction model based on
multiparameter brain MRI (Mean absolute error of 3.87). Using structural and diffusion metrics, we identified
and visualized which brain areas were notably involved in brain aging. Simultaneously, we discovered that
lateralization during brain aging is a significant factor in brain aging models. We have successfully developed a
brain age estimation model utilizing white matter and gray matter metrics, which exhibits minimal errors and is

suitable for adults.

1. Introduction

Aging and its related degenerative diseases, particularly those
affecting the central nervous system, pose significant challenges for in-
dividuals, regions, and countries globally. However, the lack of effective
evaluation indices for overall or organ aging in the human body un-
doubtedly hinders the quantitative assessment of biological status and
degenerative changes. The search for reliable indicators of biological
age has been ongoing for nearly forty years, with the aim of objectively
evaluating the degree of biological development or aging. Current multi-
omics methods enable accurate age prediction based on various bio-
logical datasets (Jylhava et al., 2017). When studying the biological age
of the central nervous system, the concept of “brain age” (Mishra et al.,
2023), based on magnetic resonance imaging, has been proposed to non-
invasively evaluate the aging status of brain structure or function. The
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normal brain is utilized as a model to identify brain aging related
modifications to evaluate premature or late aging. Therefore, using
parameters derived from normal human brain images, a regression
model is established, labeled with the actual age. The complex, multi-
dimensional aging patterns of the brain are condensed into a single
numerical value referred to as “brain age” for each distinctive brain
image.

To prevent or postpone the onset and progression of neurodegener-
ative disorders, it is crucial to identify age-related health conditions as
soon as possible using the genuine anatomical structure of the brain. In
recent years, research on brain age has shown exponential growth
(Baecker et al., 2021). When developing a brain age model with healthy
individuals, the accuracy of the prediction model is evaluated using the
mean absolute error (MAE), representing the average absolute differ-
ence in brain age between subjects. For the assessment of brain age, the
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primary outcome of brain age prediction is the difference between an
individual’s predicted age and their actual age, which is called the
“brain age gap” (BAG). The fact that brain-age disparities strongly
correlate with other age-related measures (Cole et al., 2018), such as a
reduction in intellectual function and a weakened grip, supports the
credibility of brain age as a predictive ageing biomarker. At the same
time, research on brain age is increasingly incorporating multiple
magnetic resonance imaging (MRI) modalities to depict brain health,
which can help achieve smaller MAEs and accurately depict healthy
brain morphology (Baecker et al., 2021; Rokicki et al., 2021).

Various age-related factors constantly affect the entire brain, with
the most obvious being the discovery of a decrease in volume and
cortical thickness (Weerasekera et al., 2023) in specific brain regions as
age increases. Many studies use T1-weighted imaging (T1WI) (Soumya
Kumari and Sundarrajan, 2024; Peng et al., 2021), which reflects brain
structure, to construct brain age models, whether in machine learning or
deep learning. However, a single mode could not fully describe the aging
state of the brain, but in the face of clinical applications, it could not
endlessly scan MRI. Study had suggested that the combination of T1WI
and diffusion tensor imaging (DTI) holds promise as the optimal pairing
(Cole, 2020), of which was because T1WI primarily reflected gray
matter atrophy, while DTI mainly captured microstructural damage in
white matter, offering complementary insights for a refined character-
ization of brain aging.

In summary, the purpose of this paper is to build a new brain age
estimation framework based on brain structure and white matter in-
formation based on multimodal MRI data and two-centers data from
healthy individuals. The goal is to comprehensively characterize the
healthy brains of people and provide accurate assessment strategies for
brain aging in populations. Based on the experimental purpose, we
designed a data screening and experimental process within the database
(Fig. 1).

2. Materials and methods
2.1. Dataset

We followed the principles proposed by the reporting guideline of
the Strengthening the Reporting of Observational Studies in Epidemi-
ology (STROBE). Neuroimaging data were acquired using 3.0 Tesla MRI
scanner with the same model (General Electric 750 W, Milwaukee, WI,
USA) in this multicenter study. Data from the study were acquired from

Brain Research 1851 (2025) 149458

2020 to 2022. The data used for this analysis was derived from the
following databases:

(1) Baseline and follow-up clinical data were collected from the
KaiLuan study and the Multi-modality MEdical imaging sTudy
bAsed on the KaiLuan Study (META-KLS) (Sun et al., 2023).
KaiLuan Research and the META-KLS were approved by the
Medical Ethics Committee of KaiLuan General Hospital (IRB
numbers 2008 No.1 and 2021002). Written informed consent was
obtained from each participant. We selected over 1200 healthy
individuals without mental illness and ultimately included data
from 900 healthy individuals based on image quality. The specific
parameters for TIWI were as follows: a total of 170 slices were
acquired with a slice thickness of 1 mm; repetition time (TR)/
echo time (TE) = 6.7 ms/2.6 ms; flip angle = 15°; field of view
(FOV) = 256 x 256 mmz; and matrix = 256 x 256. For DTI, the
specific parameters were as follows: data were acquired along 15
directions with b = 1000 mmz/s; a total of 29 slices were scanned
with a slice thickness of 5 mm; TR/TE = 8000 ms/97.9 ms; flip
angle = 90°; FOV = 240 x 240 mm?; and matrix = 128 x 130. For
more detailed information on imaging acquisition parameters in
the META-KLS cohort, please refer to the supplementary mate-
rials in the database (https://bmjopen.bmj.
com/content/13/2/e067283.long#supplementary-materials).
Complete three dimensional (3D)-T1 MRI and DTI scans were
obtained from 105 healthy individuals (age from 30-60 years)
recruited from the External Center in Beijing (Data Source: Bei-
jing Friendship Hospital, Beijing, China). The specific parameters
for TIWI were as follows: a total of 192 slices were acquired with
a slice thickness of 1 mm; repetition time (TR)/echo time (TE) =
2530 ms/2.98 ms; flip angle = 7°; field of view (FOV) = 256 x
256 mm?; and matrix = 256 x 256. For DTI, the parameters were
as follows: data were acquired along 64 directions with b = 1000
mm?/s; a total of 64 slices were scanned with a slice thickness of
2 mm; TR/TE = 8500 ms/63 ms; flip angle = 90°; FOV = 224 x
224 mm?; and matrix = 128 x 128.

(2

—

The inclusion criteria for this study were as follows: participants
were selected from the aforementioned two cohorts with complete
clinical baseline data; they underwent comprehensive MRI scans,
including T1-weighted imaging (T1WI) and diffusion tensor imaging
(DTI); and they had no history of major neurological or psychiatric

Multimodal Image for Brain Age Prediction: From Asian Genetic Background
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Fig. 1. Overall scheme design diagram. In this study, we mainly utilized data from different centers to jointly construct a brain age model and validated it.
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disorders, such as stroke, dementia, or neuropsychiatric conditions. The
exclusion criteria were as follows: participants with incomplete or
missing images that could not be processed; those missing essential
clinical data, such as gender or age; and those with conditions such as
cancer, limb loss, or major trauma affecting the central nervous system.

2.2. Image processing

This study mainly used 3D-T1 and DTI sequences from healthy in-
dividuals. Regardless of the database type, we implemented a stan-
dardized image data processing procedure to minimize variations
between sites. For image processing, we mainly used tools such as FSL
and FreeSurfer. We cropped and registered T1 images to the Montreal
Neurological Institute 152 (MNI152) “non-linear 6th generation™ stan-
dard space T1 Template (https://www.bic.mni.mcgill.ca/ServicesAtla
ses/ICBM152NLin6). The regions of interest (ROIs) were defined in
the MNI152 space, combining parcellations from the HarvardOxford
cortical and subcortical atlases. Cortical reconstruction, region of in-
terest (ROI) segmentation, and metric calculation were conducted uti-
lizing Freesuffer. The segmentation outcomes were then subjected to
manual verification for accuracy. For DTI images, we used the eddy tool
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/EDDY). Eddy current and head
motion artifacts were removed, and abnormal slices were corrected. The
mean value of four DTI metrics—fractional anisotropy (FA), mean
diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD)—
were calculated on each white matter fiber to represent the fiber
situation.

2.3. Model establishment

To constructed a brain age prediction model using 377 metrics
extracted from T1 and DTI images. This included the volume of 45
subcortical regions, the area and thickness of 68 cortical regions (34 per
brain hemisphere), and the mean FA, MD, axial diffusivity (AD), and
radial diffusivity (RD) of 49 brain regions. The cerebral cortex was
reconstructed and subcortical and cortical metrics were calculated using
Freesurfer. The mean DTI metrics were calculated based on the brain
regions delineated in the International Consortium for Brain Mapping
DTI-81 white-matter labels atlas.

In this study, the relationship between the age and the metrics
extracted from MRI images was assumed to be linear. Therefore, we
employed multiple linear regression models to investigate the extent to
which MRI metrics influence the brain aging process. Before establishing
the regression model, all indicators were standardized by the Z-score,
thus the importance of each metric in predicting brain age can be
compared according to the magnitude of the regression coefficients.

Due to collinearity of metrics, brain age prediction models were built
using Least Absolute Shrinkage and Selection Operator (LASSO)
regression. The objective function of Lasso regression is based on ordi-
nary least squares regression, augmented by an additional L1 regulari-
zation term:

2
ming g, ...p, <Z?:1 (yi —Bo — Z;’Zlﬂjxij) +ad, ([3]«) >, where « is

the regularization parameter, which controls the intensity of regulari-
zation, and f; is the regression coefficient. Due to the nature of L1 reg-
ularization, Lasso automatically filters out the most important variables
and reduces the coefficients of other irrelevant or redundant variables to
0. Therefore, Lasso is particularly suitable for high-dimensional datasets,
especially when the number of independent variables is larger than the
sample size.

The full set of subjects was randomly divided into a training set and a
validation set (8:2). In the training set, nine-tenths of the samples were
used to build multiple models with varying alpha values in the range of
0.01 to 1, and the optimal alpha was determined by assessing the MAE of
the model’s predicted age on the remaining samples. After determining
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the model in the training set, we use the data from the testing set to test
it.

To better visualize the impact of DTI metrics on the brain age model,
we assigned the FA and MD values to each voxel of the image and per-
formed linear regression of age at the voxel level. The distribution of
MAE from the voxel-wise regression analysis was then used to further
illustrate the association between DTI metrics and aging.

3. Results

After screening, we ultimately selected 1005 healthy individuals
(Supplementary 1) for modelling, by randomization, comprising a
training set with 804 subjects and a test set with 201 subjects
(Supplementary 2). The brain volume and white matter related features
of each individual were calculated from complete T1-w MRI and DTI.

One-tenth of the training set sample is selected for validation, and
the rest is used to train the model. By adjusting the parameters of LASSO
regression, we ultimately chose the model with the smallest MAE in
validation set (Fig. 2) to represent the final result. In the training set, the
MAE consistently decreased as the alpha reduced, while in the validation
set, the MAE reached its minimum at an alpha value of 0.06. At this
point, the lasso regression yielded 27 non-zero coefficients, resulting in a
MAE of 3.87 and R? of 0.84 (p < 0.05) in the training set and 4.94 and R?
of 0.60 (p < 0.05) in the validation set. Six subcortical regions influenced
the prediction of brain age (Table 1). The volume of the left thalamus,
left putamen, left cerebellum cortex, right thalamus, and mid-anterior
corpus callosum were negatively correlated with brain age, and the
volume of the left thalamus exhibited the greatest effect on the predic-
tion of age in all metrics. The optic chiasm volume was positively
correlated with brain age, but the magnitude of its regression coefficient
was small. Cortical and regional volumes exhibited a negative correla-
tion between brain age and the degree of correlation (Fig. 3). Mean-
while, the damage to the white matter fiber transport tract is also
reflected in the contribution to brain age regression, with specific fiber
bundles highlighted in Fig. 4.

In this subsection, models for brain age prediction were built at the
voxel level. Subcutaneous volume, as well as cortical thickness and area,
were excluded from the modelling process, as discussing them as the
single voxel level is not meaningful. The FA and MD were available for
each voxel of each subject, and a linear regression model aiming at
assessing physiological age was built. The average MAE of all voxels was
9.76 + 0.08, which is significantly higher than the result based on
measures extracted from brain structures. Fig. 5 illustrates the spatial
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Fig. 2. Illustrates the curves of mae with alpha for the training sets. in the
training set, the data is randomly divided equally, with one portion used to
construct the model and the other portion used to form a direct relationship
between the regularization parameter alpha and mae.
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Table 1
Demonstrates the non-zero regression coefficients obtained from lasso regres-
sion using the optimal alpha.

Metrics Coef.
1 Volume of thalamus (left) —2.4032
2 Average FA of genu of corpus callosum —1.7080
3 Average RD of unclassified region 1.3655
4 Average AD of fornix 1.1223
5 Average AD of cingulum gyrus (right) 1.1217
6 Average AD of posterior thalamic radiation (right) 0.9176
7 Average FA of superior cerebellar peduncle (left) 0.8367
8 Thickness of superior frontal (left) —0.6633
9 Volume of putamen (left) —0.6626
10 Thickness of superior temporal (left) —0.4951
11 Average AD of cingulum hippocampus (left) 0.4293
12 Average FA of unclassified region —0.3983
13 Thickness of medial orbitofrontal (left) —-0.3197
14 Average FA of superior cerebellar peduncle (right) 0.2462
15 Thickness of rostral anterior cingulate (left) —0.1522
16 Thickness of insula (left) —0.1439
17 Average AD of superior longitudinal fasciculus (left) 0.1301
18 Area of middle temporal (right) —0.1251
19 Volume of Cerebellum-Cortex (left) —-0.1128
20 Volume of Thalamus (right) —0.0929
21 Average AD of sagittal stratum 0.0813
22 Volume of optic-chiasm 0.0621
23 Average AD of external capsule (right) 0.0580
24 Average AD of anterior limb of internal capsule (left) 0.0567
25 Thickness of insula (right) —0.0472
26 Volume of CC_mid_anterior —0.0389
27 Thickness middle temporal (left) —0.0120

distribution of MAE at the voxel level. The lower MAE observed in the
corpus callosum, caudate, and hippocampus suggests a stronger asso-
ciation of these regions with the aging process of the brain, aligning with
previous findings.

4. Discussion
In this study, we established a multimodal imaging brain age model

based on brain MRI, which can effectively predict the true brain age of
individuals. The parameters of this model are all obtained based on
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brain structure or white matter fiber link parameters, which means that
this model can accurately describe the biological age of the brain based
on information from the cortex and white matter. At the same time, we
also used multi-center data for validation to demonstrate the general-
izability of the model.

Brain age (Soumya Kumari and Sundarrajan, 2024; Wilms et al.,
2022; Wen et al., 2024) is more than a simple mathematical model based
on brain MRI, it serves as a comprehensive assessment of brain health. It
is increasingly recognized as a widely applied imaging-based biomarker
for neural aging and a potential proxy for brain integrity. Research has
shown that MRI can reflect aging at the level of both functional and
structural brain connectivity (Damoiseaux, 2017). Meanwhile, a study
based on the United Kingdom Biobank showed that in multimodal im-
aging, T1 based cortical imaging parameters and DTI derived related
imaging parameters contribute the most to the brain aging model (Cole,
2020), undoubtedly demonstrating the enormous potential of 3D-T1-w
MRI combined with DTI to accurately predict brain age. Meanwhile,
multimodal imaging studies have shown a small correlation between
functional connectivity features and brain age (de Lange et al., 2020).
Recently, researchers have analyzed the brain age formula from the
perspective of genetic association (Satizabal et al., 2019; Brouwer et al.,
2022), and unsupervised methods have also been applied to explore
brain aging (Yang et al., 2024). It is well known that MRI is time-
consuming and costly, and therefore cannot be included as a scanning
modality for brain assessments without limitations. Therefore, the best
modality combination for predicting brain age using MRI may be T1-w
and DTI, given their ability to reflect indicators with high age correla-
tion and sensitivity.

According to previous studies, multiple prediction methods can
accurately predict brain age. For instance, M. Tanveer and colleagues
(Ganaie et al., 2023) categorized deep learning architectures according
to input data based on slices and voxels as well as according to models
for estimating brain age. Then, they conducted comparisons across the
datasets utilized, simultaneously assessing performance, data volumes,
and patterns. Meanwhile, a novel approach (Sone and Beheshti, 2022)
has been developed to calculate “brain age” based on neuroimaging at
the local level within the brain. This targeted approach offers more
comprehensive spatial insights into the structural patterns of brain aging

Fig. 3. Illustrate the effect of thickness and area of each region of the cerebral cortex on predicted age. after screening by lasso regression, the thickness of seven
cortical regions was retained as a predictor variable, and except for the right insula, the remaining six regions were in the left hemisphere. as can be seen from the
regression coefficients, cortical thickness and predicted age were always negatively correlated. the area of only one cortical region, the right middle temporal, was

retained and had little effect on predicting brain age.
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Fig. 4. Shows the effect of the average dti metrics for the white matter regions. in critical white matter regions (except unclassified region), all md and rd metrics
were discarded in the lasso regression, and ad in 8 regions and fa in 4 regions were retained. among them, the average ad of fornix, cingulum and posterior thalamic
radiation and the average fa of genu of corpus callosum and left superior cerebellar peduncle were more influential in predicting brain age. notably, both average rd
and fa for unclassified region were retained in the lasso regression, especially mean rd, which ranked fourth in importance among all indicators.

Fig. 5. Distribution of MAE in regression analysis at the voxel level.

than earlier techniques. Using brain MRI data from more than 3000
healthy subjects, a U-Net model was built, progressively creating a
customized 3D brain age prediction map. It is interesting to note that
they achieved a higher accuracy, with a MAE of 7 years, in the peri-
ventricular and prefrontal cortical areas. Furthermore, they imple-
mented an image voxel analysis-based phase to address age-related
biases and local brain age disparities. A simple fully convolutional
network (SFCN) (Peng et al., 2021; Gong et al., 2021), based on the VGG
(Visual Geometry Group) Net and featuring a fully convolutional
structure, has gained prominence in brain age analysis and challenge
competitions. This model reduces the number of parameters to about 3
million whilst retaining a smaller number of layers. Lastly, one of the
most promising models is the completely linked model, which signifi-
cantly reduces the amount of space and processing resources needed.

This model employs a deep convolutional neural network architecture to
successfully utilize T1-w structural scans and reliably estimate brain
age.

Compared to other well-known deep network designs, SFCN has
fewer parameters, making it more suited for smaller file sizes and 3D
volume data. Network development is integrated with many techniques,
such as data augmentation, regularization of early training models,
model assembly, and prediction error reduction, to increase efficiency.
Simultaneously, the model generates a fully operational framework
capable of managing diverse data quantities. The SFCN system can use
dropout layers and information gain to accomplish the maximum MAE
training under specific conditions. The constructed model employs one
of three normalization techniques. The work of Iman Beheshti (Beheshti
etal., 2019) presents a straightforward and efficient technique to reduce
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prediction bias in frameworks for estimating brain age. This approach
highlights the connection between the reliability of statistical reasoning
and the accuracy of forecasting brain age estimate frameworks though
regression models. It achieves this by combining real age during training
to counteract bias. The integration of this bias mitigation strategy into a
machine learning-based brain age framework produced a notably robust
framework for estimating brain age, with a remarkable correlation (R%)
of 0.81 between the anticipated and real brain ages. When the technique
was used on a separate group of seventy-five individuals with good
cognitive health, the average absolute error was a remarkable 2.66
years. Without deviation correction, the R? will drop to 0.24. The
simulation further demonstrates the efficacy of this approach in
reducing prediction errors, particularly within the framework’s control
environment. In healthy individuals, reviews (Baecker et al., 2021;
Soumya Kumari and Sundarrajan, 2024; More et al., 2023; Cole and
Franke, 2017; Beheshti et al., 2022) utilizing voxel-based morphometry
to determine brain age claimed prediction errors of 5-8 years. Even
though the prediction error of the test set was less than five years, we
were still able to drop the average MAE to 3.87 years in this work by
utilizing cortical structural information and DTI data, which is the
lowest MAE that can be achieved based on neuroimaging parameters at
present. Our model combined data from two centers, with an 80/20
random split for training and validation. Training and parameter tuning
were restricted to the training set, ensuring that the validation set was
exclusively used for unbiased performance assessment (Varoquaux and
Cheplygina, 2022). While this approach demonstrates robust internal
validation, we acknowledge the lack of external multi-centres’ valida-
tion as a limitation. External validation on independent multi-centres’
datasets would provide a stronger demonstration of the model’s gener-
alizability and clinical applicability (Luo et al., 2016). Future studies
will prioritize external validation to further establish the robustness of
our findings.

As shown in the results of this article, the prominent features in
structural imaging are the reduction of volume and thinning of the
cortex, which is in line with mainstream academic views (MacDonald
and Pike, 2021). It is important to note that the left hemisphere of the
brain experiences the majority of the effects of cortical thinning. Addi-
tionally, previous research could indicate that the left hemisphere,
which is often the hemisphere predominately used for language and
motor functions, may be more susceptible to neurodegenerative alter-
ations associated with aging and illness (Minkova et al., 2017; Michaelis
et al., 2020; Shan et al., 2005). The left thalamus volume demonstrated
the most significant effect on brain age prediction, consistent with its
established role in aging-related sensorimotor integration, cognitive
functions, and global brain connectivity (Fama and Sullivan, 2015). As a
critical information relay hub, the thalamus is particularly vulnerable to
age-related structural changes (Tullo et al.,, 2019), explaining its
prominent predictive power in our model. However, the substantial ef-
fect of the thalamus does not diminish the contributions of other regions,
such as the prefrontal cortex and temporal lobe (Filippi et al., 2023).
These areas are well-known to undergo significant age-related atrophy
and play crucial roles in higher-order cognitive processes (Naya et al.,
2017), including executive functions, memory, and emotion regulation.
While their impact on age prediction may appear less pronounced in our
analysis, this could be attributed to the distributed and interconnected
nature of these regions, resulting in their contributions being captured
more diffusely across multiple features. Additionally, methodological
factors, such as feature aggregation and regularization (Vinga, 2021) in
the model, may have influenced the relative importance of these regions.
The incorporation of DTI metrics, particularly FA and MD, aimed to
capture microstructural brain changes associated with aging, com-
plementing the macroscopic insights provided by structural MRI. Our
findings revealed that the most pronounced DTI changes occurred in the
white matter surrounding the hippocampus, a region critical for memory
and cognitive functions. These results align with prior research high-
lighting hippocampal vulnerability to age-related degeneration.
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Meanwhile, damage to white matter connections mainly occurs around
the hippocampus, for example in the cingulate gyrus. This is also
consistent with earlier scholarly opinions that show significant and early
aging-related alterations, underscoring the importance of studying their
role in aging for potential therapeutic implications (Fan et al., 2019;
Archer et al., 2023; Bubb et al., 2018). White matter integrity (Tian
etal., 2017; Li et al., 2022), as another aspect of white matter, undergoes
fluctuations as we age, particularly in regions like the genu of the corpus
callosum and postmolar thalamic radiation. By identifying region-
specific microstructural alterations, our study underscores the value of
DTI in enhancing brain age prediction models and offers a nuanced
perspective compared to approaches that focus on global metrics (Hsieh
and Yang, 2022; Beck et al., 2021). Future studies could further explore
the interplay between hippocampal microstructure and brain aging
using multimodal imaging integration (Metzler-Baddeley et al., 2019).
In summary, the regions with significant structural and connectivity
changes associated with aging are essentially covered by our brain age
model.

The structural brain changes observed in this study, such as re-
ductions in cortical thickness and alterations in white matter integrity,
are consistent with known neurobiological mechanisms of aging. A
major hallmark of neuroaging is the atrophy of brain tissue, particularly
in the reduction of gray and white matter volumes. As people age,
cortical thickness decreases, especially in regions linked to cognitive
functions, such as the prefrontal cortex and temporal lobe (Proskovec
etal., 2020). These structural changes reflect neuronal and synaptic loss,
as well as myelin degradation and increased neuroinflammation
(Andronie-Cioara et al., 2023). This atrophy is often accompanied by a
decline in cognitive functions, particularly executive functions, mem-
ory, and attention (Price and Duman, 2020; Du et al., 2023). Brain age
prediction models quantify these structural changes to estimate an in-
dividual’s biological brain age, providing a direct indicator of brain
aging.

White matter plays a crucial role in transmitting neural signals, and
as individuals age, the integrity of white matter fiber tracts significantly
declines. DTI studies show that white matter integrity decreases with
age (Elmers et al., 2023; Molloy et al., 2021; Groechel et al., 2023),
particularly in areas related to cognitive functions, such as the corpus
callosum, hippocampus, and cingulate gyrus. And brain age prediction
models that incorporate the diffusion characteristics of white matter can
detect these microstructural degradations, thereby serving as markers of
neuroaging. As the aging process progresses, neuroinflammation be-
comes one of the core driving factors of brain degenerative changes
(Voet et al., 2019). Activation of microglial cells and chronic inflam-
matory responses could damage neurons and accelerate brain aging.
Neuroinflammation not only affects synaptic function (Lecca et al.,
2022) but also compromises the integrity of the blood-brain barrier
(Candelario-Jalil et al., 2022), allowing more harmful substances to
enter the brain (Mowry et al., 2021; Parsi et al., 2024), which further
exacerbates inflammation and neuronal damage, leading to various
neurodegenerative diseases. The information extracted from magnetic
resonance signals (Wang et al., 2017) reflects, to a certain extent, the
correlation with neuroimmune activities in the brain, which represents a
potential biological link for the brain age model. While most brain age
research have employed MRI data, DTI has been overlooked despite its
capacity to detect microstructural changes that are important in aging
and age-related illnesses. Recent research had shown that DTI has the
ability to estimate brain age (Wen et al., 2024). Advanced reconstruction
approaches, such as multishell free-water correction, have greatly
improved age prediction accuracy by separating white matter signals
from extracellular fluid (Nemmi et al., 2022). Furthermore, methodol-
ogies like 3D convolutional neural networks (3D-CNN) have shown the
capability to predict brain age using DTI features alone (Wang et al.,
2023), while low-rank tensor fusion approaches have successfully inte-
grated DTI into multimodal frameworks, improving both predictive
accuracy and interpretability (Liu et al., 2024). Clinically, DTI-based
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brain age estimation (Sone et al., 2024) had been applied in diverse
conditions such as epilepsy and interictal psychosis, demonstrating its
utility in identifying deviations in white matter aging that are linked to
neurological and psychiatric disorders. These findings highlight the
unique contributions of DTI to understanding the complex mechanisms
of brain aging, particularly in capturing subtle changes in white matter
that may precede macrostructural alterations observed with conven-
tional MRIL. By integrating DTI into brain age models, future studies
could leverage its sensitivity to microstructural changes, thereby
enriching the predictive power and clinical applicability of brain age as
a biomarker. This emphasizes how crucial it is to develop methodolog-
ical frameworks that use DTI in addition to other imaging modalities in
order to more accurately depict the complex nature of brain aging.

Studies have shown that individuals from different ethnic back-
grounds (Moonen et al., 2022; Manly and Mungas, 2015) exhibit distinct
patterns of brain aging, likely due to a combination of genetic, envi-
ronmental, and lifestyle factors (Amariglio et al., 2020; Elbasheir et al.,
2024; Munro et al., 2023). Meanwhile, socioeconomic status (Busby
et al., 2023; Avila-Rieger et al., 2022) is also an important factor
affecting the aging process. However, by focusing on an Asian popula-
tion, this study provides new insights into the aging processes specific to
this demographic, addressing a gap in the literature dominated by
studies on European and North American populations.

We conducted cross center data collection and increased the model’s
generalizability through random grouping, but this study has a few
limitations. Firstly, our brain atlas template was not segmented based on
Asians, because in future research, we need to unify image processing
methods, so we can only choose a unified segmentation template. Sec-
ondly, our MAE has not reached the minimum term under current
investigation. This is because we abandoned deep learning modeling
methods with black box effects (Haight and Eshaghi, 2023) and opted
for traditional machine learning methods that are scalable and highly
applicable. This highlights the positive significance of various brain
regions for aging. Thirdly, due to material limitations, our brain age
model is more applicable to the Asian population. We will promote its
use in future research to enhance its generalizability. Fourth, we have
observed that a greater number of visual patterns improves the accuracy
of brain age regression (Niu et al., 2020); however, as indicated by the
study above and the constraints of the databases, we have selected the
two modes that provide the most contributions (reflecting brain fibers
and structure). Simultaneously, studies utilizing additional modalities,
greater sample sizes, and sophisticated data processing techniques are
being conducted. The choice of analytical techniques is the subject of the
sixth point. While deep learning can dramatically lower the MAE, it
comes at the cost of interpretability, visualization, and control over-
fitting. Future research is needed to identify machine learning systems
that are even more efficient. A potential limitation of this study lies in
the variability introduced by the use of imaging data from multiple sites
and scanner types. Additionally, differences in imaging protocols, such
as sequence parameters and magnetic field strengths, may have influ-
enced the generalizability of our findings. However, future studies could
benefit from further standardization of imaging protocols or advanced
harmonization techniques to better account for inter-site variability.
Meanwhile, more interpretable work in the future should be included in
the study of brain age models.

5. Conclusion

Multimodal brain MRI can accurately depict the degree of brain
aging. The various structural parameters based on T1-w imaging and the
parameters of various white matter fibers can effectively predict the
brain age of healthy individuals. These parameters constitute brain age
models through machine learning methods and are applicable to refined
evaluate the degree of brain aging.
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