
NURBGen: High-Fidelity Text-to-CAD Generation through LLM-Driven NURBS
Modeling

Muhammad Usama1,2,3* , Mohammad Sadil Khan1,2,3*†, Didier Stricker1,2, Muhammad Zeshan
Afzal1,3

1German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany
2RPTU Kaiserslautern-Landau (RPTU), Germany

3MindGarage, Kaiserslautern, Germany
{muhammad.usama, mohammad.khan, didier.stricker, muhammad zeshan.afzal}@dfki.de

Abstract

Generating editable 3D CAD models from natural language
remains challenging, as existing text-to-CAD systems either
produce meshes or rely on scarce design-history data. We
present NURBGen, the first framework to generate high-
fidelity 3D CAD models directly from text using Non-
Uniform Rational B-Splines (NURBS). To achieve this, we
fine-tune a large language model (LLM) to translate free-
form texts into JSON representations containing NURBS sur-
face parameters (i.e, control points, knot vectors, degrees, and
rational weights) which can be directly converted into BRep
format using Python. We further propose a hybrid represen-
tation that combines untrimmed NURBS with analytic primi-
tives to handle trimmed surfaces and degenerate regions more
robustly, while reducing token complexity. Additionally, we
introduce partABC, a curated subset of the ABC dataset con-
sisting of individual CAD components, annotated with de-
tailed captions using an automated annotation pipeline. NUR-
BGen demonstrates strong performance on diverse prompts,
surpassing prior methods in geometric fidelity and dimen-
sional accuracy, as confirmed by expert evaluations.

Code — https://github.com/SadilKhan/NURBGen
Project —

https://muhammadusama100.github.io/NURBGen

Introduction
Computer-Aided Design (CAD) plays a fundamental role in
modern engineering, product design, and digital manufactur-
ing workflows (Vido et al. 2024; Gao et al. 2015). It enables
precise, parametric modeling of complex mechanical and
architectural components. However, creating detailed CAD
models typically requires expert knowledge of professional
design software-such as Onshape (https://www.onshape.
com) or AutoCAD (https://www.autodesk.com/products/
autocad/overview), and remains a labor-intensive and, time-
consuming task.
Researchers have therefore proposed deep learning-based
approaches for automatic CAD modeling from high-level

*Equally contributing first authors.
†Corresponding Author.

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Socket head cap screw with a large
countersunk washer. Features a
hexagonal socket drive and a
cylindrical threaded shank.
Dimensions: length 92.96 mm, width
79.38 mm, height 43.66 mm. Ensure
smooth curvature at transitions.

Three concentric cylinders stacked
vertically with varying diameters and
heights, forming a tapered cylindrical
assembly.The smallest cylinder sits
atop the largest, creating a stepped
profile. Dimensions: height 31mm,
width/length 15mm each.

Cylindrical bushing with flanges on
both ends, featuring a central
hollow bore. Symmetrical
geometry, suitable for insertion,
guiding, or alignment in mechanical
assemblies.

A spherical object with subtle
indentations on its surface,
exhibiting uniform dimensions of
2.33 mm in length, width, and
height. The sphere has minor linear
markings near the base.

Figure 1: Text-to-CAD generation results from NURBGen,
showcasing reconstructed CAD models from text prompts.

inputs such as natural language (Khan et al. 2024b), im-
ages (Chen et al. 2024), or point clouds (Liu et al. 2023).
Among these, text-to-CAD generation offers a simple, intu-
itive interface that allows designers to describe 3D objects
in natural language, bypassing the need for expert mod-
eling skills. However, nearly all prior methods (Li et al.
2025; Kapsalis 2024; Khan et al. 2024b) rely on design-
history-based representations (Wu, Xiao, and Zheng 2021;
Khan et al. 2024a; Zhou, Tang, and Zhou 2023), where
shapes are constructed via sequences of parametric oper-
ations—extrusions, and 2D sketches. While intuitive and
highly editable, these methods are trained on small-scale
datasets like DeepCAD (Wu, Xiao, and Zheng 2021), which
mostly contain low-complexity parts (e.g., cuboids, cylin-
ders), limiting generalization in real-world scenarios.

In contrast, the ABC dataset (Koch et al. 2019), which con-

tains over a million 3D CAD models, remains compara-
tively underutilized in text-to-CAD research due to two key
limitations. First, ABC represents geometry in Boundary
Representation (BRep) form, which lacks design history.
BReps define solids using analytic surface patches—most
commonly NURBS, the industry standard for their precision
and parametric control. However, NURBS-based modeling
is rarely explored in deep generative research due to the
challenge of efficient representation (Yang, Wang, and Wang
2024), non-differentiability of knot vectors (Prasad et al.
2022), high parameter variability, and trimming complex-
ity inherent to NURBS geometry. NeuroNURBS (Fan et al.
2024) partially addresses this by learning latent codes for
untrimmed NURBS surfaces via a non-autoregressive trans-
former VAE, but it does not support language-based gen-
eration and cannot model complex shapes due to the trim-
ming issues. Second, ABC lacks high-quality text descrip-
tions, making it difficult to train or evaluate text-conditioned
generative models.
In this work, we present NURBGen, the first framework
for generating 3D CAD models from natural language using
structured, symbolic NURBS representations. Unlike prior
work that learns dense latent codes (Fan et al. 2024), we treat
each NURBS surface as a language-aligned object: a se-
quence of tokens encoding control points, degrees, weights,
and knot vectors in JSON format. This allows us to formu-
late text-to-CAD as a language modeling task. We fine-tune
a large language model (Qwen3-4B) to map textual descrip-
tions to these NURBS parameters, producing outputs that
are editable and directly compatible to BRep format. To sup-
port this, we construct partABC, a curated dataset of more
than 300k part-level CAD models from the ABC dataset,
each represented as a sequence of NURBS surfaces and se-
rialized with manageable context lengths (≤ 8k tokens). We
also generate high-quality natural language descriptions of
the CAD models using an automatic annotation pipeline for
the supervised fine-tuning task.
A key design choice to manage context length is our use of
untrimmed NURBS surfaces similar to NeuroNURBS (Fan
et al. 2024). However, this introduces a limitation it can-
not capture trimmed geometry precisely. To address this,
we propose a hybrid symbolic representation that replaces
NURBS with primitive analytic curves (e.g., circles, B-
splines, arcs, and lines) to accurately model such faces. This
maintains the structural format required for LLM fine-tuning
and inference. Our experiments demonstrate that NURBGen
can outperform the current state-of-the-art methods in high-
fidelity text-to-CAD generation as shown in Figure 1. Our
contributions can be summarized as follows
• We propose NURBGen, the first framework for LLM-

driven NURBS-based text-to-CAD framework.
• We introduce partABC, a large-scale multi-modal dataset

of 300k CAD parts from the ABC dataset with NURBS
annotations and high-quality captions using an automatic
annotation pipeline.

• We design a hybrid representation combining untrimmed
NURBS with analytic primitives to accurately model
trimmed and degenerate surfaces while maintaining

structural compatibility for LLM fine-tuning.
• Our extensive experiments demonstrate NURBGen’s su-

perior performance over existing baselines.

Related Work
CAD Generation: Earlier approaches to CAD generation
primarily focused on low-level geometry tasks such as sur-
face fitting (Sharma et al. 2020; Liu et al. 2023), point
cloud classification (Qi et al. 2017a,b), BRep segmenta-
tion (Dupont et al. 2022; Lee et al. 2023; Mallis et al.
2023), or BRep structure prediction (Guo et al. 2022;
Ali, Khan, and Stricker 2024), rather than generating fully
parametric CAD models. A major shift came with Deep-
CAD (Wu, Xiao, and Zheng 2021), which introduced a
design-history-based representation where CAD models are
expressed as sequences of 2D sketches and 3D operations
(e.g., extrusions). This formulation enabled sequence-to-
sequence modeling of CAD generation. Building on this,
later works explored cross-modal CAD synthesis from point
clouds (Khan et al. 2024a; Dupont et al. 2024; Rukhovich
et al. 2024), images (Chen et al. 2024), natural language (Li
et al. 2025; Lv and Bao 2025; Khan et al. 2024b; Li et al.
2024; Govindarajan et al. 2025; Wang et al. 2025), or
combinations thereof (Kolodiazhnyi et al. 2025; Xu et al.
2025). While design-history representations are highly in-
terpretable and editable, their reliance on proprietary CAD
operation data presents a major bottleneck for large-scale
public research. Public datasets like DeepCAD-170k (Wu,
Xiao, and Zheng 2021), Fusion360-8k (Willis et al. 2021),
and CADParser-50k (Zhou, Tang, and Zhou 2023) are lim-
ited in size and complexity, often consisting of simple, syn-
thetic parts (Govindarajan et al. 2025), which restricts gener-
alization to real-world scenarios. Alternative approaches for
CAD generation operate directly on BRep geometry (Lam-
bourne et al. 2021) or leverage SDF supervision (Ren et al.
2022; Li et al. 2023; Yu et al. 2022). However, these meth-
ods don’t generalizes well. Recent work BrepGen (Xu et al.
2024b), for example, generates BRep topology including
vertices, edges, and faces via a hierarchical latent diffu-
sion model. In contrast, we represent BReps as sequences
of structured NURBS surfaces, allowing us to frame text-to-
CAD as a language generation task. This enables fine-tuning
an LLM on partABC, which is more diverse and larger than
those used in prior work.
Nurbs Modeling: The adoption of analytic surfaces like
NURBS in learning-based systems remained limited (Böhm,
Farin, and Kahmann 1984; Mykhaskiv et al. 2018).
NURBSDiff (Prasad et al. 2022) introduced differentiable
NURBS fitting for geometry optimization and reconstruc-
tion. (Worchel and Alexa 2023) proposed differentiable ren-
dering of NURBS surfaces for inverse graphics tasks. The
most relevant prior work is NeuroNURBS (Fan et al. 2024),
which encodes untrimmed NURBS surfaces using a non-
autoregressive transformer autoencoder into latent vectors
for supporting tasks like reconstruction or segmentation, but
not text-conditioned generation. However, the exclusive use
of untrimmed NURBS surfaces limits generalization, as not
all CAD models can be accurately represented without trim-

Output

Metadata Guidance

 Data Preparation Finetuning

CAD Representation

Mesh

System role You are an expert CAD designer ...
orthographic views ... write a short, human-readable
captions ... Text-to-CAD generative models ... six
images ... and metadata about the CAD model ...

Prompt

 partABC Dataset

ABC

partABC

ABC

partABC

partABC

"Flat plate with four
countersunk holes at
corners, connected to
curved bracket featuring
two more holes."

{"dimensions": {
 "length": "29.00 mm",
 "width": "35.00 mm",
 "height": "17.00 mm"},
"volume": "5173.77 mm3",
"surface_area": "3431.68
mm2",
"holes_through": 6}

{"face_0": {"poles": [[[
0.12857, 0.9997143,
0.485714],...],],"u_knots":
[1.5708, 3.142, 4.712], "v_knots":
[-0.1714, 0.1429],"u_mults": [3, 2,
3], "v_mults": [2, 2], "u_degree":
2,"v_degree": 1, "u_periodic":
0,"v_periodic": 0,"weights": [[1.0,
2],...]},
 "face_1": {...},
 "face_2": {...},
 "face_3": {...},
 “face_4”: {...}
 "face_29": {...}}

Figure 2: Overview of our partABC dataset, data preparation and fine-tuning pipeline. Left: We extract part-level CAD models
from the ABC dataset by decomposing CAD assemblies into individual components. Middle: Each part is represented using
a hybrid format—faces are encoded as untrimmed NURBS surfaces, with analytic primitives used where NURBS fitting fails.
We also generate high-quality captions using InternVL3-13B with a metadata-guided annotation pipeline. Right: We fine-tune
Qwen3-4B to map text captions to structured hybrid CAD representations, which can be directly converted to BRep models.

ming. To address this, we adopt a hybrid strategy: while
untrimmed NURBS serve as our primary representation, we
replace them with analytic primitives such as lines, arcs, and
B-splines for faces where NURBS fitting fails.
LLM for 3D Generation: LLMs have been widely adopted
across domains such as robotics (Zeng et al. 2023) and 3D
scene understanding or grounding (Xu et al. 2024a; Hong
et al. 2023). Their application to 3D generation is a rela-
tively new but promising direction, as LLMs offer strong
spatial priors and multimodal reasoning capabilities. A cen-
tral challenge, however, lies in encoding 3D geometry into a
sequential format compatible with language modeling. Re-
cent work such as LLaMA-Mesh (Wang et al. 2024) fine-
tunes LLaMA (Grattafiori and et al 2024) to generate mesh
vertices and faces as plain text, demonstrating the potential
of autoregressive text-based 3D synthesis. In the CAD do-
main, existing LLM-driven text-to-CAD methods primarily
rely on design-history-based representations (Li et al. 2025;
Rukhovich et al. 2024; Xu et al. 2025; Zhang et al. 2025).
However, these methods are constrained by the scarcity and
simplicity of the public datasets. In contrast, our method in-
troduces a structured NURBS-based representation that en-
ables symbolic, surface-level generation. This formulation
aligns naturally with language modeling and allows us to
leverage the large-scale and geometrically diverse partABC
dataset for fine-tuning LLMs for the text-to-CAD task.

Background
Before presenting our method, we briefly review the fun-
damentals of NURBS. Non-Uniform Rational B-Splines

(NURBS) are the standard representation for curves and
surfaces in CAD and geometric modeling. They extend B-
splines by assigning weights to control points, enabling both
free-form and analytic shapes (e.g., circles, ellipses). Their
compactness, smoothness, and precise parametric control
make them central to modern CAD systems. A NURBS
curve of degree p is defined by:

• A set of n+1 control points {Pi ∈ Rd}ni=0 with weights
{wi ∈ R+}ni=0,

• Knot vector U = {u0, . . . , un+p+1}, ui ≥ uj ,∀i > j

• Basis functions Ni,p(u) defined recursively.

The NURBS curve is then given by:

C(u) =

∑n
i=0 Ni,p(u)wiPi∑n
i=0 Ni,p(u)wi

, u ∈ [up, un+1] (1)

The B-spline basis functions Ni,p(u) are defined recur-
sively using the Cox-de Boor formula:

Ni,0(u) =

{
1 if ui ≤ u < ui+1,

0 otherwise,

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u)

+
ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u)

(2)

A NURBS surface is defined similarly, as the tensor product
of two NURBS curves in parameters u and v. Given control
points Pij , weights wij , knot vectors U and V, and degrees

p, q, the NURBS surface is:

S(u, v) =

∑n
i=0

∑m
j=0 Ni,p(u)Mj,q(v)wijPij∑n

i=0

∑m
j=0 Ni,p(u)Mj,q(v)wij

, (3)

(u, v) ∈ [up, un+1]× [vq, vm+1]

Here, Ni,p(u) and Mj,q(v) are the B-spline basis functions
as defined in Eq. 2 in the u- and v-directions, respectively.

Data Preparation
In this section, we describe our data preparation pipeline,
illustrated in Figure 2 (left and middle column). Our objec-
tive is to extract a NURBS-based surface representation for
a BRep model in JSON format, along with a high-quality
textual caption, which will serve as supervision to fine-tune
an LLM for precise and editable text-to-CAD generation.
To this end, we construct a new dataset, partABC, derived
from the unlabeled, assembly-level ABC dataset. The fol-
lowing subsections detail our NURBS representation for-
mat and explain the motivation and processing steps used
to build partABC.

1. CAD Representation
A BRep solid models geometry as a collection of topolog-
ically connected faces, each defined by a bounded para-
metric surface. In modern CAD systems, these surfaces are
most commonly represented using NURBS surfaces due to
their ability to accurately model both analytic primitives
(e.g., planes, cylinders, tori) and complex free-form geome-
try with high continuity and compactness. To reconstruct a
BRep solid in a symbolic and editable form, it is essential
to extract the full set of NURBS surface parameters for each
face. Using pythonOCC, we propose a robust pipeline for
converting BReps into parametric NURBS representation.
Given a BRep solid, we begin by normalizing the geometry
to fit within a 2 × 2 × 2 bounding box centered at the ori-
gin, ensuring consistent scale and alignment across all sam-
ples. We then apply BRepBuilderAPI NurbsConvert
to convert each face into its untrimmed NURBS represen-
tation. This step standardizes all underlying analytic and
freeform surfaces—such as planes, cylinders, and spline
patches—into rational B-splines, providing a uniform sur-
face representation. Next, we traverse each face using
TopExp Explorer and extract its surface parameters via
the Geom BSplineSurface API. For each face, we re-
trieve the control points (also called poles), knot vectors in
both parametric directions, knot multiplicities, degrees in u
and v, rational weights, and periodicity flags. Knot multi-
plicities specify how many times each knot value appears in
the knot vector. Periodicity flags indicate whether the sur-
face is seamlessly closed in the u and/or v direction, as in
cylindrical or toroidal geometries. With all these parameters
extracted, the original surface can be exactly reconstructed
using the Geom BSplineSurface constructor.
However, Not all surfaces can be robustly represented by
untrimmed NURBS. In particular, thin regions around holes
or fillets often introduce geometric artifacts or reconstruc-
tion errors (see Fig. 3). To address such degenerate cases,

Untrimmed NURBS
Representation

Our Hybrid
Representation

{"poles": [[[0.28107,0.057477,
0.416693] ...],
"u_knots": [0.0, 2.094, 4.1888, 6.28],
"v_knots": [0.447, 0.458],
 "u_mults": [2, 2, 2, 2],
"v_mults": [2, 2],
"u_degree": 2,"v_degree":
1,"u_periodic": 1,"v_periodic": 0,
"weights": [[1.0, 2], ... },

 [{"edges": [{
 "type": "Geom_Circle",
 "first": 0.0,
 "last": 6.283185,
 "orientation": "F",
 "center": [0.282, 0.083, 0.4167],
 "radius": 0.051984,
 "normal": [-1.0, 0.0, 0.0]}],
 "is_outer": 1 },
 {"edges": [{. "type": "Geom_Circle", ...],

Figure 3: Our proposed hybrid representation. Left:
Untrimmed NURBS surfaces introduce artifacts in hole-like
or thin regions. Right We resolve this by substituting their
NURB representation with analytic curves (e.g., lines, cir-
cles) for improved geometric fidelity.

we adopt a hybrid representation: instead of enforcing a
NURBS fit, we revert to simpler analytic primitives such
as lines, circles, B-splines, ellipses, parabolas, and hyperbo-
las. These primitives are extracted from the original BRep
faces prior to NURBS conversion. We detect degenerate or
poorly reconstructed faces by comparing each reconstructed
surface fn with its ground-truth counterpart fgt using the
Chamfer Distance (CD) between their sampled point clouds
(CD(fn, fgt) ≤ ϵ). CD measures the average squared dis-
tance from points in one set to their nearest neighbors in
another. If it is below a threshold ϵ, the NURBS approxima-
tion is deemed acceptable; otherwise, we retain the original
analytic primitive. We empirically set ϵ = 6× 10−4.
We represent each face using either its extracted NURBS pa-
rameters or its analytic primitive definition, based on recon-
struction quality. In practice, about 70% of faces are mod-
eled using NURBS, while 30% fall back to analytic primi-
tives. This hybrid representation stored in structured JSON
offers a more expressive and compact alternative to the
purely NURBS-based format used in NeuroNURBS (Fan
et al. 2024). While analytic primitives can represent simple
geometry, they lack the flexibility to capture free-form sur-
faces. NURBS, on the other hand, provide a unified frame-
work that can model both standard analytic shapes and com-
plex free-form surfaces within a single patch—often replac-
ing multiple primitives such as segmented arcs or partial
cylinders. By combining both representations, our hybrid
approach improves robustness and reduces parameter count
for simpler shapes, resulting in shorter and more token-
efficient inputs for LLM fine-tuning.

2. Annotation Pipeline
Supervised fine-tuning of our text-to-CAD model requires
paired textual descriptions, but the ABC dataset lacks cap-

GPT-4o INVALID

Text2CAD

T-shaped ... two
perpendicular
arms extending
from a central
block. The
dimensions ...

A bent tube with
a right-angle
elbow and
rounded end, ...
single hole ... and
smooth fillets at
the bend.

Hollow
cylindrical ... two
stepped ...
flanges, designed
to align and
connect parts ...

A cylindrical bolt
with a flat head ...
plus-shaped
groove on its top
surface and a slot
on one side ...

NurbGen
(Ours)

Text
Caption

Cylindrical ...
flange, featuring
three countersunk
holes on top, one
through-hole at
the side,

... octagonal ... four
evenly ... through-
holes ... length ...
height ... 70.00 ...
width 0.50

DeepCAD INVALIDINVALIDINVALID

Figure 4: Qualitative comparison of reconstructed CAD models from text prompts. From top to bottom, we show generations
from GPT-4o, DeepCAD, Text2CAD, and our proposed NURBGen. NURBGen consistently produces more detailed and struc-
turally coherent results, with higher fidelity to the input prompt and fewer geometric artifacts compared to baselines.

tions. To address this, we design an automated annotation
pipeline using a VLM to generate high-quality captions for
CAD models at scale as shown in Figure. 2 (middle).

Multi-View Rendering: Each BRep is first converted into
a textureless triangular mesh and rendered from six view-
points at a resolution of 512 × 512 using Blender. Four of
the camera views follow the orientation strategy proposed
in (Sinha and Khan et al. 2025), while the remaining two
capture the top and bottom perspectives. To enhance ge-
ometric perception and visual clarity, we enable Blender’s
Freestyle renderer to overlay clean silhouette and edge con-
tours on each image.

Metadata Guidance for Caption Generation: High-
quality captions for CAD models should go beyond simple
naming and incorporate essential geometric features such
as the number of through-holes, overall dimensions, sur-
face area, and volume. Previous work like Text2CAD (Khan
et al. 2024b) leverages minimal JSON-based design his-
tory to guide vision-language models (VLMs), while MAR-
VEL (Sinha and Khan et al. 2025) uses structured meta-
data for fine-grained 3D annotation. Building on these
ideas, we extract geometric metadata that is often inac-
cessible to VLMs—specifically, length, width, height, sur-
face area, volume, and the number of topological holes
(genus). We compute overall dimensions by fitting an
axis-aligned bounding box to the CAD geometry us-
ing OpenCascade’s Bnd Box. Volume and surface area
are obtained using OpenCascade’s built-in mass prop-

erty computation (brepgprop.VolumeProperties
and SurfaceProperties).
To estimate the number of through-holes, we first generate
a watertight mesh from BRep. We then compute the Euler
characteristic, χ = V −E+F , where V,E, F are the mesh
vertices, edges, and faces. Using the Euler–Poincaré formula
for closed 2-manifolds, the genus is given by g = 0.5× (2−
χ), which corresponds to the number of topological through-
holes (Hliněný 2021). This metadata is then injected into
the annotation prompt, which guides the VLM to generate
captions with precise measurements.
Caption Generation: We use InternVL3-13B (Zhu et al.
2025), a multi-view VLM, which takes six rendered views of
the CAD model along with the metadata-augmented anno-
tation prompt as input. It then processes multi-view images
of the CAD model simultaneously to generate a coherent
and geometry-aware caption. Rather than focusing solely on
object category names, we prioritize shape-centric descrip-
tions that capture structural characteristics (”a bent tube..”,..
cylindrical bolt .. six holes..). The inclusion of dimensional
metadata and hole counts further grounds the captions in
precise geometric details, resulting in more informative and
reliable annotations as shown in Figure 5.

3. partABC Dataset
In this section, we describe the construction of the partABC
dataset as shown in Figure 2 (Left Column). While our data
processing pipeline supports any CAD model, we focus on

PartABC Captions

A threaded cylindrical rod with a
uniform helical thread pattern along
its length,featuring a circular flat
end on one side ...

Design a ring-shaped metal piece
with rounded edges, featuring 20
evenly spaced through-holes along
its outer perimeter ...

A flat rectangular plate ..., featuring
88 evenly distributed circular holes.

U-shaped metal bracket ... two
mounting holes on the top flange and
two mounting holes on one side plate.

Figure 5: Captions from partABC dataset generated using
our automatic captioning pipeline.

the ABC dataset due to its large scale and geometric di-
versity. ABC contains 1M CAD models, but processing the
full set is computationally expensive and time-consuming.
Therefore, we limit our preprocessing to 200k models for
this project. However, many of these are assembly-level de-
signs with a large number of faces, resulting in JSON rep-
resentations that can exceed 100k tokens well beyond the
context window and training budget of our project. To ad-
dress this, we leverage the fact that BReps in ABC often en-
code part-level substructures within these assemblies. Using
PythonOCC, we programmatically extract these individual
parts, each representing a self-contained and geometrically
coherent component. From the 200k processed assemblies,
this provides us with 3M part-level CAD instances.
Filtering: However, extracting part-level CAD models from
larger assemblies introduces a key challenge: many of the
resulting shapes tend to be geometrically simple such as
cuboids or cylinders. This can lead to an imbalanced train-
ing set and bias the fine-tuned LLM toward generating trivial
geometry. To address this, we apply a complexity-aware fil-
tering strategy using a weighted scoring function that prior-
itizes geometrically rich and structurally diverse parts. Each
part-level model is scored using

w(B) = l1 × token count+ l2 × through holes

+ l3 ×
surface area

volume
+ l4 × bbox diag

where l1=0.35, l2=0.3, l3=0.25, l4=0.1 are selected us-
ing empirical experiment on 100 samples. token count
refers to the size of tokens after tokenizing the JSON us-
ing Qwen3 Tokenizer (Yang et al. 2025), through holes
counts the number of holes that pass through the entire part,
and bbox diag is the length of the diagonal of the part’s
axis-aligned bounding box. Based on w(B), we categorize
parts into simple (≤ 0.12), moderate (0.12–0.23), and com-
plex (> 0.23) tiers. From 3M extracted parts, we retain 10%
simple, 50% moderate, and 40% complex models, forming
the final partABC dataset of ∼300k samples (Figure 6).

Simple Moderate

Complex

Figure 6: Example CAD parts from the partABC dataset
across complexity tiers- simple (top-left), moderate (top-
right), and complex (bottom).

Experimental Results
In this section, we provide details of our experiments and
discuss evaluation results with baselines.
Datasets: We use the curated partABC dataset for super-
vised fine-tuning of our model, with 95%–2.5%-2.5% split
for training, validation, and testing. To reduce context length
and improve token efficiency, we round the NURBS con-
trol point coordinates to 6 decimal places. Additionally, we
compress control point weights using a (value, frequency)
representation scheme.
Implementation Details: We fine-tune Qwen3-4B
model (Yang et al. 2025) using AdamW (Loshchilov and
Hutter 2019) with a learning rate of 5×10−5 and linear
warm-up. LoRA (Hu et al. 2021) is applied with rank 64
and α=128. Training runs for 180k steps with batch size
1 on 4×H200 GPUs over 3 days. The context window
is 8192 during training and 14k during inference, with
temperature 0.3. On RTX 3090, the model achieves a
generation throughput of ∼ 800 tokens per second. Figure 2
(Right column) shows the finetuning task.
Baselines: We compare against strong open-source base-
lines for text-to-CAD generation. While recent models like
CAD-LLaMA (Li et al. 2025) and CADFusion (Wang et al.
2025) report promising results, their implementations are
not publicly available. Moreover, to the best of our knowl-
edge, there are no open-source models capable of generat-
ing NURBS-based CAD representations from text. Hence,
we focus our comparison with open-source methods, includ-
ing Text2CAD (Khan et al. 2024b), DeepCAD (Wu, Xiao,
and Zheng 2021), and GPT-4o. We use official pretrained
weights for Text2CAD and retrain DeepCAD for 100 epochs
following the Text2CAD protocol. GPT-4o is evaluated us-
ing 2-shot prompting with example caption–JSON pairs.
Metrics: We assess both geometric fidelity and visual align-
ment of the generated CAD models. For geometry, we com-
pute Chamfer Distance (CD), Hausdorff Distance (HD),
Jensen–Shannon Divergence (JSD), and Minimum Match-
ing Distance (MMD) on 7,500 test samples using 8,192 uni-
formly sampled points normalized to a unit cube. For visual
alignment, we evaluate prompt fidelity through human and
GPT-4o preference studies on 1k and 5k samples, respec-

Two-story house with
gabled roof, chimney
... rectangular windows
and a small front
porch area ...

... plate with eight
evenly spaced
semi-cylindrical
extrusions, 15 mm
diameter ...

... rounded edges
and tread
patterns ... text
"CR 2032 +" ...

Figure 7: Failure cases of NURBGen illustrating limitations
in handling complex prompts, geometric artifacts like self-
intersections, and challenges in text engraving.

tively. In the human study, five CAD designers of varying
expertise choose the reconstruction that best matches each
prompt, and we report Top-1 accuracy via majority vote. For
GPT-4o, we present a 2 × 2 grid of multi-view renderings
and the prompt, asking it to select the most faithful output or
label cases as “Undecided.” We additionally report the In-
validity Ratio (IR), defined as the percentage of generated
models that fail to convert into valid B-Rep structures.

Model User(1k)↑ GPT↑ IR↓ CD↓ HD↓ JSD↓ MMD↓
Undecided 2.7 3.2 – – – – –
GPT-4o 1.5 1.9 0.17 7.2 0.36 72.87 4.17
DeepCAD 5.6 6.1 0.32 10.28 0.45 89.77 4.43
Text2CAD 26.1 27.2 0.05 9.66 0.42 85.27 4.54
NURBGen 64.1 61.6 0.018 4.43 0.25 57.94 2.14

Table 1: Quantitative comparison of text-to-CAD models.
CD, JSD and MMD are multiplied by 102.

Results: Table 1 lists the quantitative comparison of NUR-
BGen with other baselines. Our model outperforms the prior
baselines by a significant margin in both geometric and vi-
sual alignment. Notably, we achieve 60.8% top-1 prefer-
ence in human evaluation and 63.7% in GPT-4o evalua-
tion. Text2CAD ranks 2nd, followed by DeepCAD and GPT-
4o. Notably, NURBGen also has the lowest invalidity ratio
(0.01), indicating strong geometric correctness in its output.
In contrast, DeepCAD suffers from a higher rate (0.3), re-
flecting challenges in generating complete and consistent
BRep geometry. As shown in Fig 4, NURBGen generates
CAD models that are better aligned with the input text, out-
performing baselines in both fidelity and consistency.
Caption Quality: Because VLMs can occasionally halluci-
nate (Liu et al. 2024), we evaluate the reliability of our au-
tomatically generated captions. We randomly sample 1,000
captions and provide each, together with its 6 rendered views
and CAD metadata, to GPT-4o for verification. GPT-4o re-
ports an accuracy of ∼ 85%, indicating that our caption-
ing pipeline produces generally accurate and semantically
meaningful descriptions.

Ablation Study
We perform an ablation study to assess the contribution of
our hybrid representation. We fine-tune Qwen3-4B using

A cylindrical ring
with rounded edges
and a central hole, ...
smooth fillets...

Text Caption
NURBGen

(Untrimmed Nurbs
Representation)

NURBGen
(Hybrid

Representation)

Figure 8: Comparison of NURBS-only (left) and hybrid
(right) models, showing improved handling of thin and hole-
adjacent regions.

only the untrimmed NURBS representation, removing the
fallback to analytic primitives, and evaluate it with both hu-
man judges and GPT-4o following the same protocol as be-
fore. The hybrid model achieves 72% (human) and 79%
(GPT-4o), whereas the NURBS-only model exhibits no-
ticeable geometric artifacts—especially around holes, sharp
transitions, and regions where NURBS fitting is less precise
(Figure 8). These results demonstrate that the hybrid design
is crucial for stable and accurate CAD reconstruction.

Limitation
Despite its strong performance, our approach has certain
limitations. Figure 7 illustrates a few representative failure
cases. For instance, in response to complex prompts (e.g.,
“Two-story house with gabled roof...”), NURBGen struggles
to capture fine-grained architectural structure. In rare cases,
we also observe geometric artifacts such as self-intersections
or topological inconsistencies, as seen in the second exam-
ple. Additionally, NURBGen has difficulty reconstructing
prompts with engraving text (third example).

Conclusion
We present NURBGen, the first framework for text-to-
CAD generation using NURBS surfaces. NURBGen gen-
erates structured, editable NURBS representations from text
prompts, which can be directly converted into B-Rep for-
mat using a fine-tuned LLM. To enable this, we generate
partABC, a large-scale dataset of 300k part-level models
from ABC with NURBS annotations and high-quality gen-
erated captions. We hope that this dataset will be a valu-
able resource for future research. We further propose a hy-
brid representation that combines untrimmed NURBS with
analytic primitives to address trimming artifacts while en-
hancing geometric robustness and token efficiency. Empiri-
cal results show that NURBGen surpasses existing state-of-
the-art methods in geometric fidelity, as confirmed by ex-
pert evaluators. While the current model is constrained by
a context window of 8192, future work will explore long-
context training and multimodal extensions to handle more
complex assemblies. We believe that our work will position
NURBS-based representations as a compelling alternative
to design-history-based methods for future research in the
evolving text-to-CAD domain.

Acknowledgements
This work was co-funded by the European Union under
Horizon Europe, grant number 101135724, project LUMI-
NOUS. However, the views and opinions expressed are
those of the author(s) only and do not necessarily reflect
those of the European Union. Neither the European Union
nor the granting authority can be held responsible.

References
Ali, S. A.; Khan, M. S.; and Stricker, D. 2024. BRep Bound-
ary and Junction Detection for CAD Reverse Engineering.
In IEEE International Conference on Computing and Ma-
chine Intelligence (ICMI). IEEE.
Böhm, W.; Farin, G.; and Kahmann, J. 1984. A survey of
curve and surface methods in CAGD. Computer Aided Ge-
ometric Design, 1(1): 1–60.
Chen, T.; Yu, C.; Hu, Y.; Li, J.; Xu, T.; Cao, R.; Zhu, L.;
Zang, Y.; Zhang, Y.; Li, Z.; and Sun, L. 2024. Img2CAD:
Conditioned 3D CAD Model Generation from Single Image
with Structured Visual Geometry. arXiv:2410.03417.
Dupont, E.; Cherenkova, K.; Kacem, A.; Ali, S. A.; Arzhan-
nikov, I.; Gusev, G.; and Aouada, D. 2022. CADOps-
Net: Jointly Learning CAD Operation Types and Steps from
Boundary-Representations. In 2022 International Confer-
ence on 3D Vision (3DV), 114–123.
Dupont, E.; Cherenkova, K.; Mallis, D.; Gusev, G.; Kacem,
A.; and Aouada, D. 2024. TransCAD: A Hierarchical Trans-
former for CAD Sequence Inference from Point Clouds.
arXiv:2407.12702.
Fan, J.; Gholami, B.; Bäck, T.; and Wang, H. 2024. Neu-
roNURBS: Learning Efficient Surface Representations for
3D Solids. arXiv:2411.10848.
Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.;
Williams, C. B.; Wang, C. C.; Shin, Y. C.; Zhang, S.; and
Zavattieri, P. D. 2015. The status, challenges, and future
of additive manufacturing in engineering. Computer-Aided
Design, 69: 65–89.
Govindarajan, P.; Baldelli, D.; Pathak, J.; Fournier, Q.; and
Chandar, S. 2025. CADmium: Fine-Tuning Code Lan-
guage Models for Text-Driven Sequential CAD Design.
arXiv:2507.09792.
Grattafiori, A.; and et al. 2024. The Llama 3 Herd of Models.
arXiv:2407.21783.
Guo, H.; Liu, S.; Pan, H.; Liu, Y.; Tong, X.; and Guo, B.
2022. ComplexGen: CAD Reconstruction by B-Rep Chain
Complex Generation. ACM Trans. Graph. (SIGGRAPH),
41(4).
Hliněný, P. 2021. A Short Proof of Euler–Poincaré Formula.
arXiv:1612.01271.
Hong, Y.; Zhen, H.; Chen, P.; Zheng, S.; Du, Y.; Chen, Z.;
and Gan, C. 2023. 3D-LLM: Injecting the 3D World into
Large Language Models. NeurIPS.
Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2021. LoRA: Low-Rank Adap-
tation of Large Language Models. arXiv:2106.09685.

Kapsalis, T. 2024. CADgpt: Harnessing Natural Language
Processing for 3D Modelling to Enhance Computer-Aided
Design Workflows. arXiv:2401.05476.
Khan, M. S.; Dupont, E.; Ali, S. A.; Cherenkova, K.; Kacem,
A.; and Aouada, D. 2024a. CAD-SIGNet: CAD Language
Inference from Point Clouds using Layer-wise Sketch In-
stance Guided Attention. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 4713–4722.
Khan, M. S.; Sinha, S.; Uddin, S. T.; Stricker, D.; Ali, S. A.;
and Afzal, M. Z. 2024b. Text2CAD: Generating Sequential
CAD Designs from Beginner-to-Expert Level Text Prompts.
In Advances in Neural Information Processing Systems, vol-
ume 37, 7552–7579. Curran Associates, Inc.
Koch, S.; Matveev, A.; Jiang, Z.; Williams, F.; Artemov,
A.; Burnaev, E.; Alexa, M.; Zorin, D.; and Panozzo, D.
2019. ABC: A Big CAD Model Dataset For Geometric Deep
Learning. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).
Kolodiazhnyi, M.; Tarasov, D.; Zhemchuzhnikov, D.;
Nikulin, A.; Zisman, I.; Vorontsova, A.; Konushin, A.;
Kurenkov, V.; and Rukhovich, D. 2025. cadrille: Multi-
modal CAD Reconstruction with Online Reinforcement
Learning. arXiv preprint arXiv:2505.22914.
Lambourne, J. G.; Willis, K. D.; Jayaraman, P. K.; Sanghi,
A.; Meltzer, P.; and Shayani, H. 2021. BRepNet: A Topo-
logical Message Passing System for Solid Models. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 12773–12782.
Lee, J.; Yeo, C.; Cheon, S.-U.; Park, J. H.; and Mun, D.
2023. BRepGAT: Graph neural network to segment ma-
chining feature faces in a B-rep model. Journal of Com-
putational Design and Engineering, 10(6): 2384–2400.
Li, J.; Ma, W.; Li, X.; Lou, Y.; Zhou, G.; and Zhou, X.
2025. CAD-Llama: Leveraging Large Language Models for
Computer-Aided Design Parametric 3D Model Generation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).
Li, P.; Guo, J.; Zhang, X.; and ming Yan, D. 2023. SECAD-
Net: Self-Supervised CAD Reconstruction by Learning
Sketch-Extrude Operations. arXiv:2303.10613.
Li, X.; Song, Y.; Lou, Y.; and Zhou, X. 2024. CAD Transla-
tor: An Effective Drive for Text to 3D Parametric Computer-
Aided Design Generative Modeling. In Proceedings of the
32nd ACM International Conference on Multimedia, MM
’24, 8461–8470. New York, NY, USA: Association for Com-
puting Machinery. ISBN 9798400706868.
Liu, H.; Xue, W.; Chen, Y.; Chen, D.; Zhao, X.; Wang, K.;
Hou, L.; Li, R.; and Peng, W. 2024. A Survey on Hallucina-
tion in Large Vision-Language Models. arXiv:2402.00253.
Liu, Y.; Obukhov, A.; Wegner, J. D.; and Schindler, K. 2023.
Point2CAD: Reverse Engineering CAD Models from 3D
Point Clouds. arXiv:2312.04962.
Loshchilov, I.; and Hutter, F. 2019. Decoupled Weight De-
cay Regularization. In International Conference on Learn-
ing Representations.

Lv, C.; and Bao, J. 2025. CADInstruct: A multimodal
dataset for natural language-guided CAD program synthe-
sis. Computer-Aided Design, 188: 103926.
Mallis, D.; Aziz, A. S.; Dupont, E.; Cherenkova, K.; Karad-
eniz, A. S.; Khan, M. S.; Kacem, A.; Gusev, G.; and Aouada,
D. 2023. SHARP Challenge 2023: Solving CAD History
and pArameters Recovery from Point Clouds and 3D Scans.
Overview, Datasets, Metrics, and Baselines. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV) Workshops, 1786–1795.
Mykhaskiv, O.; Banović, M.; Auriemma, S.; Mohanamu-
raly, P.; Walther, A.; Legrand, H.; and Müller, J.-D. 2018.
NURBS-based and parametric-based shape optimization
with differentiated CAD kernel. Computer-Aided Design
and Applications, 15(6): 916–926.
Prasad, A. D.; Balu, A.; Shah, H.; Sarkar, S.; Hegde, C.; and
Krishnamurthy, A. 2022. NURBS-Diff: A Differentiable
Programming Module for NURBS. Computer Aided De-
sign, 146: 103199.
Qi, C. R.; Su, H.; Mo, K.; and Guibas, L. J. 2017a. Point-
Net: Deep Learning on Point Sets for 3D Classification and
Segmentation. arXiv:1612.00593.
Qi, C. R.; Yi, L.; Su, H.; and Guibas, L. J. 2017b. Point-
Net++: Deep Hierarchical Feature Learning on Point Sets in
a Metric Space. arXiv preprint arXiv:1706.02413.
Ren, D.; Zheng, J.; Cai, J.; Li, J.; and Zhang, J. 2022. Extru-
deNet: Unsupervised Inverse Sketch-and-Extrude for Shape
Parsing. arXiv:2209.15632.
Rukhovich, D.; Dupont, E.; Mallis, D.; Cherenkova, K.;
Kacem, A.; and Aouada, D. 2024. CAD-Recode: Reverse
Engineering CAD Code from Point Clouds. arXiv preprint
arXiv:2412.14042.
Sharma, G.; Liu, D.; Kalogerakis, E.; Maji, S.; Chaudhuri,
S.; and Měch, R. 2020. ParSeNet: A Parametric Surface
Fitting Network for 3D Point Clouds. arXiv:2003.12181.
Sinha, S.; Khan, M. S.; Usama, M.; Sam, S.; Stricker, D.;
Ali, S. A.; and Afzal, M. Z. 2025. MARVEL-40M+: Multi-
Level Visual Elaboration for High-Fidelity Text-to-3D Con-
tent Creation. In Proceedings of the Computer Vision and
Pattern Recognition Conference (CVPR), 8105–8116.
Vido, M.; de Oliveira Neto, G. C.; Lourenço, S. R.; Amorim,
M.; and Rodrigues, M. J. F. 2024. Computer-Aided Design
and Additive Manufacturing for Automotive Prototypes: A
Review. Applied Sciences, 14(16).
Wang, R.; Yuan, Y.; Sun, S.; and Bian, J. 2025. Text-to-CAD
Generation Through Infusing Visual Feedback in Large Lan-
guage Models. In Forty-second International Conference on
Machine Learning.
Wang, Z.; Lorraine, J.; Wang, Y.; Su, H.; Zhu, J.; Fi-
dler, S.; and Zeng, X. 2024. LLaMA-Mesh: Unifying 3D
Mesh Generation with Language Models. arXiv preprint
arXiv:2411.09595.
Willis, K. D. D.; Pu, Y.; Luo, J.; Chu, H.; Du, T.; Lambourne,
J. G.; Solar-Lezama, A.; and Matusik, W. 2021. Fusion 360
Gallery: A Dataset and Environment for Programmatic CAD
Construction from Human Design Sequences. ACM Trans-
actions on Graphics (TOG), 40(4).

Worchel, M.; and Alexa, M. 2023. Differentiable Rendering
of Parametric Geometry. ACM Transactions On Graphics.,
42(6).
Wu, R.; Xiao, C.; and Zheng, C. 2021. DeepCAD: A Deep
Generative Network for Computer-Aided Design Models. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 6772–6782.
Xu, J.; Zhao, Z.; Wang, C.; Liu, W.; Ma, Y.; and Gao, S.
2025. CAD-MLLM: Unifying Multimodality-Conditioned
CAD Generation With MLLM. arXiv:2411.04954.
Xu, R.; Wang, X.; Wang, T.; Chen, Y.; Pang, J.; and Lin, D.
2024a. PointLLM: Empowering Large Language Models
to Understand Point Clouds. In European Conference on
Computer Vision.
Xu, X.; Lambourne, J.; Jayaraman, P.; Wang, Z.; Willis, K.;
and Furukawa, Y. 2024b. Brepgen: A b-rep generative dif-
fusion model with structured latent geometry. ACM Trans-
actions on Graphics (TOG), 43(4): 1–14.
Yang, A.; Li, A.; Yang, B.; Zhang, B.; Hui, B.;
Zheng, B.; and et al. 2025. Qwen3 Technical Report.
arXiv:2505.09388.
Yang, S.; Wang, J.; and Wang, K. 2024. NURBS-OT: An
Advanced Model for Generative Curve Modeling. Journal
of Mechanical Design, 147(3): 031703.
Yu, F.; Chen, Z.; Li, M.; Sanghi, A.; Shayani, H.; Mahdavi-
Amiri, A.; and Zhang, H. 2022. CAPRI-Net: Learning Com-
pact CAD Shapes With Adaptive Primitive Assembly. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 11768–11778.
Zeng, F.; Gan, W.; Wang, Y.; Liu, N.; and Yu, P. S.
2023. Large Language Models for Robotics: A Survey.
arXiv:2311.07226.
Zhang, L.; Le, B.; Akhtar, N.; Lam, S.-K.; and Ngo, T.
2025. Large Language Models for Computer-Aided Design:
A Survey. arXiv:2505.08137.
Zhou, S.; Tang, T.; and Zhou, B. 2023. CADParser: a learn-
ing approach of sequence modeling for B-Rep CAD. In
Proceedings of the Thirty-Second International Joint Con-
ference on Artificial Intelligence, IJCAI ’23. ISBN 978-1-
956792-03-4.
Zhu, J.; Wang, W.; Chen, Z.; Liu, Z.; Ye, S.; Gu, L.; Tian, H.;
Duan, Y.; Su, W.; Shao, J.; Gao, Z.; Cui, E.; Wang, X.; Cao,
Y.; Liu, Y.; Wei, X.; Zhang, H.; Wang, H.; Xu, W.; Li, H.;
Wang, J.; Deng, N.; Li, S.; He, Y.; Jiang, T.; Luo, J.; Wang,
Y.; He, C.; Shi, B.; Zhang, X.; Shao, W.; He, J.; Xiong, Y.;
Qu, W.; Sun, P.; Jiao, P.; Lv, H.; Wu, L.; Zhang, K.; Deng,
H.; Ge, J.; Chen, K.; Wang, L.; Dou, M.; Lu, L.; Zhu, X.; Lu,
T.; Lin, D.; Qiao, Y.; Dai, J.; and Wang, W. 2025. InternVL3:
Exploring Advanced Training and Test-Time Recipes for
Open-Source Multimodal Models. arXiv:2504.10479.

Appendix

CAD Representation
We represent a BRep solid using a sequence of faces. Each
face is either a NURB surface or contains analytical primi-
tives (lines, circle, bsplines, and so on). Below, we provide
how to parameterize them in our CAD representation. Fig-
ure 9 showcases an example CAD representation.

1. NURBS:
• Poles: Control points, represented as a 2D array of 3D

points defining the control net of the surface.
• Weights: A 2D array of real numbers associated with

the poles. Defines the rational nature of the surface. Op-
tional for non-rational surfaces.

• u knots, v knots: Non-decreasing sequences of real
numbers defining the knot vectors in the u and v para-
metric directions.

• u mults, v mults: Integer sequences representing the
multiplicity of each knot in the u and v directions, re-
spectively.

• u degree, v degree: Degree of the B-spline basis
functions in the u and v directions.

• u periodic, v periodic: Boolean flags indicating
whether the surface is periodic in each parametric direc-
tion.

2. Line
• start: (x, y, z) coordinates of the starting point.
• end: (x, y, z) coordinates of the ending point.

3. Circle
• center: (x, y, z) coordinates of the circle’s center.
• normal: (x, y, z) direction vector normal to the plane

of the circle.
• radius: Radius of the circle.
• first, last: Start and end angles (in radians) defining

an arc on the circle. For a semicircle, first = 0.0,
last = π.

4. Ellipse
• center: (x, y, z) coordinates of the ellipse’s center.
• normal: (x, y, z) direction vector normal to the ellipse’s

plane.
• major radius: Length of the major axis.
• minor radius: Length of the minor axis.
• first, last: Start and end angles (in radians) defining

an arc on the ellipse. For a full ellipse, first = 0.0,
last = 2π.

5. Bezier Curve
• poles: List of control points (x, y, z).
• degree: Degree of the Bezier curve.
• first, last: Parametric domain range.

6. B-spline Curve

• poles: List of control points (x, y, z).
• degree: Degree of the B-spline curve.
• knots: Knot vector (non-decreasing real numbers).
• mults: Corresponding multiplicities of knots.
• weights (optional): Weights for rational B-splines (if

omitted, assumed to be 1.0).
• is periodic: Boolean flag indicating if the curve is

periodic.
• first, last: Parametric range.

Impact of Metadata on Caption Quality
Figure 10 and 11 highlight the crucial role of metadata
in driving accurate and informative captions. With ac-
cess to structural cues such as dimensions and hole count,
InternVL3-13B produces descriptions that are both pre-
cise and grounded in geometry. In contrast, GPT-4o, when
prompted without metadata, often overlooks or misstates
these critical features.

More Qualitative Results
Figure 12 and Figure 13 showcase additional results from
our text-to-CAD generation using NURBGen. Notably, ex-
amples such as (Column 1, Row 1) and (Column 2, Row
3) in Figure 12, and (Column 1, Row 3) in Figure 13, show
shapes that are currently infeasible to generate using existing
design-history-based text-to-CAD approaches due to lack of
CAD operations such as loft, sweep and revolution in the
training datasets.

 "face_7": [{
 "edges": [
 {"type": "Geom_Circle",
 "first": 0.0,
 "last": 6.283185,
 "orientation": "R",
 "center": [0.136843, 0.135339, 0.48797],
 "radius": 0.104511,
 "normal": [0.0, 0.0, 1.0]}],"is_outer": 1},
 {"edges": [
 {"type": "Geom_Circle",
 "first": 0.0,
 "last": 6.283185,
 "orientation": "R",
 "center": [0.136843, 0.135339, 0.48797],
 "radius": 0.097744,
 "normal": [0.0, 0.0, -1.0]}], "is_outer": 0}]

 "face_4": {"poles": [[
 [0.03909905415906001, 0.135339218539,
 0.49398498972619],[0.0, 0.0, 0.0060150103]],[
 [0.0, -0.16929743028635674, 0.0],
 [0.0, 0.0, 0.0]],[[-0.14661587542340998,
 -0.0846487151431784, 0.0],[0.0, 0.0, 0.0]],[
 [-0.29323175084681996, 0.0, 0.0], [0.0, 0.0, 0.0]],
 [[-0.14661587542341004, 0.0846487151, 0.0],
 [0.0, 0.0, 0.0]],[[0.0, 0.16929743028635685, 0.0],
 [0.0, 0.0, 0.0]]],
 "u_knots": [0.0, 2.094395, 4.18879, 6.283185],
 "v_knots": [-0.089775, -0.08376], "u_mults": [2, 2, 2, 2],
 "v_mults": [2, 2], "u_degree": 2, "
 v_degree": 1,"u_periodic": 1, "v_periodic": 0,
 "weights": [[1.0, 2], [0.5, 2], [1.0, 2],
 [0.5, 2],[1.0, 2],[0.5, 2]]}

 "face_3": {"poles": [[
 [0.1067679197391, 0.135339218539,
 0.5180450308210001],[0.0, 0.0,
 0.02406004109481008]],
 [[0.0,-0.0520915170111787, 0.0],
 [0.0, 0.0, 0.0]],[[-0.04511257705334999,
 -0.02604575850558935, 0.0],[0.0, 0.0, 0.0]],
 [[-0.0902251541067, 0.0, 0.0],[0.0, 0.0, 0.0]],
 [[-0.04511257705335002, 0.02604575850558935,
 0.0],[0.0, 0.0, 0.0]], [[0.0, 0.052091512, 0.0],
 [0.0, 0.0, 0.0]]],
 "u_knots": [0.0, 2.094395, 4.18879,
 6.283185],
 "v_knots": [-0.113836, -0.089775],
 "u_mults": [2, 2, 2, 2],"v_mults": [2, 2],
 "u_degree": 2,"v_degree": 1,
 "u_periodic": 1,"v_periodic": 0,
 "weights": [[1.0, 2],[0.5, 2],[1.0, 2],
 [0.5, 2],[1.0, 2],[0.5, 2]]}

 "face_0": [{
 "edges": [
 {"type": "Geom_Circle",
 "first": 0.0, "last": 6.283185,
 "orientation": "F",
 "center": [0.136843, 0.135339, 0.518045],
 "radius": 0.037594,
 "normal": [0.0, 0.0, 1.0]}], "is_outer": 1},
 {"edges": [
 {"type": "Geom_Circle",
 "first": 0.0, "last": 6.283185,
 "orientation": "R",
 "center": [0.136843, 0.135339, 0.518045],
 "radius": 0.030075,
 "normal": [0.0, 0.0, 1.0]}], "is_outer": 0}]

 "face_5": [{
 "edges": [
 {"type": "Geom_Circle",
 "first": 0.0,
 "last": 6.283185,
 "orientation": "R",
 "center": [0.136843, 0.135339, 0.493985],
 "radius": 0.097744,
 "normal": [0.0, 0.0, 1.0]}],"is_outer": 1},
 {"edges": [
 {"type": "Geom_Circle",
 "first": 0.0,
 "last": 6.283185,
 "orientation": "R",
 "center": [0.136843, 0.135339, 0.493985],
 "radius": 0.030075,
 "normal": [0.0, 0.0, -1.0]}], "is_outer": 0}]

CAD Representation

"face_6": { "poles": [[
 [0.09924915689687, 0.135339218539,
 0.518045030821], [0.0, 0.0, 0.01804503082]],[[0.0,
 -0.065114396,0.0], [0.0, 0.0, 0.0]],
 [[-0.05639072131669501, -0.03255719813199104, 0.0],
 [0.0, 0.0, 0.0]], [[-0.11278144263338999, 0.0, 0.0],
 [0.0, 0.0, 0.0]], [[-0.05639072131669501,
 0.032557198132, 0.0],[0.0, 0.0, 0.0]],
 [[0.0, 0.06511439626398206, 0.0],[0.0, 0.0, 0.0]]],
 "u_knots": [0.0, 2.094395, 4.18879, 6.283185],
 "v_knots": [-0.113836, -0.09579],
 "u_mults": [2, 2, 2, 2], "v_mults": [2, 2],
 "u_degree": 2, "v_degree": 1,
 "u_periodic": 1, "v_periodic": 0,
 "weights": [[1.0, 2],[0.5, 2],[1.0, 2],
 [0.5, 2],[1.0, 2],[0.5, 2]]}

 "face_1": [{
 "edges": [
 {"type": "Geom_Circle",
 "first": 0.0,
 "last": 6.283185,
 "orientation": "R",
 "center": [0.136843, 0.135339, 0.5],
 "radius": 0.104511,
 "normal": [0.0, 0.0,1.0]}], "is_outer": 1},
 {"edges": [
 {"type": "Geom_Circle",
 "first": 0.0, "last": 6.283185,
 "orientation": "R",
 "center": [0.136843, 0.135339, 0.5],
 "radius": 0.037594,
 "normal": [0.0, 0.0, 1.0]}],
 "is_outer": 0}]

 "face_2": {
 "poles": [[
 [0.0323321676, 0.135339218539, 0.499999997],
 [0.0, 0.0, 0.012030020547560027]],[
 [0.0, -0.18101802161397157, 0.0],[0.0, 0.0, 0.0]],[
 [-0.1567662052605, -0.09050901080698581, 0.0],
 [0.0, 0.0, 0.0]],[[-0.31353241052099995, 0.0, 0.0],
 [0.0, 0.0, 0.0]],[[-0.15676620526050006,
 0.09050901080698577, 0.0],[0.0, 0.0, 0.0]],
 [[0.0 0.18101802161397165, 0.0], [0.0, 0.0, 0.0]]],
 "u_knots": [0.0, 2.094395, 4.18879, 6.283185],
 "v_knots": [-0.09579, -0.08376],"u_mults": [2, 2, 2, 2],
 "v_mults": [2, 2], "u_degree": 2,"v_degree": 1,
 "u_periodic": 1,"v_periodic": 0,
 "weights": [[1.0, 2],[0.5, 2],[1.0, 2],[0.5, 2],[1.0, 2],[0.5, 2]]}

CAD Model

Figure 9: Our proposed hybrid CAD representation.

Hexagonal plate featuring 30 evenly
spaced holes arranged in rows on both
sides. Dimensions approximately 476.31
mm x 550.00 mm x 3.00 mm.

Thin hexagonal plate with 19
hexagonal through-holes in a grid
pattern and 6 circular through-holes
near each corner. Uniform thickness
and flat top and bottom faces.

CAD Model GPT-4o
(Without Metadata)

Ours
(With Metadata)

Rectangular plate with four large
corner through-holes, four small
central holes in a square, and two
extra small holes near one edge;
shallow pyramidal top surface,
uniform thickness.

Rectangular metal plate with dimensions
210x150x12 mm, featuring eight
countersunk holes: four at corners, two
on each side near edges, and two
centered along the longer edges.

Design a rectangular bar measuring 1180
x 80 x 10 mm with 46 evenly spaced
through-holes along its length. Maintain
uniform spacing between holes. Ensure
flat surfaces on all faces.

Tapered rectangular beam with 36
evenly spaced circular holes
arranged in a grid along the top and
bottom faces; side faces are smooth
and featureless.

Rectangular mounting plate with 2
large circular holes, 15 small round
holes and 4 edge notches for
assembly.

Rectangular metallic plate with rounded
corners, featuring two central circular
cutouts and twenty-six evenly distributed
smaller holes.

Design a rectangular metallic mounting
plate with rounded corners. Include a
central circular opening and fifteen
through-holes distributed across the
surface. Dimensions: length 123.48 mm,
width 232.11 mm, height 30.48 mm.

Triangular support bracket
featuring 1 large central hole, 4
small mounting holes, and 3
triangular cutouts for weight
reduction.

Figure 10: Impact of metadata-guided annotation in our annotation pipeline. From left to right: CAD model, caption
generated by GPT-4o without metadata, and caption from our pipeline using metadata such as dimensions, and hole count.

Design a rectangular metal bar measuring
1369mm x 125mm x 10mm with 22 evenly
spaced through-holes along its length. Ensure
uniform hole distribution for structural
attachment purposes.

Tapered rectangular plate with 10
circular through-holes in a linear
array and 6 smaller holes clustered
near each end. Flat top and bottom
faces; uniform thickness.

Long, slender cylindrical rod featuring
10 evenly spaced circular holes along
one side; opposite face is smooth with
rounded ends and uniform diameter.

Hollow tapered rectangular column
with open ends and 23 circular holes—
8 on each longer face, 5 and 5 on the
shorter faces—plus one rectangular
cutout near the base.

Rectangular metal bar with rounded ends,
featuring 12 evenly spaced holes along its
length, and smooth edges. Dimensions:
1506 mm long, 24 mm wide, 125 mm tall."

Rectangular metal frame with dimensions
50.8mm x 50.8mm x 228.6mm. Features 29
through-holes. Includes mounting brackets
at top corners.

CAD Model GPT-4o
(Without Metadata)

Ours
(With Metadata)

Rectangular tray-like component with
angled side walls and 16 circular holes
—4 per corner—on the inclined inner
surfaces; base is flat and
unperforated.

Create a rectangular metal bracket with
dimensions 1270mm x 584.20mm x 3.18mm.
Include rounded edges with fillets, four
corners, and 18 evenly distributed
mounting holes along the perimeter.

Rectangular plate with symmetrical
pattern of through holes; 5 rows by 5
columns, with varying diameters
concentrated toward edges and
corners.

Rectangular plate with rounded corners,
measuring 135x158x8mm. Features 26
holes: 16 with circles around them and 10
solid circles.

Figure 11: Impact of metadata-guided annotation in our annotation pipeline. From left to right: CAD model, caption
generated by GPT-4o without metadata, and caption from our pipeline using metadata such as dimensions, and hole count.

Design a hexagonal prism, measuring 39.91 mm in
length, 38.44 mm in width, and 5.08 mm in height.

A concentric cylindrical assembly showing multiple
nested components, illustrating precise fit and
structural configuration.

Rectangular block with three through-holes aligned
horizontally on one face. Dimensions: Length 26.22
mm, width 3.18 mm, height 16.44 mm..

(Text-to-CAD using NURBGen)

Closed triangular ring with smooth, rounded
tubular profile, three equal curved edges,
consistent diameter

Assembly model featuring a stepped cylindrical
shaft, fitted through a central ring and washer,
terminating in a larger hollow cylinder.

Cylindrical component with spherical caps on
both ends, overall height 168.71 mm, diameter
22.71 mm. Features an elongated central section
and a single horizontal slot at mid-height along
its length.

Cylindrical component with hemispherical ends
and two flanged faces. Features rounded edges
and symmetrical design. Total length 14.32 mm,
diameter 7.90 mm at widest points. Fillets
present on transitions between cylindrical and
spherical sections. No visible holes or threading.

Design a cylindrical component with hemispherical top
and bottom ends. Include fillets at both ends.
Dimensions: length 74.61 mm, width 107.95 mm,
height 74.61 mm. Ensure smooth transitions between
cylindrical and spherical sections.

Figure 12: Text-to-CAD generation using NURBGen.

Rectangular body, four rectangular protrusions at
corners on one side. Dimensions: length 5.00 mm, width
6.20 mm, height 1.10 mm. No through holes present. Flat
top surface. Symmetrical layout.

Create two concentric hollow cylinders with visible
cross-section, varying wall thicknesses, chamfered
edges, and aligned along a shared central axis.

Design a rectangular plate with dimensions 330.20
mm x 233.40 mm x 6.00 mm. Include two square
through-holes near each end.

Design a 400mm-long bundle of interlocking, cross-
shaped bars arranged in parallel. Maintain uniform
spacing, and consistent wall thickness.

A pyramid with a flat circular base. The dimensions are
1.00 mm x 1.00 mm x 0.50 mm.

A T-shaped assembly with cylindrical legs and a
horizontal beam featuring rectangular cutouts on
the top tube.

(Text-to-CAD using NURBGen)

The CAD model is a tapered cylindrical shaft with a
hexagonal base, featuring rounded edges and a conical
tip. It has a central groove running along its length.

Create a cylindrical bottle with dimensions 26mm
x 26mm x 62.3mm. Include a rounded cap on top.
Add a horizontal groove near the neck.

Figure 13: Text-to-CAD generation using NURBGen.

