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Abstract Handwriting recognition and OCR systems need
to cope with a wide variety of writing styles and fonts,
many of them possibly not previously encountered during
training. This paper describes a notion of Bayesian sta-
tistical similarity and demonstrates how it can be applied
to rapid adaptation to new styles. The ability to general-
ize across different problem instances is illustrated in the
Gaussian case, and the use of statistical similarity Gaus-
sian case is shown to be related to adaptive metric classi-
fication methods. The relationship to prior approaches to
multitask learning, as well as variable or adaptive metric
classification, and hierarchical Bayesian methods, are dis-
cussed. Experimental results on character recognition from
the NIST3 database are presented.

1 Introduction

Two very common approaches to solving classification
problems are Bayesian methods and nearest neighbor meth-
ods. In Bayesian methods, we model class conditional dis-
tributions and use those estimates for finding minimum er-
ror rate discriminant functions. In nearest neighbor meth-
ods, we classify unknown feature vectors based on their
proximity in feature space (usually, some Euclidean space,
Rd) to previously classified samples.
Nearest neighbor methods can be understood in a

Bayesian framework if we view the nearest neighbor pro-
cedure as implicitly using a non-parametric approximation
of class conditional densities. Asymptotically, the error rate
of nearest neighbor procedures is known to be within a fac-
tor of two of the Bayes optimal error rate [4]. But perhaps
more important in practice than the asymptotic error rate is
the performance of a nearest neighbor classifier given only
a limited amount of training data. For example, an OCR
system confronted with a novel font should be able to learn
how to recognize characters in that font from perhaps only
a small number of training examples of those characters de-
rived from contextual information or user corrections.
To improve the performance of nearest neighbor meth-

ods, a number of authors (e.g., [7, 3] ) have proposed us-

ing similarity functions other than the Euclidean distance
in nearest neighbor classification, and given on-line or off-
line procedures for computing such similarity functions1
A number of other techniques for multitask learning and
transfer of knowledge between learning tasks have been de-
scribed in the literature [2] ; we will return to a discussion
of that work to the methods described in this paper in the
Discussion section.
This paper describes a notion of similarity grounded in

Bayesian statistics that is learnable based on training ex-
amples using a wide variety of existing density estimation
methods and classifiers. It then discusses the relationship
between such a notion of statistical similarity and nearest
neighbor classification methods. The paper uses feature
vectors derived from the NIST3 database to demonstrate
the ability of the method to create nearest neighbor clas-
sifiers with greatly improved classification performance on
limited numbers of prototypes.

2 Bayesian Statistics

To establish notation and background, let us briefly re-
view a few aspects of Bayesian decision theory relevant to
classification problems. Bayesian decision theory[4] tells us
that for the minimum error rate classifier (classification un-
der a zero-one loss function), we should pick the class with
the maximum posterior probability. That is, let Ω be a finite
set of possible classes and our feature vectors x be vectors
in Rd. Given the class conditional densities P (ω|x), choose
the class ω ∈ Ω that has the maximum posterior probability
given the sample x ∈ Rd.
The differences among different classification meth-

ods come down to different tradeoffs and approaches
in estimating and modeling P (ω|x). P (ω|x) is usu-
ally estimated from a large set of training samples
{(x1, ω1), . . . , (xn, ωn)}, the training set. Here, the xi are

1They are often referred to as “adaptive similarity metrics”, but they do
not satisfy the metric axioms and to avoid confusion, we refer to them here
as “similarity functions”.
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measurements or feature vectors, and the ωi are the corre-
sponding classes.
One of the most common ways of estimating P (ω|x) is

to estimate P (x|ω) and then apply Bayes rule:

P (ω|x) =
P (x|ω) P (ω)

P (x)
(1)

For example, if samples x are generated by picking a
per-class prototype xω and adding Gaussian random noise
N ∼ G(0,Σ) to it, then x ∼ xω + N or, equivalently,
P (x|ω) = G(xω,Σ). This may be extended to allowing
multiple prototypes per class, giving mixture of Gaussian
models P (x|ω) =

∑
i G(xω,i,Σ). Another approach to

modeling P (x|ω) is that of many generic density estima-
tion techniques like multi-layer perceptrons or logistic re-
gression.
Since we are only interested in arg maxω P (ω|x), in-

stead of P (ω|x), we can use any of a large number of
equivalent decision functions Dω(x) such that classifying
according to ω(x) = arg maxDω(x) results in minimum
error rates. Such an approach is taken by, for example, lin-
ear discriminant analysis and support vector machines.

3 Bayesian Similarity and Classification

The motivation for the Bayesian statistical similarity
model introduced in this paper is the following. Assume
we are performing nearest neighbor classification. We are
given a prototype x′ together with its class label ω′ and an
unknown vector x to be classified. If we could estimate
the probability that x and x′ represent the same class, then
we could use this to determine the probability that vector x
comes from class ω′.
Let us write this probability as P (S|x, x′), where S is

a binary variable, S = 1 is x and x′ come from the same
class, and S = 0 otherwise. We can express P (S|x, x′) in
terms of P (ω|x) and P (ω|x′) and use this as the definition
of Bayesian statistical similarity.

Definition 1 The (Bayesian) statistical similarity function
S(x, x′) is the conditional distribution P (S = 1|x, x′),
where

S(x, x′) = P (S = 1|x, x′) =
∑

ω∈Ω

P (ω|x)P (ω|x′) (2)

Note that in this definition, the distributions P (ω, x) and
P (ω, x′) need not be the same.
There are a number of properties we should observe.

First, unlike, say, Euclidean distances, which assume val-
ues in the range [0,∞) statistical similarity functions as-
sume values in the interval [0, 1], and increase with increas-
ing similarity. A value of 1means that two feature vectors x

and x′ are known to be in the same class (up to a set of mea-
sure zero). However, S(x, x) can be less than one, namely
when the feature vector x cannot be classified unambigu-
ously.
We should note that statistical similarity is problem de-

pendent; a similarity function S(x, x′) trained on one prob-
lem will not be optimal for another problem. However, as
we will see in examples below, below that statistical sim-
ilarity functions can often generalize to a wider range of
classification problems than traditional classifiers.
Let us now look at the classification rule. For this, we

first need another definition.

Definition 2 Given some ω ∈ Ω, let us call xω an unam-
biguous exemplar for class ω iff P (ω|xω) = 1; because of
normalization, this also means that P (ω′|xω) = 0 when
ω′ $= ω, or P (ω′|xω) = δ(ω′, ω).

If x0 is an unambiguous exemplar for class ω0, then

P (S = 1|x, x0) =
∑

ω

P (ω|x)P (ω|x0) (3)

=
∑

ω

P (ω|x)δ(ω, ω0) (4)

= P (ω|x) (5)

Therefore, we have shown the following:
Theorem. If x0 is an unambiguous exemplar for class

ω0, then P (ω0|x) = P (S = 1|x, x0).
In fact, if we estimate P (S = 1|x, x′) by choosing

x′ from a training set of unambiguous exemplars T =
{xω1 , . . . , xωN }, we can write down a closed form expres-
sion for P (S = 1|x, x′):

P (S = 1|x, x′) =
∑

x′∈T

P (ω|x)δ(xω, x′) (6)

What this shows is that if we have a perfect model of
P (S|x, x′) together with a set of unambiguous exemplars,
then nearest neighbor classification using a statistical sim-
ilarity function is completely equivalent to Bayes-optimal
classification. However, when estimating conditional dis-
tributions from training data, the two approaches are not
equivalent. First, estimating P (S|x, x′) from training data
is a very different problem from estimating P (ω|x), both
in the kind of models and in the kind of training data we
can use. We will explore this in a Gaussian noise exam-
ple below Second, even if we cannot estimate an optimal
model for P (S = 1|x, x′), we can use P (S = 1|x, x′) as a
similarity function in a nearest neighbor approach to classi-
fication. When used that way, the ability to use and select
multiple prototypes makes up for modeling errors (in fact,
if P (S = 1|x, x′) is sufficiently smooth when expanded
in x − x′, we can perform a Taylor series expansion and
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demonstrate that it is asymptotically no worse than nearest
neighbor classification using a Euclidean metric).
Another advantage of estimating P (S = 1|x, x′) in-

stead of class conditional densities is that it can be carried
out with unlabeled training data in some important cases.
In handwriting recognition, we can use adaptive clustering
techniques like those described in [1] to cluster together ex-
emplars from a single writer and use those to bootstrap a sta-
tistical similarity measure. Other examples of cases where
class labels are unavailable but information about whether
two samples are in the same class can be derived are found
in information retrieval and visual object recognition.

4 The Gaussian Case

Consider a classification problem in which the observed
vectors are distributed according to x ∼ xω + N , where
xω is a class prototype and N is iid noise, independent
of the object class. Then, P (x|ω) = N(x − xω). Since
P (S|x, xω) = P (ω|x) = P (X|ω)P (ω)

P (x) = N(x−xω)P (ω)P
ω′ N(x−xω′ )

,
we see that P (S|x, xω) is translation invariant: if we trans-
late x and the prototypes xω, classification will be carried
out the same way.
Furthermore, staying with this example, if the prototypes

xω are displaced by different amounts ∆ω, P (S|x, xω +
∆ω) may not be an accurate estimate of P (ω|x) anymore.
But we see that numerator is unaffected by a class de-
pendent translation, and the denominator, the sample dis-
tribution P (x), is affected equally for all classes, leaving
the likelihood ratio, and hence the classification rule, unaf-
fected.
In practice, N may not be completely independent of x,

but if it varies slowly, we can choose models of P (S|x, x′)
that take advantage of this fact.
In fact, the Gaussian case provides a connection with

adaptive metric models. Consider a simple adaptive met-
ric model in which we optimize a quadratic form Q for our
metric in order to minimize the error rate; that is, we use as
our decision rule

ω(x) = arg min
ω

(x− xω) · Q · (x− xω) (7)

If our decision rule is ω̂(x) = arg maxω P (S|x, xω) and
our noise model N is a Gaussian G(0,Σ), then, by the
above argument,

ω(x) = arg max
ω

P (S|x, xω) (8)

= arg max
ω

P (ω)
P (x)

G(x− xω,Σ) (9)

= arg max
ω

G(x− xω,Σ) (10)

= arg max
ω

e−
1

2||Σ|| (x−xω)·Σ−1·(x−xω) (11)

= arg min
ω

(x− xω) · Σ−1 · (x− xω) (12)

By comparing Equation 12 and Equation 7, we see that we
can use Σ−1 as the quadratic form Q (the choice is not en-
tirely unique).

5 Character Recognition

The above ideas were tested experimentally on an iso-
lated handwritten character recognition task using the NIST
3 database [5] (see also [6] for a state-of-the-art charac-
ter recognition system and comparisons of a large num-
ber of classifiers). Similar experiments have been used in
other works on variable and adaptive metric methods (e.g.,
[3]). The overall idea is to estimate P (S = 1|x, x′) us-
ing multi-layer perceptrons (MLPs) as a simple and well-
studied trainable model of posterior probabilities. Then, we
use P (S = 1|x, x′) as our “distance” in a k-nearest neigh-
bor classifier and compare its performance with the perfor-
mance of a standard nearest neighbor classifier.
The images used in these experiments were images of

handwritten digits from the NIST 3 database. The NIST 3
database is used as a convenient source of real-world sam-
ples exhibiting writer-dependent variations to test the ability
of these methods to adapt to novel writers. However, it is
used in this paper in a different way from the way it is used
traditionally for training classifiers. Traditionally, nearest
neighbor or other classifiers are trained on as many sam-
ples as possible and achieve excellent writer-independent
performance. In this paper, we use samples from the NIST
3 database to examine the ability of nearest neighbor and
Bayesian similarity classifiers to generalize from a small
number of prototypes (200 in one experiment, 10 in the
other).
For all training, only images from the first 1000 writers

were used; all testing was carried out the next 200 writers, a
distinct population from the test set. For feature extraction,
bounding boxes for characters were computed and the char-
acters were rescaled uniformly to fit into a 40 × 40 image.
The resulting character image was slant corrected based on
its second order moments. The uncorrected and slant cor-
rected images form the first two feature maps. Derivatives
were estimated along multiples of π

5 degrees, resulting in
five feature maps. Additionally, feature maps of interior re-
gions, skeletal endpoints, and skeletal junction points were
computed. Each of the resulting feature maps was anti-
aliased and scaled down to a 10 × 10 grid. This results
in 10 10 × 10 feature maps, or a 1000 dimensional feature
vector. (Experiments were also carried out with subsets of
these feature maps consisting of only the raw image, 100
dimensional, or the raw image, the slant corrected image,
and derivatives, 700 dimensional, with similar results.)
To obtain statistical similarity models a multi-layer per-

ceptron (MLP) was trained using gradient descent training.
It has been shown (see [4] p.304) that training a multi-layer
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Statistical Similarity Euclidean
Nearest Neighbor Nearest Neighbor

2.6% 9.5%

Table 1. An experimental comparison of the
performance of Euclidean nearest neigh-
bor methods with statistical similarity based
nearest neighbor methods. The error rates
are derived from 5000 test samples, using
200 prototypes selected as described in the
paper.

perceptron under a least square error criterion and binary
output variables results in an approximation to the posterior
probability distribution. The feature vectors x and x′ from
each image were presented as a single vector (x−x′, x+x′)
for input and training to the MLP (this is a fixed linear trans-
formation of (x, x′) and does not affect the ability of the
MLP to model the conditional probability). The MLP used
in the experiments had 30 hidden units. When the classes
corresponding to the feature vectors in the NIST database
were the same, the target output during training was set to 1,
otherwise 0. This results in an estimate of P (S = 1|x, x′),
where x and x′ are both drawn from the same prior distri-
bution of characters P (x) and P (ω).
Therefore, after estimating a statistical similarity func-

tion this way, the statistical similarity function was used in
a simple nearest neighbor classifier. To select the prototypes
for the nearest neighbor classifier, feature vectors from the
training set were compared to the set of prototypes (initially
empty) and the class associated with the most similar, ac-
cording to the statistical similarity function, was returned
as the classification. Whenever the classification was incor-
rect, the incorrectly classified feature vector was added to
the set of prototypes. This process was stopped when the
set of prototypes had grown to 200 prototypes.
To estimate misclassification rates, 5000 feature vectors

were selected from a separate test set and classified like
the training vectors (however, misclassified feature vectors
were not added during the set of prototypes). As a control,
the same training and testing process was carried out using
Euclidean distance. The results of these experiments are
shown in Table 1. They show a 2.7-fold improvement of
using statistical similarity over Euclidean distance.
In a second set of experiments, the statistical similarity

function was trained not on randomly selected pairs of fea-
ture vectors, but only on pairs of feature vectors from the
same writer. This means that the statistical similarity func-
tion characterizes the variability in character shape for indi-
vidual writers, as opposed to characterizing it for the whole
population of writers. For testing, feature vectors from 200

Statistical Similarity Euclidean
Nearest Neighbor Nearest Neighbor

5.1% 22.6%

Table 2. An experimental comparison of the
performance of Euclidean nearest neigh-
bor methods with statistical similarity based
nearest neighbor methods on a rapid writer
adaptation problem. The error rates are de-
rived from 8767 test samples, using 10 proto-
types selected as described in the paper.

writers not in the training set were used. For each writer,
the first instance of each character was used as a prototype,
resulting in 10 prototypes per writer. These prototypes were
then used to classify the remaining samples from the same
writer. These results are shown in Table 2. The results
show a 4.4-fold improvement of statistical similarity over
Euclidean nearest neighbor methods.
These experimental results demonstrate that using sta-

tistical similarity functions can result in greatly improved
recognition rates compared to Euclidean nearest neighbor
classification methods–statistical similarity functions are an
effective “adaptive metric” for these kinds of problems.
However, that is all these initial experiments were designed
to test, and several important experiments remain to be
done; we will return to this issue in the Discussion.

6 Discussion

This paper has introduced the notion of statistical
similarity based on the conditional distribution P (S =
1|x, x′) =

∑
ω P (ω|x)P (ω|x′). It was shown that classifi-

cation using a statistical similarity function and a set of un-
ambiguous exemplars is equivalent to Bayesian minimum
error rate classification.
The paper has also connected variable metric nearest

neighbor methods with statistical similarity measures. A re-
lationship between class conditional distributions and simi-
larity measures has also been observed by a number of pre-
vious authors. However, those methods attempted to con-
struct various forms of distance functions or distance met-
rics, often with specific parametric forms. This paper, in
contrast, eliminates any notion of “distance” entirely: sta-
tistical notions of object similarity were identified with the
conditional distribution P (S = 1|x, x′) and were justified
directly in terms of Bayesian minimum error rate classifica-
tion. Furthermore, this paper has demonstrated, both theo-
retically and empirically, that the required conditional dis-
tribution functions can be learned easily by training some
convenient probabilistic model–for example, a multi-layer
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perceptron–on pairs of input vectors.
The idea of learning P (S = 1|x, x′) and using it for

classification has been previously demonstrated on an op-
tical character recognition task [1], but without exploring
the connection with Bayesian methods presented in this pa-
per. That paper also demonstrates how such models can be
used when no writer or font-specific prototypes are avail-
able. The use of hierarchical Bayesian classification is also
closely related to notions of statistical similarity–in the hier-
archical Bayesian framework: the covariance models can be
viewed as a a representation of a distance or similarity mea-
sure. Hierarchical Bayesian methods have been suggested a
number of times as the basis for generalizing across learn-
ing tasks in the literature and been demonstrated for knowl-
edge transfer between related learning tasks in optical char-
acter recognition task in [8]. The Gaussian model used in
the latter paper is closely related to the Gaussian model de-
scribed in Section 4. Furthermore, the method described in
[1] can be interpreted as a hierarchical Bayesian method,
using P (S = 1|x, x′) as a kind of covariance model, and
using an uninformative prior for the class means.
The experiments in the paper compared the performance

of statistical similarity with a Euclidean nearest neighbor
classifier on two handwritten character recognition prob-
lems and demonstrated a 2.7 and 4.4-fold improvement
relative to Euclidean nearest neighbor methods, both in
a writer-independent and a writer dependent recognition
tasks. These results show that statistical similarity is an ef-
fective method for constructing problem or domain-specific
similarity measures. However, the database of handwrit-
ten characters used in the experiments was used simply
as a convenient source of feature vectors; the experiments
did not attempt to demonstrate state-of-the art handwrit-
ing recognition performance. Doing so will require using
a much larger number of prototypes, as well as additional
computational methods–such as tree-structured codebooks–
to reduce the amount of time required to compare an un-
known sample against a large number of prototypes. This
remains to be explored in future work.
Another question that might be raised is how adaptive

nearest neighbor methods like those described in the litera-
ture [7, 3] perform relative to the methods described in this
paper. In some sense, the question can be answered triv-
ially: this paper has presented a means by which we can
transform any procedure for estimating conditional prob-
abilities into a means for obtaining an adaptive or vari-
able metric similarity function; many of the techniques de-
scribed in the literature can simply be viewed as specific
choices of estimators for P (S = 1|x, x′). But we might ask
the specific question: does the use of multi-layer percep-
trons for estimating P (S = 1|x, x′), as used in the experi-
ments above, result in better performance than the variable
metrics used in the literature? And can we construct other

estimators forP (S = 1|x, x′) that might result in better per-
formance than either MLPs or those prior method? These
questions still remain to be answered in future work.
Overall, by demonstrating the utility of statistical simi-

larity theoretically and its practical learnability using stan-
dard classification methods, achieving knowledge transfer
between related classification tasks becomes much simpler
than for prior methods. This is of particular importance
in handwriting recognition and document analysis, which
are related by the need for rapid adaptation of classifiers
to stylistic variations: using the kinds of statistically based
similarity measures described in this paper allows us to
combine the ability of methods like multi-layer perceptrons
to adapt to specific problems with the robustness and rapid
adaptation of nearest-neighbor methods to new problems.
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