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ABSTRACT
We propose a simple and effective method for the dequantization of color images, effectively interpolating the
colors from quantized levels to a continuous range of brightness values. The method is designed to be applied to
images that either have undergone a manipulation like image brightness adjustment, or are going to be processed
in such a way. Such operations often cause noticeable color bands in the images that can be reduced using the
proposed Constrained Diffusion technique. We demonstrate the advantages of our method using synthetic and
real life images as examples. We also present quantitative results using 8 bit data that has been obtained from
original 12 bit sensor data and obtain substantial gains in PSNR using the proposed method.
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1. INTRODUCTION
Many color images are quantized near the limit of just noticeable color differences; that is, colors are chosen such
that objectionable color banding is barely perceptible. The 8 bit per channel quantization commonly used for
color images is an example of this, as are the palette based color image representations.

When such images are manipulated or processed, objectionable banding often appears. For example, when we
adjust the brightness of an image to lighten darker image regions or darken light image regions with an “adjust
curves” or “gamma correction” operation, those regions often show banding, as the differences in color between
two neighboring regions of constant (quantized) pixel values are increased.

One way of avoiding this problem is to capture and process images using more than 8 bit per channel, but
that is often impractical because most current cameras only output 8 bit per channel images, even if their sensor
captures more detail. We propose a simple and effective method for the dequantization of color images, effectively
interpolating the colors from a quantized form to a continuous range of brightness values.

The method is a kind of smoothing operation, and changing the representation from 8 bits per channel
to, say, 16 bits per channel followed by smoothing would dequantize an image, but it leads to image blurring.
Our approach is to constrain the smoothing operation by limiting the difference to the original color (after the
brightness manipulation) to a maximum value. We use smoothing by diffusion and restrict the maximum distance
to the original image in each step of the diffusion process. For color images, in our current implementation, each
channel is processed separately, but the method could also be used in combination with a color distance measure
better corresponding to human perception as for example the distance in the CIE L*a*b color space. Furthermore,
if the original operation is known, we can use that information to adapt the constraint, for example if a gamma
correction with a gamma value greater than one has been used, we would allow less change for the brighter colors
than for the darker ones, for which color differences have increased more during the operation.

1.1. Related Work
There is a vast amount of literature on quantization,1 and as many different algorithms to counteract it by
smoothing. While some of these methods might be suitable for color dequantization,2 we know of no other
simple methods for color dequantization in the setting described; our method can be implemented in only a few
lines of code and has only a single parameter, the maximum difference between recovered values and original
values. If appropriate, the algorithm can be adapted to include additional constraints, e.g. by using anisotropic
diffusion.3 From the underlying idea, our algorithm follows a similar approach as the adaptive video deblocking
algorithm that is part of the MPEG-4 AVC standard4 (aka H.264). In that algorithm, the smoothing filter
adapts its strength to the quantization parameter as well, but is of much higher complexity than our algorithm.
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2. CONSTRAINED DIFFUSION
2.1. The Algorithm
The Constrained Diffusion algorithms works by iterating two simple steps, a linear diffusion step, where the
image is smoothed, and a nonlinear constraint step, where the pixel values of the resulting image are clipped to
not differ more than a desired threshold from the original. In detail, these steps are:

Diffusion: Set I ′j = Ij ∗ k where k(x, y) is the linear diffusion kernel given by the matrix
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Constraint: Obtain the (j + 1)th image Ij+1 by evaluating pixel wise

Ij+1(x, y) := max
(
I0(x, y)− δ, min

(
I0(x, y) + δ, I ′j(x, y)

))
(1)

where I0 is the original input image. The number of iterations n can be chosen arbitrarily. It is simple to check
that for n→∞, the algorithm converges to a stable solution, but in some cases it can be beneficial to only run it
for very few steps, even n ≤ 10. The only other parameter is δ, which can either be treated as a free parameter,
or derived from image properties.

Our method of Constrained Diffusion can be used in two different ways: as a preprocessing step before
performing typical image processing operations like contrast enhancement, or as a postprocessing step after such
operations have been performed.

2.2. Preprocessing
Assume one has an 8 bit per channel image, e.g. taken with a digital camera, and the image is not of optimal
quality, e.g. too dark, or having a wrong gamma value. The usual procedure then is to apply image filters to
improve the visual impression, working directly on the 8 bit data.5

Instead, one can first convert the image into 16 bit color depth space and perform the processing there. To
do so, the distribution of the 8 bit data, which is very sparse in the 16 bit, has to be smoothed. One method
for this is a Gaussian filter, but we will show that the Constrained Diffusion filter is a better choice. On the
resulting 16 bit image, we run all necessary image filters to enhance the image quality and only then convert
back to 8 bit. In preprocessing, we can fix δ = 1

256 ≈ 0.0039, because that is the quantization interval for 8 bit
intensity values represented in 16 bit. Typically, it is safe to set n to a large value in that case.

2.3. Postprocessing
Often it is the case that one has only access to the resulting output of image enhancement operations, but not
to the original. In this situation, the Constrained Diffusion can be applied as well, now as a postprocesing filter
working directly on the 8 bit per channel data. In this case, the quantization effects that were caused by the
earlier filters are reduced. The choice of δ is not obvious in this situation, it depends on the operations performed
and on the image characteristics. One method to estimate a good choice is to use the average distance between
intensities in the histogram of the image.

3. APPLICATIONS
In this section, we show how our method increases the quality of typical image processing tasks when acting as
a pre- or postprocessing filter for 8 bit images.

To demonstrate the working principle more clearly, we use a synthetic 8 bit gray scale image (Figure 1) as
input. It contains a smooth intensity gradient and a strongly structured area including some text.

For color images, the algorithms can be applied by just handling each color channel independently. We will
present examples in Section 4. For image of different color depth, analogous arguments still hold, but to keep
the description simple, we will stay with the most common case of 8 bit and 16 bit in our description.



Figure 1: Original gray scale and texture image.

3.1. Quantization due to Linear Image Operations
Many important operations in digital image processing are linear, e.g. brightness adjustment and contrast en-
hancement. All state of the art programs for photo retouching like Adobe Photoshop or The Gimp have these
integrated, often even in an automatic procedure without any user interaction.

One typical aim is to spread the range of color intensities over the whole span of possible values, yielding
an optimal viewing impression. Because such operations are pixel wise functions, the total number of different
values in the image is not increased, only the values themselves change.

When the initial image was of low quality, usually too dark or of too low contrast, the actual number of
intensities will be much lower than the possible 256, and after contrast enhancements, the small difference
between two occurring intensity values could be large, even 10 units or more. The result is “banding”, several
clearly visible bands of one color per band without smooth transitions between them. In natural images, these
are most visible in areas that are supposed to have a smooth color gradient, like blue sky. In our test image, the
smooth gray scale gradient represents this image property.

Figure 2 shows the effect of a linear image processing operation using Histogram Normalization as an exam-
ple. We start with a low contrast version (Figure 2(a)) of the test image. Performing Histogram Normalization
transforms each pixel using the linear relationship z '→ z−zmin

zmax−zmin
, with z being the pixel’s intensity expressed in

the range [0, 1] and zmin and zmax are minimum resp. maximum over all intensities in the image. Histogram Nor-
malization restores the full contrast range from black to white, but on the downside, it often causes quantizations
effect where a smooth transition would be expected, see Figure 2(b).

To remove these artifacts, the image typically has to be smoothed afterwards. Image 2(c) shows the result of
using a Gaussian filter for this. It restores smooth transitions, but also blurs the rest of the image. Instead, we
can perform Constrained Diffusion as postprocessing after the Histogram Normalization. The result is presented
in Image 2(d): smoothing occurs only up to a certain level, keeping the structure almost intact. Only the
background ends up somewhat darker than it should be.

Better results are usually achieved by using preprocessing instead of postprocessing. Image 2(e) shows the
result of one possibility for this. The 8 bit Image 2(a) is transformed to 16 bit color depth and smoothed with a
Gaussian filter. Afterwards, Histogram Normalization is performed and the image is transformed back to 8 bit.
However, at least in our situation, we observe no apparent advantage over the Gaussian as a postprocessing filter.

In contrast, Image 2(f) shows the result obtained when the Constrained Diffusion is used as preprocessing in
16 bit space, and then Histogram Normalization and the transformation back to 8 bit is performed. The result
is much better, yielding a smooth gradient without blurring other parts. Visually, it is almost indistinguishable
from the (usually unknown) original.



(a) Test image: a low contrast version
of Image 1

(b) Image 2(a) after 8 bit histogram nor-
malization

(c) Image 2(b) after Gaussian Filtering
(σ = 1)

(d) Image 2(b) after Constrained Diffu-
sion (δ = 0.025, n = 100)

(e) Image 2(a) after Gaussian Filtering
(σ = 1) as 16 bit preprocessing and His-
togram Normalization

(f) Image 2(a) after Constrained Diffu-
sion (δ = 0.0039, n = 100) as 16 bit
preprocessing and Histogram Normal-
ization

Figure 2: Correction of Quantization due to Histogram Normalization

3.2. Quantization due to Nonlinear Image Operations
Also many nonlinear operations in image processing either cause quantization or do not improve on it. All
methods of palette reduction or color clustering belong to the first kind of nonlinear operations. They usually
work by combining several different colors into a single new one, thus reducing the total number of colors in the
image. However, with modern image formats like JPEG and PNG, this is not as important an issue anymore as
it was in the earlier days of the world wide web when the GIF format was most common. This image format
can store only up to 256 different colors that must be chosen out of the roughly 16 million colors representable
by 24 bit RGB.

A typical example of the second kind of operations is Gamma Correction. Here, the intensity of each pixel
in an image is transformed nonlinearly using the format z '→ z1/γ where z is the pixel’s intensity in the range
[0, 1] and γ the Gamma-value. Obviously, if in the input image z takes values from only a small subset of the
possible values, the output image has the same property.

This is illustrated in Figure 3. As test image, we use the gray scale and texture Image 1, but with a wrong
γ-value, overemphasizing the dark parts of the image. Applying Gamma correction in 8 bit color space restores
the visual impression of brightness, but quantization occurs especially in the dark areas (Image 3(b)). Image 3(c)
shows the effect of trying to compensate this by applying a Gaussian filter. The procedure smoothes the gradient,
but the texture becomes blurred. Performing Constrained Diffusion on Image 3(b) yields better results: except
for the darkest part, the gradient is smooth afterwards. Since it is possible to choose δ rather small, the text
and pattern region does not suffer much from blurring as can be seen in Image 3(d).

Again, one should expect even better results from prefiltering. However, for the Gaussian this totally fails, see
Image 3(e). Our explanation is the following: transforming Image 3(a) to 16 bit and then applying a Gaussian
Filter creates many intensities in the medium brightness range. If Gamma Correction is performed afterwards,
this effect is nonlinearly emphasized, causing large parts of the image to become too bright.

In contrast to this, for the diffusion method, preprocessing works very well. We first transform Image 3(a)
to 16 bit color depth and then apply Constrained Diffusion. The result is Gamma corrected in the 16 bit color
space. Image 3(f) shows the result after transforming back to 8 bit: the gradient is almost perfectly restored,
and the textured part stays sharp.



(a) Test image: Image 1 with a wrong
γ-value

(b) Image 3(a) after Gamma correction
(γ = 3)

(c) Image 3(b) after Gaussian Filtering
(σ = 1)

(d) Image 3(b) after Constrained Diffu-
sion (δ = 0.01, n = 10)

(e) Image 3(b) when using Gaussian Fil-
tering (σ = 1) as preprocessing in 16 bit
and then Gamma Correction

(f) Image 3(b) after Constrained Diffu-
sion (δ = 0.0039, n = 100) as 16 bit pre-
processing and subsequent Gamma Cor-
rection

Figure 3: Correction of Quantization due to Nonlinear Image Operations

3.3. Quantization due to Image Compression
Of course, quantization occurs due to many other operations than just linear or nonlinear pixel wise transforms.
One prominent example that we will examine here are blocking and ringing artifacts in JPEG and MPEG
encoding. They occur when the DCT coefficients of JPEG or MPEG are quantized too coarsely, i.e. when
targeting a too high compression ratio. The result is a visible block structure in the image (blocking), and small
dots of wrong intensity close to edges (ringing).

Many specialized filters have been proposed to remove these effects,6, 7 but most of them are very complex,
requiring much more computational power than the JPEG decoding itself. Our algorithm is much simpler, and
it can serve as a simple deblocking and deringing filter when used as a postprocessing step. We demonstrate this
in Figure 4.

To obtain a test image, we compressed Image 1 in JPEG format with a high compression ratio and decom-
pressed it again. Because of the way the JPEG coefficients are quantized, afterwards the gradient is not smooth
anymore and not even monotonous. Also, at high contrast areas, the typical ringing or “mosquito noise” is
visible. To remove the ringing, we apply a Gaussian Filter. In the result (Image 4(b)), the gradient is smoothed,
but the monotony is not restored. Also as in the previous examples, the textured part is strongly blurred.

(a) Test image: a version of Image 1
that has been strongly compressed us-
ing the JPEG format

(b) Image 4(a) after Gaussian Filtering
(σ = 1)

(c) Image 4(a) after Constrained Diffu-
sion (δ = 0.05, n = 100)

Figure 4: Correction of Quantization due to too strong JPEG Compression



(a) The original image in 8 bit representation

(b) After 8 bit contrast enhancement and gamma correction

Figure 5: Image Enhancement Example (maple leaf image)

Image 4(c) shows the result of applying Constrained Diffusion instead. The gradient is smooth and monotonous
again. Also, the ringing noise is strongly reduced. As only negative side effect, the background in the textured
parts is significantly darkened. This is a consequence of the fact that δ has to be chosen rather large. For the
JPEG example, it is not possible to apply the Constrained Diffusion as a preprocessing step.

4. EVALUATION
In the previous examples we used synthetic images to demonstrate the effect of Constrained Diffusion as pre- or
postprocessing filter. In this section, we present some results on actual camera images that were obtained from
a high quality digital camera Canon EOS 1Ds Mark II. Normally, this camera writes JPEG images with 8 bit
per color channel, but internally it uses a 12 bit sensor and it also allows to extract the raw data from it. This
makes it possible for us to compare the images that are obtained from restoring an 8 bit image with those that
are created from the image with higher color depth where better quality restoration is possible.

Image 5(a) shows an original camera image in 8 bit representation. The image is much too dark, and of low
contrast. The histogram shows that only a small part of the scale of possible gray scales is used. After 8 bit
contrast enhancement and gamma correction, the overall visual impression seems okay (Image 5(b)). But, in
the detail image, one sees large areas of uniform color without smooth transitions between them. The histogram
shows that only few bins are filled, i.e. only few intensity values actually occur.

A Gaussian Filtering applied to Image 5(b) smoothes these dark transitions and the histogram, but it also
blurs the image. This can be seen well in Image 5(c), where the specular highlights have lost their brilliance.
Applying the Constrained Diffusion as postprocessing filter to Image 5(b) also smoothes the transitions, but it
leaves the structure almost intact (Image 5(d)). From the histogram it can be seen that now almost all possible
gray scales occur, but fewer pixels changed their value.



(c) Gaussian Filtering (σ = 1) as postprocessing

(d) Constrained Diffusion (δ = 0.05, n = 10) as postprocessing

Figure 5: Image Enhancement Example (Cont.)

Since we have access to the original image, we can try to use preprocessing again. Using a Gaussian Filtering
(Image 5(e)) does not show a significant improvement over the postprocessing setup. Using Constrained Diffusion
Filtering as preprocessing on Image 5(a) shows a slightly improved result (Image 5(f)). Since δ can be chosen
smaller, the contrast is better preserved in dark areas than for postprocessing, although also here some structure
is lost. None of the methods can recreate the full image data, as can be seen when comparing with Image 5(g)
that is the result of restoring the image from the camera’s 12 bit sensor data.

We have applied our method to many other images. Some of them are presented in Figure 6. Constrained
Diffusion always improves the visual quality of the image, although not all image artifacts can be avoided or
removed, respectively.

As an additional test, for the four images (as shown in Figure 5 and Figure 6), we calculated the numerical
image similarity between the optimal image and the restored version, using either Gaussian Filtering or Con-
strained Diffusion, and testing both preprocessing or postprocessing. As a measure we used the Peak Signal
to Noise Ratio (PSNR), which has a logarithmic scale with larger values meaning higher similarity between
images. The PSNR is defined as a function of the Mean Squared Error (MSE), i.e. the average squared pixel
value difference, as follows:

PSNR = −10 log10
MSE

2552
(2)

The numbers presented in Table 1 are the average over the PSNR of the red, green and blue color channel of
the different versions that are restored from 8 bit. As reference, always the 12 bit restored version was used. As
one can see, Constrained Diffusion often increases the PSNR, especially when used as a preprocessing operation.
For Gaussian Filtering the effect can be positive or negative. The use of Constrained Diffusion as a preprocessing
step improved the PSNR the most, on the average by 3.14dB.



(e) Gaussian Filtering (σ = 1) as preprocessing

(f) Constrained Diffusion (δ = 0.0039, n = 100) as preprocessing

(g) Reconstruction from 12 bit camera data

Figure 5: Image Enhancement Example (Cont.)



Figure 6: Example images for Constrained Diffusion Dequantization as postprocessing or preprocessing filter. For
the three images building (top),tower (middle) and mouse pad (bottom) Histogram Normalization and Gamma
Correction are performed. The images show from left to right: usual 8 bit procedure, Constrained Diffusion for
pre- and for postprocessing and the optimal image, restored from 12 bit data.

Table 1: PSNR improvement for Gaussian and Diffusion preprocessing and postprocessing methods. Histogram
Normalization and Gamma Correction is always performed, either in 8 bit or 16 bit color depth. Bold differences
mean a substantial gain (> 0.5dB), italics values indicate a substantial loss (< −0.5dB). The column “none”
refers to only performing Histogram Normalization and Gamma Correction in 8 bit color depth. The reference
image is the one obtained from the original, 12 bit color depth image.

none postprocessing preprocessing
Gaussian Diffusion Gaussian Diffusion

maple leaf 27.25 dB 26.67 (−0 .58 ) dB 27.04 (−0.21) dB 32.80 (+5.55) dB 33.18 (+5.93) dB
building 26.82 dB 26.85 (+0.03) dB 29.78 (+2.96) dB 26.90 (+0.08) dB 28.95 (+2.13) dB
tower 27.29 dB 26.95 (−0.36) dB 28.97 (+1.68) dB 26.58 (−0 .71 ) dB 28.99 (+1.70) dB
mouse pad 30.86 dB 31.55 (+0.69) dB 31.60 (+0.74) dB 32.07 (+1.21) dB 33.67 (+2.81) dB
average 28.06 dB 28.01 (−0.05) dB 29.35 (+1.29) dB 29.59 (+1.53) dB 31.20 (+3.14) dB



5. CONCLUSION
We presented a method for the dequantization of color images, that is both simple and fast. A program that
performs the algorithm can be implemented in a few lines of Matlab code, or a few dozen lines of C/C++. The
method works by interpolating the colors from their quantized form to a continuous spectrum, using a linear
diffusion process, but constraining the maximal allowed deviation from the original by a simple threshold.

As one application we showed postprocessing of images that have been manipulated using typical image
processing operations like Histogram Normalization, Gamma Correction or JPEG compression. Constrained
Diffusion can to some degree compensate the artifacts that those operations introduce, often clearly improving
the visual impression of the image.

Even more promising is the use of our method as a preprocessing filter to avoid that such artifacts occur at
all. To do so, an image that is typically present in a representation with 8 bits per color channel is extended to
16 bit and the quantization that this causes is removed by the Constrained Diffusion filter. The resulting image
can be processed with arbitrary image processing filters, obtaining very good results.

We showed several examples of synthetic and real life images, comparing our method to the usual way of
smoothing by a Gaussian Convolution filter. We also presented measurements that show that our method
improves not only the subjective visual impression, but also the PSNR as an objective quality measure, and does
so better than Gaussian Filtering. Using the Constrained Diffusion technique as preprocessing, the PSNR could
be improved by 3.14dB averaged over four images for the processing with Histogram Normalization and Gamma
Correction.

Many improvements of the algorithm come to mind. For one thing, the algorithms contains a free parameter
δ, that is chosen as a constant for all parts of the image. Adaptivity in this parameter could clearly improve
the results e.g. by choosing larger values in dark areas than in bright ones, when the target operation is Gamma
Correction. Also, our algorithm relies on isotropic diffusion, thus assuming that a pixel’s intensity should be
influenced equally by its neighboring pixels. Often, this assumption is wrong, e.g. close to edges in the image.
So, a method that is based on an anisotropic diffusion filter could achieve even better results than the one we
presented.
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