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Abstract—The detection of movement intentions for controlling
robotic systems is becoming increasingly important in
human-robot interaction especially for exoskeleton-supported
rehabilitation. This movement intention can be expressed by a
speech command, which can be used, for example, to generate
training labels in electroencephalography (EEG)-based brain-
computer interface (BCI) applications. However, the production
of overt speech during BCI applications is strictly avoided in
many studies due to the potential artifacts that affect the signal
quality of the EEG and is a major limitation for out-of-the-lab
use of BCI systems for various applications. In such applications,
it cannot be strictly prohibited for the user to remain silent while
using the BCI.

In this work, the influence of overt speech commands on the
detection of a person’s arm movement intentions was investigated.
Our objective was to reduce the influence of overt speech artifacts
in EEG-based classification. EEG data were recorded from six
healthy subjects under three experimental conditions: unilateral
arm movements (Uni), isolated speech commands (Sp), and
unilateral arm movements with speech commands (UniSp), where
subjects indicated their intention to move by saying the word
begin before the onset of the arm movement. To investigate the
effect of overt speech on the EEG classifier performance, we
performed a classifier transfer between UniSp and Uni condition.
Additionally, an independent component analysis (ICA)-approach
was also applied to reduce artifacts caused by overt speech on
the transferred classifier.

For the Uni condition (baseline and no transfer), an accuracy
of 0.828 was achieved. In contrast, the accuracy for the UniSp
(no transfer) condition increased to 0.953. However, a naive
classifier transfer from the UniSp condition to the Uni condition
yielded a strongly reduced accuracy of 0.544 and this transfer
combined with the ICA approach resulted in a slightly reduced
accuracy of 0.534. These results indicate that the increase
in performance in the UniSp condition compared to the Uni

condition (baseline) resulted from specific patterns in the EEG
data originating from overt speech. These patterns can also arise
from muscle activity and speech-related movement artifacts. The
poor classification accuracy of 0.544 and 0.534 (chance level
0.5) observed in the classifier transfer approach support the
hypothesis that the artifact contamination in the EEG produced
from overt speech result in a major decrease in classification
performance. Therefore, very different patterns might have been
learned by the classifier for the UniSp condition compared to
the Uni condition. Finally, the results demonstrated that no
increase in performance could be observed when applying an
ICA-based approach to reduce the effect of overt speech on EEG
classification performance. These findings strongly motivate the
need for improved preprocessing and transfer learning strategies
for more robust EEG classifications for an out-of-the-lab use of
BCIs.

Index Terms—BCI, overt speech, EEG, machine learning,
classifier transfer, movement prediction

I. INTRODUCTION

In the field of human-robot interaction (HRI), active
exoskeletons [1] can extend therapy options for stroke
patients [2] and are effective in improving post-stroke
neuromotor rehabilitation [3]–[5]. There are many examples
of how such exoskeletons can be used to support rehabilitation
after stroke for lower and upper limb movement therapy [1],
[6]. However, to enable an intuitive and natural interaction
between the human and the robotic system, it is essential
to decode the user’s movement intention for providing
personalised exoskeleton support. This can be achieved
by EEG-based BCIs [7]–[10] and can be applied for the
post-stroke rehabilitation [3], [11]–[13].
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Beyond approaches that rely solely on EEG as a single
modality, multimodal approaches combining EEG and EMG
signals within a hybrid BCI framework, have shown to
improve prediction performances [7], [14]–[19]. However,
additional modalities such as the EMG can be used not only
for a combined multimodal prediction but also as a feedback
signal to recalibrate an EEG classifier for example shown
in [20]. In addition to EMG, modalities such as speech can
also be used as an additional type of interaction in HRI
scenarios combined with BCIs [21]. An example of such
a scenario would be the use of speech commands for the
explicit indication of a movement intention by a severely
affected stroke patient. Such speech commands could then
be directly used to trigger exoskeleton support as well as to
generate labels for training an EEG classifier. This would
enable a more intuitive and natural interaction as compared
to the explicit usage of the speech modality through implicit
movement intention decoding.
However, the production of speech commands, is a known
source of noise and artifacts in EEG recordings [22].
Therefore, the production of speech is mostly avoided in
EEG-based BCI studies, especially in the field of speech
production research itself [23]. Nevertheless, in real world
out-of-the-lab applications of BCIs, it may not be feasible to
strictly avoid speech production.
Therefore, in this work, we investigated an approach to label
EEG data with speech commands for a motor execution
paradigm and to analyse the effect of overt speech on this
paradigm in general. This was done by applying a classifier
transfer approach for the detection of movement intentions in
an upper-limb reaching task. To the best of our knowledge,
the effect of overt speech on a motor execution paradigm,
as well as an approach to label movement-related EEG data
with overt speech in this context, has not been investigated
so far.

II. METHODS

A. Experimental Setup and Procedure

Six healthy subjects (2 male and 4 female), with an average
age of 23.8 ± 0.75 years, participated in the study. All
subjects were right-handed, healthy, and reported no history
of neurological or muscular disorders. They were seated
comfortably in front of a custom-built apparatus consisting
of tactile hand switches and a centrally positioned button as
shown in Fig 1. The experimental setup was developed for the
reaching task. In the reaching task, the subjects were instructed
to stretch their right arm to reach the red button from the
defined resting position (on the tactile switch) towards the
central button and to press it with their right thumb. Further
experimental details can be found in our previous work [8].

Three different experimental conditions were investigated:
(1) Speech-command (Sp) condition, (2) Unilateral
movement (Uni) condition, and (3) Combined (UniSP)
condition containing both Speech-command (Sp) condition
and Unilateral movement (Uni) condition. To ensure

counterbalancing, the order of condition execution varied
across subjects. During the Sp condition, subjects remained
in the resting position and articulated only the the voice
command begin without performing the reaching task. For
the Uni condition, subjects performed only the reaching task.
The UniSp condition required subjects to first issue the voice
command begin immediately followed by the reaching task.

Each experimental condition consisted of three sets
containing 40 trials each, totaling 120 trials per condition.
Trials were self-initiated, with movements executed at the
subject’s own pace. A mandatory resting period of at least
5 s was enforced between trials. Trials preceded by resting
intervals shorter than 5 s were excluded from analysis and
accompanied by a 200ms visual error signal displayed to the
subjects. A fixation cross, displayed on the screen, was visible
continuously throughout the experimental session. The whole
experiment was designed and controlled using the Presentation
software.

Fig. 1. Experimental setup of the study. The setup contains two tactile
switches, one each for right and left hand resting positions and a button fitted
on an adjustable aluminum profile for the subjects to reach and press.

B. Data Aquisition
For EEG measurements, the actiCap system equipped with

64 electrodes was used in conjunction with the LiveAmp
64 recording device, both from Brainproducts. Electrode
placement adhered to the extended 10-20 system [24]. The
LiveAmp functioned as both a recording device and a wireless
interface with the recording computer. EEG data were recorded
using the BrainVision Recorder software at a sampling rate of
500Hz with a bandpass filter set between 0.1 and 131Hz.

Audio recordings were performed using a custom-
developed Python script that controlled a mono-channel clip-
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on microphone from Delock. The audio was sampled at
44 100Hz and was synchronized with the EEG recordings
by emitting trigger signals at the beginning and end of each
measurement. In addition, a video of the experiment was
recorded for further control.

All participants provided their informed consent in writing
prior to participating in the experiment.

C. Speech Data Processing

A three-step procedure was followed for the processing
of audio signals. First, the raw audio signals were trimmed
to isolate relevant segments. Next, the signals were filtered
to remove artifacts and enhance signal quality. Finally, an
algorithm was applied to accurately detect the onset and offset
of speech events.

After isolating the relevant segments, the raw signals
underwent high-pass filtering (Butterworth, second-order,
zero-phase) with a cutoff frequency of 10Hz to remove
baseline fluctuations. Subsequently, the signals were rectified
and low-pass filtered (Butterworth, second-order, zero-phase)
with a cutoff frequency of 15Hz for smoothing. Finally, an
adaptive thresholding method, based on 3% of the maximum
signal amplitude, was applied separately from signal onset to
offset and vice versa to accurately detect speech command
boundaries as shown in Fig. 2.

Fig. 2. Processed audio signal with speech onset and offset. The figure shows
the high-pass filtered and rectified audio signal (blue) and the fully processed
signal (orange), as well as the speech onset (vertical red line) and the speech
offset (vertical blue line).

D. Processing of EEG Signals

For processing and classification of EEG signals, a self-
developed python platform based on the MNE library was
used. In addition, a machine learning pipeline using EEGNet
as classifier was adopted. The different signal processing steps
used in this work are as follows:

1) ERP analysis: Event related potentials (ERP) are time-
locked EEG responses that reflect the brain’s processing
of specific internal or external events. ERPs can capture
complex cognitive and motor processes, such as voluntary arm
movement preparation, through characteristic patterns like the

readiness potential and lateralized readiness potential (LRP)
[25]. For the ERP analysis, EEG data were processed using
a Python pipeline based on the MNE library. Raw EEG
recordings were rereferenced to the common average, and
bandpass filtered between 0.5Hz-4Hz.

The EEG data were then segmented into epochs ranging
from −1.0 s to 0.5 s pre- and post-movement onset. Baseline
correction was applied using a pre-movement interval of
−1.5 s to −1 s. The grand average ERPs were subsequently
obtained by averaging across all subjects.

2) EEGNet Preprocessing: EEG data were processed
window-wise by cutting overlapping windows of length 1 s
with a stepsize of 50ms resulting in an overlap of 95%. This
was done starting from −5.0 s to 0 s, where 0 s denotes the
labeled movement onset. The label for the movement onset
was derived from the right hand tactile switch and corresponds
to the time point at which the hand leaves the switch. This
yielded a total of 81 windows for each movement trial.

For the next processing steps, an average rereferencing was
performed and a bandpass filter was applied between 0.5Hz-
40Hz. Subsequently, a subset of 12 channels (FC1, FC2, CZ,
C1, C2, C3, C4, CPZ, CP1, CP2, CP3, CP4), located around
the central motor cortex, were selected for further analysis.
The restriction to central channels over the motor cortex is
intended to maximize the focus on motor-related activity. This
spatial limitation targeted to support isolate neural signals
primarily associated with motor function, thereby reducing
confounding contributions from language processing regions.

3) ICA-based filtering: ICA enables the decomposition
of multichannel EEG signals into statistically independent
components, facilitating the separation of temporally and
spatially overlapping signal sources. These components can be
used to isolate and identify activity originating from distinct
neural sources [26].

Based on this principle, a signal processing pipeline was
established in which speech-related components were initially
identified and removed using a template-matching algorithm
based on ICA components.

First the EEG data was epoched from −5.0 s to 0.0 s
and an average rereferencing was performed. Subsequently,
a bandpass filter between 0.5Hz and 40Hz was applied.
Thereafter, a manual ICA component selection, based on
a previous ERP analysis of topography plots of the Sp
condition to identify speech-related activity, was conducted.
These components were saved and later used as templates.
Afterwards, an ICA on the UniSp condition was applied
and the corresponding components were saved. Finally,
the template-matching algorithm automatically detected the
corresponding components between Sp and UniSp condition.
If components in the UniSp data exhibited a correlation
with the templates of the Sp data, exceeding an adaptively
determined threshold (ranging from 0.6 to 0.95), with the
template components, they were automatically labeled as
speech-related artifacts and were excluded from further
analysis. To account for inter-subject variability in ICA
components, the automatic adaptive thresholding option of
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the corrmap() function from the MNE-Python library was
employed.

E. Model Training and Classification

To train the classifier, two of the three recorded
measurement sets, comprising a total of 80 trials, were used
as training data. The remaining set, containing 40 trials,
was reserved for validation and testing, with 20 trials each
(leave-one-set-out validation). The windows [−5.0 , −2.5 ]s,
[−2.5 , −1.9 ]s, [−1.9 , −1.5 ]s and [−1.5 , −1.2 ]s were
used as training instances for the resting class, whereas
the windows [−0.20 , −0.15 ]s, [−0.15 , −0.10 ]s, [−0.10 ,
−0.05 ]s and [−0.05 , 0.00 ]s were used as training instances
for the movement preperation class. Accordingly, a binary
classification was performed to distinguish between resting
state and movement intention.

The model was preset for 300 training epochs and an
early stopping condition was applied to reduce overfitting. The
number of filters of the EEGNet layers was set to F1 = 8, F2
= 16 and the depth multiplier was set to D = 2 as presented
in [27].

F. Performance Evaluation

The classification task was formulated as a binary
classification problem, distinguishing between resting state
and movement intention. Accuracy was used as the primary
performance metric to evaluate and compare the effects of
different evaluation strategies. Specifically, four evaluation
conditions were assessed: (1) a baseline condition without
speech and without transfer (Uni to Uni), (2) a movement
condition including speech with no-transfer (UniSp to UniSp),
(3) a naive transfer condition (UniSp to Uni), and (4) an ICA-
based transfer condition (UniSp with ICA to Uni).

Model training and evaluation followed the above described
leave-one-set-out cross-validation procedure. This resulted in
three cross-validation folds per subject. Across all six subjects,
this yielded a total of 18 classification results per evaluation
condition, each based on 20 test trials.

III. RESULTS

Initially, the classifier was trained and tested on the Uni
scenario, yielding a median accuracy of 0.828. Subsequently,
an additional classifier was trained and evaluated on the UniSp
scenario, achieving a median accuracy of 0.953. Then, the
classifier trained on UniSp scenario was directly transferred
to the Uni scenario, resulting in a median accuracy of 0.544.
Finally, applying ICA filtering using templates from the
speech scenario resulting in a median accuracy of 0.534. This
corresponds to a performance reduction of 0.01 (1.84%) as
shown in Fig. 3.

Figure 4 presents a comparison of the grand average ERPs
for the UniSp and Uni conditions at channel C1, which
is associated with motor-related activity preceding and after
onset of arm movements at 0.0 s. In the Uni condition, a
negative shift in the averaged ERP activity is observed to begin
around −1.0 s, with a more pronounced decline starting at

approximately −0.3 s. In contrast, the UniSp condition shows
negative shift in the averaged ERP activity from approximately
−1.2 s to −0.8 s, followed by a positive shift between −0.6 s
and −0.2 s, and a subsequent negative shift between −0.2 s
to 0.0 s. In both the conditions, a clear positive shift in the
averaged ERP activity is evident starting at the movement
onset at 0.0 s, with the increase being more pronounced in
the Uni condition.

Fig. 3. Comparison of the conditions. The figure shows the performance of
the four evaluation conditions: Uni to Uni (left), UniSp to UniSp (mid-left),
UniSp to Uni (mid-right) and UniSp with ICA to Uni (right).

Fig. 4. Grand average ERP curves for the UniSp condition and the Uni
condition. The EEG signals were rereferenced (average across all electrodes),
bandpass filtered (0.5Hz-4Hz), and baseline corrected (average over −1.5 s
to −1 s before movement onset). The displayed EEG signals were averaged
over N = 720 epochs.

IV. DISCUSSION

The results of the ERP analysis reveal clear motor-related
ERP activity in the Uni condition, characterized by an
initial slight negative shift in amplitude (readiness potential),
followed by a pronounced negative deflection immediately
preceding movement onset (LRP). In the UniSp condition, this
movement-related LRP remains observable; however, the early
readiness potential appears to be superimposed by another
ERP component likely associated with speech-related activity
or artifacts. Moreover, the observation that both conditions
exhibit similar ERP amplitudes following movement onset
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supports the interpretation that the differences observed prior
to movement are primarily driven by the overlapping speech-
related EEG activity, as the speech command was given prior
to the movement onset.

The classification results clearly demonstrate a decline in
performance when using a naive transfer approach, compared
to the baseline condition involving only unilateral movements.
This performance drop suggests that the classifier, when
trained in the presence of overt speech commands, may have
primarily learned to rely on overlaying overt speech command
features rather than neural patterns associated with motor
preparation for arm movements.

Furthermore, the comparison between the naive transfer
approach and the ICA-based adaptation method revealed no
improvement in performance. This implies that ICA, as applied
in this study, may be insufficient for isolating and removing
EEG components associated with overt speech production.
While ICA is effective in identifying stereotypical artifacts
(ocular or muscle-related), its ability to disentangle temporally
and spatially overlapping patterns, such as those originating
from simultaneous speech and motor planning, appears to
be limited in this context. However, it cannot be ruled
out that the limited performance of the ICA-based filtering
approach may be attributed to the preceding manual selection
of components, which is a general challenge when applying
ICA for component removal, as only clearly distinguishable
components, such as those related to ocular artifacts, can be
reliably identified and removed.

V. CONCLUSION

This study investigated the impact of overt speech
on EEG-based classification of movement intentions and
explored classifier transferability under conditions involving
speech. The findings highlight the need for more advanced
preprocessing and adaptation techniques. A key challenge
lies in the fact that both processes (speech production and
arm movement planning) activate overlapping cortical regions,
making it difficult to isolate arm movement-related activity
when speech-related activities are simultaneously present. This
signal overlap complicates signal interpretation and highlights
the importance of robust methods capable of disentangling
these closely related neural sources.

Interestingly, the classification performance in the UniSp
condition, when trained and tested on EEG containing both
speech-related EEG activity and EEG activity related to
unilateral movement planning, exceeded that of the baseline.
This improvement may reflect the model’s exploitation of both
motor-related and speech-related EEG components, which are
temporally aligned to each other. In this case, the presence
of overt speech, rather than acting solely as a confounding
factor, may have introduced additional, class-discriminative
features that enhanced the model performance. However, the
transfer of such a classifier to classify only arm movement-
related motor activity was not successful. This highlights
the complexity of interpreting EEG signals in multimodal

conditions and reinforces the need for more complex transfer
learning approaches and improved model interpretability.
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