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Over the last several years, there has been renewed interest in efficient nearest
neighbor search algorithms. Such algorithms have uses in areas like information re-
trieval, pattern recognition, data mining, compression, and databases. Known algo-
rithms for the exact nearest neighbor problem have such complexities that, in prac-
tice, high dimensional nearest neighbor problems are usually solved with brute force
search, that is, computing the distance of the query point with each data point in the
database. In order to achieve better performance than brute force search, a large num-
ber of authors have considered the approximate nearest neighbor problem [4, 1, 3].
That is, instead of returning the exact nearest neighbor p to some query point q, they
return, for a pre-specified approximation constant, an arbitrary neighbor p′, such that
d(q, p′) ≤ (1 + ε)d(q, p).

Approximation algorithms like these have been successful in finding practically
useful solutions to a number of otherwise computationally hard problems. In many
settings, a solution that is ε-approximate also incurs a extra cost proportional to ε.
However, in the case of approximate nearest neighbor algorithms, things are not so
clear-cut. Authors that have suggested the use of approximate nearest neighbor algo-
rithms have often simply assumed that an approximate solution is “good enough” in
many applications but have generally not provided a formal justification.

Nearest neighbor algorithms have some uses in which cost of a solution is pro-
portional to the distance, and approximations therefore affect the cost of a solution
predictably. However, when used in a decision theoretic context (e.g., pattern classi-
fication, regression, data mining, etc.), we show that this relationship does not hold
anymore. In particular, while for exact nearest neighbor algorithms, the asymptotic
classification error is known to be a small multiple of the Bayes-optimal rate, in the
case of approximate nearest neighbor algorithms as commonly formulated in the liter-
ature, we can show that the classification error can become arbitrarily bad even for fixed
ε and “well behaved” sample distributions. Fixing this problem requires modifications
to the definition of an approximate nearest neighbor algorithm to include a notion of
fair sampling of the candidate neighbors. We briefly discuss to what degree some of
the existing approximate nearest neighbor algorithms are subject to such problems.

Second, we examine the sample distributions on which (approximate) nearest neigh-
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bor methods are usually successful for decision theoretic problems. We observe that
sample distributions on which nearest neighbor methods are useful (both empirically
and theoretically) tend to have additional structure that can be exploited, resulting in
better decision theoretic performance (in addition to the potential for improved running
times).

Based on these observations, we introduce a class of algorithms that we call k-
representative neighbor algorithms. These algorithms are based on a notion statisti-
cally representative samples. These algorithms behave like k-nearest neighbor algo-
rithms, that is, they accept a set of training samples and a query point and return a
set of k related points (though not necessarily nearest neighbors). Unlike approximate
nearest neighbor methods, we can show that representative neighbor methods preserve
the decision theoretic asymptotic bounds associated with exact nearest neighbor al-
gorithms and that they have desirable non-asymptotic properties. Implementations of
representative neighbor algorithms in terms of standard unsupervised learning meth-
ods (e.g., [2]) are given and algorithmic and computational complexity issues related
to k-representative neighbor algorithms are discussed.
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