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Abstract

We explore inter-trial, inter-class, and inter-subject variability in
covert speech imagination using Electroencephalogram (EEG)
signals. Two key functional connectivity metrics (Phase Lock-
ing Value and Coherence) revealed unique and shared activa-
tion patterns across speech commands, influenced by individ-
ual word perception and affective states. We also propose a
subject-independent classification model using Hilbert envelope
and instantaneous phase features across EEG frequency bands
with a Bidirectional Long Short-Term Memory (BiLSTM) ar-
chitecture, achieving 59.14% classification accuracy across five
speech categories. Our state-of-the-art results in EEG-based
speech decoding contribute a new understanding of the neural
dynamics underlying imagined speech and affective processing.
Index Terms: speech decoding, electroencephalography, brain
computer interfaces, deep learning

1. Introduction

Brain-Computer Interfaces (BCIs) enable direct communica-
tion between the brain and external devices by interpreting
neural signals [1]. Among the various applications of BClIs,
covert speech recognition, which involves decoding imagined
speech from brain activity, has gained attention due to its poten-
tial to assist individuals with serious speech impairments such
as locked-in syndrome [2, 3, 4]. Unlike overt speech, covert
speech does not produce audible output, making its detection a
really complex challenge.

While invasive techniques such as electrocorticography
(ECoQ), intracranial electroencephalography (iEEG), and neu-
roimaging modalities like magnetoencephalography (MEG)
have shown remarkable performance in decoding imagined
speech [5], they come with limitations in terms of cost, porta-
bility, and comfort [6]. In contrast, electroencephalography
(EEG) offers a non-invasive, wearable, and user-friendly ap-
proach, making it well-suited for real-world BCI applications,
despite its low spatial resolution and susceptibility to noise.

Recent advancements in EEG technology have demon-
strated the feasibility of BCIs for recognizing imagined speech,
yet classification accuracy remains a major obstacle, limiting
their real-world implementation [7, 8]. One of the primary
challenges in covert speech EEG analysis is the high variability
across trials and subjects. Neural responses to imagined speech
are influenced by cognitive differences, mental rehearsal strate-
gies, and background neural noise, leading to high inter-subject
variability in recorded EEG patterns. Addressing this variability
is crucial for improving the reliability of BClIs.

Previous work [9, 10, 11, 12] explored various feature ex-
traction and classification techniques to enhance EEG signal de-
coding, yet most approaches struggle to generalize across differ-
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ent users and recording sessions. To address these limitations,
recent research has investigated functional connectivity (FC)
measures as a means of identifying stable neural interactions
during covert speech [13]. FC-based metrics, such as phase
synchronization and coherence, offer insights into the under-
lying neural mechanisms by analyzing how different brain re-
gions communicate during imagined speech processes [14, 15].
Additionally, time-frequency analysis techniques have been ex-
plored to extract meaningful features from EEG signals, cap-
turing both spectral and temporal characteristics of brain activ-
ity [16, 17, 18].

Despite these advancements, the challenge of improving
classification performance while mitigating inter-trial, inter-
class and inter-subject variability remains largely unresolved.
Further investigation is needed to refine feature extraction meth-
ods, optimize classification models, and establish robust strate-
gies for enhancing EEG-based covert speech decoding. To ad-
dress these challenges, this study explores inter-trial, inter-class,
and inter-subject variability in covert speech EEG using FC
metrics. We develop a subject-independent classification model
using Hilbert-based features and a BILSTM network to enhance
EEG-based speech decoding.

2. Methodology
2.1. Datasets

Two datasets were utilized for this study. The BCI Competi-
tion 2020 dataset [19] comprises 15 subjects EEG recordings
of imagined speech for five different words: ‘hello’, ‘help me’,
‘stop’, ‘thank you’, and ‘yes’. The dataset consists of 80 trials
per class (80x5 = 400 trials), with 60 trials per class used for
training, and 20 trials per class designated for validation and
testing. The EEG signals were recorded using a 64-channel
(Figure 1) EEG system! (BrainAmp, Brain Products GmbH,
Germany) at a sampling frequency of 500 Hz, following the
10-10 international EEG system. The recordings were cap-
tured during imagined speech tasks, where participants were in-
structed to imagine speaking without producing any overt vocal-
ization. The imagined speech phase in the experiment was set
to 2 seconds per trial, and the dataset was divided into epochs
based on cue information for analysis.

The Overt/Covert dataset [20] comprises EEG recordings
from 15 healthy, right-handed subjects (11 male, 4 female, aver-
age age 26.8 years) who performed both covert (imagined) and
overt (spoken) speech tasks. The data were collected in a con-
trolled environment while participants interacted with a robot.
The experiment involved five command words: LEFT, RIGHT,
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Figure 1: 64-channel EEG topographical locations.

UP, PICK, and PUSH. Each session consisted of eight levels,
with each level containing five repetitions of each word. The
data were recorded with a 64-channel wireless EEG system?
(Brain Products LiveAmp 64) at a sampling rate of 500 Hz, fol-
lowing the 10-10 international EEG system. Similar to the BCI
Competition 2020 Dataset, the imagined speech phase for each
trial was also set to 2 seconds.

2.2. EEG preprocessing

For both datasets, a consistent pre-processing pipeline was ap-
plied to prepare the data for analysis and feature extraction.
First, a SO0Hz notch filter was applied to eliminate powerline
interference. Subsequently, a Sth-order Butterworth Finite Im-
pulse Response (FIR) filter with a passband of 0.5-80 Hz was
used to filter the EEG signal, retaining relevant frequency com-
ponents while removing unwanted noise. To address artifacts
associated with eye blinks, muscle movements, and other non-
neural activities, independent component analysis (ICA) was
employed on the filtered EEG data [21].

The EEG signals were divided into two-second epochs,
aligning with the speech production phase in both datasets. A
100 ms pre-stimulus window was applied for baseline correc-
tion, where the mean signal from this window was subtracted
from each epoch. This process helped eliminate baseline drift
and enhance signal consistency across trials. After preprocess-
ing, each trial was labeled according to the covert speech task,
and the data from each dataset were processed separately.

2.3. EEG signal analysis

To explore brain activity variability during speech imagination,
we analyzed inter-trial, inter-class, and inter-subject differ-
ences using two key FC metrics [22, 23]: Coherence and Phase
Locking Value (PLV).

On the one hand, Coherence quantifies the linear correla-
tion between two signals across different frequency bands, in-
dicating neural synchrony. On the pother hand, PLV measures
phase synchronization between signals, reflecting the consis-
tency of phase relationships across trials.

For inter-trial variability, we first calculated the ensem-
ble average EEG for each speech class (e.g., ‘hello’, ‘thank
you’) within a subject. This average served as a reference for
that class. We then computed the two metrics (Coherence and
PLV) between individual trials and their corresponding refer-
ence to assess the variability in neural responses for the same
word across different trials.
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To analyze inter-class variability, we computed a graded
average EEG across all speech trials within a subject, irrespec-
tive of class. The class-specific averages were then compared to
this graded average EEG using the two metrics. This analysis
quantifies how each imagined word differs from the subject’s
overall neural activity pattern.

For inter-subject variability, we first computed the class-
specific average EEG for each participant, resulting in five ma-
trices per subject (one for each word). We then calculated the
graded average EEG for each class across all participants, yield-
ing five global matrices. The two metrics were then computed
between each participant’s class-specific EEG and the corre-
sponding global class average. This analysis quantified how the
neural representation of the same word varied across individuals
compared to the collective pattern observed in all participants.

2.4. Feature extraction and classification model

We use Hilbert Envelope (ENV) and Temporal Fine Struc-
ture (TFS) from EEG signals as relevant features for imagined
speech decoding, following previous work [24]. ENV captures
amplitude fluctuations linked to speech activity, while TFS en-
codes phase information crucial for modeling neural dynamics.
For each trial, ENV and TFS features are derived from EEG
segments of size 1000xC, where C' is the number of channels.
Both representations retain the original dimensions and are con-
catenated along the feature axis, yielding a final input of size
1000x2C.

We adopt a subject-independent classification strategy us-
ing a bidirectional long short-term memory (BiLSTM) net-
work. Each participant provides 80 EEG trials per covert speech
class. The model input is a 3D tensor of shape (B, 1000, F'),
where B = 32 is the batch size, 1000 denotes the number of
time steps, and F' is the feature dimension (twice the number
of EEG channels due to ENV-TFS concatenation). The net-
work is trained using the Adam optimizer with a learning rate
n = 0.0001 and decay parameters 51 = 0.9, 82 = 0.999.
Categorical cross-entropy is used as the loss function for multi-
class classification. The full BILSTM architecture is detailed
in Table 1.

Table 1: BiLSTM model configuration.

Layer Params Details
Input None Shape: (B, 1000, F)
BiLSTM 1  Input: 4xFx512 512 units, tanh activation
Recur.: 4x512x512  Dropout: 0.3
Bias: 4x512
BIiLSTM2 Input: 4x1024x256 256 units, tanh activation
Recur.: 4x256x256  Dropout: 0.2
Bias: 4x256
FC Weights: 256 x5 Output: 5 classes
Bias: 5x1
Output None Softmax activation

3. Results and Discussion
3.1. EEG variability analysis

Inter-trial analysis during speech imagination serves to assess
the consistency of speech-related EEG channel activation across
multiple trials. This analysis is crucial for identifying the



most relevant EEG channels for constructing an optimal clas-
sifier. Unlike steady-state visually evoked potentials (SSVEP)
or P300-based BCIs [25], where well-defined channel locations
are established, imaginary speech-based BCIs lack standardized
optimal electrode positions. Thus, understanding FC patterns
can guide channel selection efficiently.

Figure 2 illustrates the PLV and coherence-based inter-trial
variability analysis of the first two trials of same word imag-
ined by a single subject in the Overt/Covert dataset. Similar
patterns were observed in the BCI Competition 2020 dataset.
Each heatmap represents FC between an individual trial and the
ensemble average of a given class. The diagonal elements in
the heatmaps denote connectivity measures between the same
channel in the reference and trial EEG data. The off-diagonal
indicates the connectivity measures across channels. A PLV or
Coherence value close to 1 suggests a high degree of correla-
tion, indicating nearly identical signals.

Channels located in the inferior frontal gyrus (F7, F8, F5,
F6), superior temporal gyrus (T7, T8, TP7, TPS), and premo-
tor cortex areas (FC5, FC1, FC2, FC6, FC3, FC4) are involved
in speech production and perception, exhibiting consistent FC
across trials. Beyond these primary regions, enhanced con-
nectivity was also observed in fronto-central, central, tempo-
ral, parietal, and occipito-parietal areas (F3, Fz, F4, FC1, FCz,
FC2, C1, Cz, C2, CP1, CPz, CP2, CP3, CP4, CP5, CP6, P3,
Pz, P4, P5, P6, P7, P8, PO3, POz, PO4, PO7, POS), mostly
attributed to cognitive processing and sensorimotor integration
during speech imagination. These locations were selected using
a PLV threshold of 0.604, determined via a Gaussian Mixture
Model (GMM) clustering analysis [26]. This threshold reflects
a statistically significant boundary between low and high con-
nectivity groups (¢t = 700.25, p < .0001).

To examine variability across different imagined words, we
conducted an inter-class analysis using the same FC metrics de-
scribed in Section 2.3. Figure 3 presents topographical repre-
sentations of the diagonal elements from the PLV matrix in the
Overt/Covert dataset, which indicate channel-wise connectivity
between the reference and class-specific EEG signals. Again,
similar patterns were observed in the BCI Competition 2020
dataset.

Interestingly, we observed common activation patterns
across different imagined words within speech perception and
speech production areas. However, additional activation pat-
terns emerged in central, frontocentral, parietal, and occipi-
toparietal regions, suggesting that imagined speech involves
more than just motor execution—it engages multimodal pro-
cessing and semantic networks. Previous studies [27, 28, 29]
have linked these regions to affective processing, suggesting
that different imagined words may evoke distinct affective and
cognitive responses. We can conclude that speech imagina-
tion is not solely constrained to speech production mechanisms.
Our results indicate a strong association with speech perception
and affective states, aligning with neurocognitive models of lan-
guage processing.

To further investigate inter-subject differences in speech
imagination, we examined FC patterns across subjects imag-
ining the same word. Figure 4 illustrates PLV of same word
of three subjects, demonstrating that while core speech-related
regions remain active, subject-specific differences emerge in
above mentioned activation areas. This suggests that subjec-
tive interpretation, prior experience, and individual affective re-
sponses play a role in how speech imagination is represented in
the brain [27, 29].
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3.2. Classification experiments

Few studies have explored subject-independent and cross-
subject models in covert speech BCIs [30, 31]. Most exist-
ing studies focus on subject-specific models without exploring
speech variability across different words, trials, and subjects.
Therefore, our study significantly progresses beyond the state
of the art. Prior to classification, each subject’s EEG data is nor-
malized independently using Z-score based on their own data.

Our previous analysis in Section 2.3 has identified active
EEG brain regions involved in speech imagination, suggesting
that affective perception plays a significant role. Based on this
analysis, we selected 42 active EEG channels as optimal chan-
nels and subject’s perceptual features for classification. Then,
we developed three different classifiers, all using Hilbert-based
EEG features as input.

Model 1 utilized EEG signals from 64 channels. The ENV
and TFS features were extracted for each trial. Each EEG seg-
ment originally had a dimension of 1000 x 64. After feature
extraction (ENV and TFS) the segments were concatenated hor-
izontally, resulting in a final dimension of 1000 x 128.

Model 2 used EEG signals from the 42 selected channels.
Similar to the first model, ENV and TFS features were ex-
tracted, leading to an initial dimension of 1000 x 42, which
was then transformed into 1000 x 84 after concatenation.

Model 3 was developed based on our previous analysis,
considering that affective responses are EEG band-specific [32].
The selected 42-channel EEG data was bandpass filtered into
three frequency bands by using filter bank decomposition: low-
frequency (0.5 to 8 Hz), medium-frequency (8 to 30 Hz), and
high-frequency (30 to 80 Hz). The filtered EEG data from all
three bands were concatenated, resulting in a total trial dimen-
sion of 1000 x 126. After applying ENV and TFS, the final
feature dimension of a single trial became 1000 x 252.

Since we used two different datasets, we implemented six
subject-independent models using 10-fold cross validation, to
ensure generalizability across individuals. The classification
accuracy of subject-independent models is reported in Table 2,
demonstrating the impact of feature selection and frequency de-
composition.

Table 2: Subject-independent classification accuracy.

Dataset Model 1 Model 2 Model 3
D1[19] 33484474 38.15+532 5622 +4.48
D2[20] 30.63 +£5.21 40.69 +£3.89 59.14 +4.32

Model 1, which used EEG signals from all 64 channels,
achieved the lowest accuracy. This suggests that including
all channels without proper selection actually introduces noise.
Model 2, utilizing the 42 most active EEG channels, improved
accuracy to 38.15% for D1 and 40.69% for D2, indicating the
effectiveness of channel selection in enhancing classification
performance. Model 3, which incorporated EEG band-specific
filtering before feature extraction, achieved the highest accu-
racy. This highlights the importance of frequency-specific in-
formation in imagined speech classification. Our results con-
firm that both channel selection and frequency-based decompo-
sition significantly enhance classification accuracy, validating
the role of affective perception and EEG spectral features in
subject-independent imagined speech modeling.

We also implemented a cross-subject model with 15-fold
validation, where in each fold the data from one subject is used
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Figure 2: Heatmap of inter-trial analysis of FC measures in the Overt/Covert dataset.
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Figure 3: Topoplot of PLV representing inter-class variability across different imagined speech classes in the Overt/Covert dataset.

Table 4: Comparison against previous work, sorted by year:

1 I " Ref. No. commands Accuracy (%) + SD
. . [33] 6 19.68
. . . [7] 3140 +£2.73

6
(a) Subject 1 (b) Subject 2 (¢) Subject 3 Eg} i jg-;g i —;’-gg
Figure 4: Topoplot of PLV representing inter-subject variability [31] 6 34
. . ) ) [35] 4 45
across the imagined speech word ‘thank you’ in the BCI Com-
petition 2020 dataset. [15] 3 442
Ours 5 59.14 + 4.32

. . . Refs [33, 31, 35, 15] did not rt SDs.
Table 3: Cross-subject classification accuracy. efs [ 1did notrepo s

Dataset Model 1 Model 2 Model 3
DI[19] 19354342 21.78£3.11 25.62+485 A major limitation of this study is the inability of cross-
D2[20] 18.4143.78 22.63+4.05 27.154+3.92 subject models to learn subject-specific information critical for

accurate classification. Future work should focus on hybrid ap-
proaches, such as transfer learning or meta-learning, to adapt
a generalized model to individual subjects with minimal fine-
tuning. Additionally, incorporating advanced modeling tech-
niques such as attention mechanisms or subject-specific embed-
dings, may help models better capture personalized patterns.

for testing. The results are reported in Table 3. As observed,
cross-subject models perform poorly, with Model 1 achieving
near-random accuracy, and Model 2 and 3 performing slightly
above random. These results suggest that cross-subject mod-
eling is ineffective for imagined speech classification, likely

due to the unique individual differences in speech perception 4. Conclusion

and imagination [27]. Since each subject internally processes Our study reveals the complexities of inter-trial, inter-class, and
words differently, based on their cognitive and emotional states, inter-subject variability in EEG signals during covert speech
a subject-independent model struggles to generalize across in- imagination, highlighting the key role of affective states in
dividuals. Furthermore, the proposed model is compared with speech perception and production. Our subject-independent
an existing subject-independent model, as illustrated in Table 4. BiLSTM model sets a new SOTA, further underscoring the
Compared to the state-of-the-art (SOTA) models, our proposed value of FC metrics, channel selection, and frequency-specific
model’ achieves higher performance. features in improving EEG-based speech decoding. The find-

ings also highlight limitations of cross-subject models, which

3https://doi.org/10.5281/zenodo.15555946 struggle to capture individual neural differences.
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