
Performance Comparison of
Six Algorithms for Page Segmentation

Faisal Shafait, Daniel Keysers, and Thomas M. Breuel

Image Understanding and Pattern Recognition (IUPR) research group
German Research Center for Artificial Intelligence (DFKI)

and Technical University of Kaiserslautern
D-67663 Kaiserslautern, Germany
{faisal, keysers, tmb}@iupr.net

Abstract. This paper presents a quantitative comparison of six algo-
rithms for page segmentation: X-Y cut, smearing, whitespace analy-
sis, constrained text-line finding, Docstrum, and Voronoi-diagram-based.
The evaluation is performed using a subset of the UW-III collection
commonly used for evaluation, with a separate training set for parame-
ter optimization. We compare the results using both default parameters
and optimized parameters. In the course of the evaluation, the strengths
and weaknesses of each algorithm are analyzed, and it is shown that no
single algorithm outperforms all other algorithms. However, we observe
that the three best-performing algorithms are those based on constrained
text-line finding, Docstrum, and the Voronoi-diagram.

1 Introduction

Document image layout analysis is a crucial step in many applications related to
document images, like text extraction using optical character recognition (OCR),
reflowing documents, and layout-based document retrieval. Layout analysis is the
process of identifying layout structures by analyzing page images. Layout struc-
tures can be physical (text, graphics, pictures, . . .) or logical (titles, paragraphs,
captions, headings, . . .). The identification of physical layout structures is called
physical or geometric layout analysis, while assigning different logical roles to
the detected regions is termed as logical layout analysis [1]. In this paper we are
concerned with geometric layout analysis. The task of a geometric layout anal-
ysis system is to segment the document image into homogeneous zones, each
consisting of only one physical layout structure, and to identify their spatial
relationship (e.g. reading order). Therefore, the performance of layout analysis
methods depends heavily on the page segmentation algorithm used. Over the
last two decades, several page segmentation algorithms have been proposed in
the literature (for a literature survey, please refer to [1, 2]).

The problem of automatic evaluation of page segmentation algorithms is in-
creasingly becoming an important issue. Major problems arise due to the lack of
a common dataset, a wide diversity of objectives, a lack of meaningful quantita-
tive evaluation, and inconsistencies in the use of document models. This makes

2

the comparison of different page segmentation algorithms a difficult task. Mean-
ingful and quantitative evaluation of page segmentation algorithms has received
attention in the past. Yanikoglu et al. [3] presented a region-based page segmen-
tation benchmarking environment, named Pink Panther. Liang et al. [4] proposed
a performance metric for document structure extraction algorithms by finding
the correspondences between detected entities and ground-truth. The quality of
page segmentation algorithms was also evaluated by analyzing the errors in the
recognized text [5]. However, text-based approaches have found little use since
they measure the output of multiple steps and cannot be used to evaluate page
segmentation alone. Das et al. [6] suggested an empirical measure of performance
of a segmentation algorithm based on a graph-like model of the document.

There has been little effort in the past to compare different algorithms on
a quantitative basis. Mao et al. [7] presented an empirical performance evalua-
tion methodology and compared three research algorithms and two commercial
products. Their evaluation methodology is based on text-line detection accu-
racy, so it is particularly useful for evaluating text segmentation approaches.
Recent page segmentation competitions [8, 9] address the need of comparative
performance evaluation under realistic circumstances. However, a limitation of
the competition-based approach is that competing methods only participate if
they are implemented and used by a participant. It means several well-known
algorithms might not be a part of the comparison at all.

This paper focuses on comparative performance evaluation of six represen-
tative algorithms for page segmentation. It is an extension of the work by Mao
et al. [7], and adds three more algorithms to the comparison. The algorithms
compared in [7] are X-Y cut [10], Docstrum [11], and the Voronoi-diagram based
approach [12]. The algorithms added to the comparison in this work are the
smearing algorithm [13], whitespace analysis [14], and the constrained text-line
finding algorithm [15]. A brief description of the six algorithms used in the com-
parison will be given in Section 2, followed by the error metric definition in
Section 3. Section 4 describes the experiments performed and results obtained,
followed by discussion of the results in Section 5 and conclusion in Section 6.

2 Algorithms for Page Segmentation

We selected six representative algorithms for page segmentation. Furthermore,
we have introduced a dummy algorithm to determine a bottom line of the pos-
sible performance. A brief description of each algorithm and its parameters are
described in turn in the following.

2.1 Dummy algorithm

The dummy segmentation algorithm takes the whole page as one segment. The
purpose of this algorithm is to see how well we can perform without doing any-
thing. Then the performance of other algorithms can be seen as gains over that
achieved by the dummy algorithm. Using the dummy algorithm also highlights
limitations of the evaluation scheme as detailed in Section 3.

3

2.2 X-Y Cut

The X-Y cut segmentation algorithm [10], also referred to as recursive X-Y cuts
(RXYC) algorithm, is a tree-based top-down algorithm.

The root of the tree represents the entire document page. All the leaf nodes
together represent the final segmentation. The RXYC algorithm recursively
splits the document into two or more smaller rectangular blocks which repre-
sent the nodes of the tree. At each step of the recursion, the horizontal and
vertical projection profiles of each node are computed. Then, the valleys along
the horizontal and vertical directions, VX and VY , are compared to correspond-
ing predefined thresholds TX and TY . If the valley is larger than the threshold,
the node is split at the mid-point of the wider of VX and VY into two children
nodes. The process continues until no leaf node can be split further. Then, noise
regions are removed using noise removal thresholds Tn

X and Tn
Y .

2.3 Smearing

The run-length smearing algorithm (RLSA) [13] works on binary images where
white pixels are represented by 0’s and black pixels by 1’s. The algorithm trans-
forms a binary sequence x into y according to the following rules:

1. 0’s in x are changed to 1’s in y if the number of adjacent 0’s is less than or
equal to a predefined threshold C.

2. 1’s in x are unchanged in y.

These steps have the effect of linking together neighboring black areas that
are separated by less than C pixels. The RLSA is applied row-wise to the doc-
ument using a threshold Ch, and column-wise using threshold Cv, yielding two
distinct bitmaps. These two bitmaps are combined in a logical AND operation.
Additional horizontal smearing is done using a smaller threshold, Cs, to ob-
tain the final bitmap. Then, connected component analysis is performed on this
bitmap, and using threshold C21 and C22 on the mean run of black pixel in a
connected component and block height, connected components are classified into
text and non-text zones.

2.4 Whitespace analysis

The whitespace analysis algorithm described by Baird [14] analyzes the structure
of the white background in document images. The first step is to find a set of
maximal white rectangles (called covers) whose union completely covers the
background. Breuel’s algorithm for finding the maximal empty whitespace [15]
is used in our implementation for this step. These covers are then sorted with
respect to the sort key, K(c):

K(c) =
√

area(c) ∗W (|log2 (height(c)/width(c))|) (1)

4

where c is the cover and W (.) is a dimensionless weighting function. Baird [14]
chose a special weighting function using experiments on a particular dataset. We
used an approximation of the original weighting function as

W (x) =

0.5 if x < 3
1.5 if 3 ≤ x < 5
1 otherwise

(2)

The purpose of the weighting function is to assign higher weight to tall and long
rectangles because they are supposed to be meaningful separators of text blocks.

In the second step, the rectangular covers ci, i = 1, . . . ,m, where m is the
total number of whitespace covers, are combined one by one to generate a cor-
responding sequence sj , j = 1, . . . ,m of segmentations. A segmentation is the
uncovered area left by the union of the covers combined so far. Before a cover ci is
unified to the segmentation sj , a trimming rule is applied to avoid early segmen-
tation of narrow blocks. The unification of covers continues until the stopping
rule (3) is satisfied:

K(sj)−Ws ∗ F (sj) ≤ Ts (3)

where K(sj) is the sort key K(cj) of the last cover unified in making segmen-
tation sj , F (sj) = j/m, Ws is a weight, and Ts is stopping threshold. At the
final segmentation, the uncovered regions represent the union of interiors of all
black input rectangles. We take bounding boxes of the uncovered regions as
representative of the text segments.

2.5 Constrained text-line detection

The layout analysis approach by Breuel [15] finds text-lines as a two step process:

1. Find tall whitespace rectangles and evaluate them as candidates for gutters,
column separators, etc. The algorithm for finding maximal empty whites-
pace is described in [15]. The whitespace rectangles are returned in order of
decreasing quality and are allowed a maximum overlap of Om.

2. The whitespace rectangles representing the columns are used as obstacles in a
robust least square, globally optimal text-line detection algorithm [16]. Then,
the bounding box of all the characters making the text-line is computed.

The method was merely intended by its author as a demonstration of the ap-
plication of two geometric algorithms, and not as a complete layout analysis
system; nevertheless, we included it in the comparison because it has already
proven useful in some applications. It is also nearly parameter free and resolu-
tion independent.

2.6 Docstrum

The Docstrum algorithm by Gorman [11] is a bottom-up approach based on
nearest-neighborhood clustering of connected components extracted from the

5

document image. After noise removal, the connected components are separated
into two groups, one with dominant characters and another one with characters
in titles and section heading, using a character size ratio factor fd. Then, K
nearest neighbors are found for each connected component. Then, text-lines are
found by computing the transitive closure on within-line nearest neighbor pair-
ings using a threshold ft. Finally, text-lines are merged to form text blocks using
a parallel distance threshold fpa and a perpendicular distance threshold fpe.

2.7 Voronoi-diagram based algorithm

The Voronoi-diagram based segmentation algorithm by Kise et al. [12] is also
a bottom-up algorithm. In the first step, it extracts sample points from the
boundaries of the connected components using a sampling rate sr. Then, noise
removal is done using a maximum noise zone size threshold nm, in addition
to width, height, and aspect ratio thresholds. After that the Voronoi diagram
is generated using sample points obtained from the borders of the connected
components. Superfluous Voronoi edges are deleted using a criterion involving
the area ratio threshold ta, and the inter-line spacing margin control factor fr.
Since we evaluate all algorithms on document pages with Manhattan layouts, a
modified version of the algorithm [7] is used to generate rectangular zones.

3 Error Metrics

We use text-line detection accuracy [7] as the error metric in our evaluation.
The text-lines are represented as bounding boxes enclosing all the characters
constituting the text-line. Three types of errors are defined.

1. Ground-truth text-lines that are missed (C), i.e. they are not part of any
detected text region.

2. Ground-truth text-lines whose bounding boxes are split (S), i.e. the bound-
ing box of a text-line does not lie completely within one detected segment.

3. Ground-truth text-lines that are horizontally merged (M), i.e. two horizon-
tally overlapping ground-truth lines are part of one detected segment.

These error measures are defined based on set theory and mathematical mor-
phology [7]. Let G be the set of all the ground-truth text-line, and |G| denote
the cardinality of the set G, then the overall performance is measured as the
percentage of ground-truth text-lines that are not found correctly:

ρ =
|C ∪ S ∪M |

|G|
(4)

A ground-truth text-line is said to lie completely within one detected text seg-
ment if the area overlap between the two is significant. Significance is determined
using four tolerance parameters which are identical here to those used in [7].

The main advantages of this approach are that it is independent of OCR
recognition error, is independent of zone shape, and requires only text-line level

6

Table 1. Parameter values used for each algorithm in the evaluation given in Table 2.
For dummy, X-Y cut, smearing, and text-line finding algorithms, default and optimized
parameters are the same.

Algorithm Default values Optimal values

Dummy None

X-Y cut TX = 35, TY = 54, T n
X = 78, T n

Y = 32

Smearing Ch = 300, Cv = 500, Cs = 30, C21 = 3, C22 = 3

Text-line Om = 0.8

Whitespace Ws = 42.43, Ts = 34.29 Ws = 42.43, Ts = 65

Docstrum K = 5, ft = 2.578, fd = 9, K = 8, ft = 2.578, fd = 9,

fpe = 1.3, fpa = 1.5 fpe = 0.6, fpa = 2.345

Voronoi sr = 6, nm = 11, sr = 6, nm = 11,

fr = 0.34, ta = 40 fr = 0.083, ta = 200

ground-truth. Since a text block can be easily decomposed into text-lines by
projecting each block parallel to its baseline and analyzing the resulting one-
dimensional profile, the assignment of text-lines to text blocks is not critical.
Therefore, the evaluation scheme does not take into account vertical merge er-
rors. However, there is a drawback of this approach. If a segmentation algorithm
just takes the whole page as one segment, the split and missed errors vanish
(C = ∅, S = ∅). Typically for single-column documents, M = ∅. Hence, without
doing anything, the segmentation accuracy can be high if there is a large pro-
portion of single-column document images in the test dataset. This effect was
not considered in the original evaluation [7]. In order to check the severity of the
problem, we have introduced a dummy segmentation algorithm into the com-
parison, as discussed in Section 2.1. Furthermore, we report the performance of
each algorithm separately for single-column, two-column, and three-column doc-
ument images. This allows us to assess the strengths and weaknesses of different
algorithms.

4 Experiments and Results

The evaluation of the page segmentation algorithms was done on the University
of Washington III (UW-III) database [17]. The database consists of 1600 English
document images with manually edited ground-truth of entity bounding boxes.
These bounding boxes enclose text and non-text zones, text-lines and words. We
used the 978 images that correspond to the UW-I dataset pages. Only the text
regions are evaluated, and non-text regions are ignored. The dataset is divided
into 100 training images and 878 test images. The purpose of the training im-
ages is to find suitable parameter values for the segmentation algorithms. The
experiments are done using both default parameters as mentioned in the re-
spective papers and tuned/optimized parameters (Table 1). This allows us to
assess how much the performance of each algorithm depends on the choice of
good parameters for the task. The parameters for the X-Y cut algorithm are

7

Table 2. The evaluation results for different page segmentation algorithms on 100
train images and 878 test images. The results are reported in terms of percentage of
text-lines detection errors (Eq. 4).

Default parameters Optimized parameters

Train Test Train Test

Algorithm Mean Mean Stdev Mean Mean Stdev

Dummy 52.2 48.8 39.0 52.2 48.8 39.0

X-Y cut 14.7 17.1 24.4 14.7 17.1 24.4

Smearing 13.4 14.2 23.0 13.4 14.2 23.0

Whitespace 12.7 12.2 20.0 9.1 9.8 18.3

Text-line 8.9 8.5 14.4 8.9 8.5 14.4

Docstrum 8.7 11.2 22.6 4.3 6.0 15.2

Voronoi 6.8 7.5 12.9 4.7 5.5 12.3

highly application dependent, so no default parameters are specified in [10]. The
optimized parameter values used for X-Y cut, Docstrum, and Voronoi-diagram
based algorithms were the same as in [7]. For the smearing, whitespace, and con-
strained text-line finding algorithms, we experimented with different parameter
values and selected those which gave lowest error rates on the training set.

We have used the page segmentation evaluation toolkit (PSET) [18] to accel-
erate the evaluation procedure. The PSET evaluation package implements the
training and evaluation scheme by [7], and can be easily extended to evaluate
new algorithms and experiment with new metrics and datasets. The average
text-line detection error rate for each algorithm is given in Table 2. The high
standard deviation in the error rate of each algorithm shows that the algorithms
work very well on some images, while failing badly on some other images.

Fig. 1 shows a box plot of the error rates observed for each algorithm. The
boxes in the box plot represent the interquartile range, i.e. they contain the
middle 50% of the data. The lower and upper edges represent the first and third
quartiles, whereas the middle line represents the median of the data. The notches
represent the expected range of the median. The ’whiskers’ on the two sides show
inliers, i.e. points within 1.5 times the interquartile range. The outliers are repre-
sented by small circles outside the whiskers. We can observe the following details:
A ranking of the algorithms based on their median error would deviate from the
ranking based on the average error. Remarkably, the Docstrum algorithm does
not make any errors for more than 50% of the pages in the test set, which is
not achieved by any other algorithm. This might be a property that would be
preferable in certain applications, while for other applications the average error
rate may be more important.

5 Error Analysis and Discussion

The results of applying each algorithm to one test image (A005BIN.TIF) are
shown in Fig. 2. The different types of errors made by each algorithm are shown

8

dummy X−Y cut smearing whitespace text−line Docstrum Voronoi

0
20

40
60

80
10

0

er
ro

r
ra

te
 [%

]

Fig. 1. Box plot for the results obtained with optimized parameters on the test data.

in Table 3 and are discussed in the following. Many of these results are based on
a visual inspection of the obtained results.

– The dummy algorithm results in a large number of merge errors as expected.
– The X-Y cut algorithm fails in the presence of noise and tends to take the

whole page as one segment. This results in several merge errors for two
column pages. For clean documents, the algorithm tends to split text-lines
at the borders, resulting in some split errors on each page.

– The smearing algorithm classifies text-lines merged with noise blocks as non-
text, resulting in a large number of missed errors. This classification step
is necessary because otherwise for L-shaped noise blocks appearing due to
photocopy effect several merge errors occur.

– The whitespace algorithm is sensitive to the stopping rule. Early stopping
results in a higher number of merge errors, late stopping results in more split
errors. This effect can be observed in Table 3. This may present problems
for more diverse collections than UW-III.

– The major part of the errors made by the constrained text-line finding algo-
rithm are split errors. The main source of these errors are characters merged
with noise blocks, because they are rejected beforehand as noise by the con-
nected component analysis algorithm. Note that in contrast to the prior
evaluation of the algorithm, these errors occur here because the evaluation
is based on bounding boxes; if the text-lines are continued to the left and
right side, these errors would vanish. Furthermore, these errors are not rel-
evant to better scans. Some split errors also occur due to page curl at the
border, which results in two separate baselines fit to a single text-line. Merge
errors appear when page numbers are in close proximity to journal or ar-

9

Table 3. Percentage of different types of errors made by each algorithm.

Default parameters Optimized parameters

Algorithm Split Merge Missed Split Merge Missed

Dummy 0.0 65.5 0.0 0.0 65.5 0.0

X-Y cut 5.6 7.8 0.4 5.6 7.8 0.4

Smearing 3.8 1.0 5.7 3.8 1.0 5.7

Whitespace 6.6 1.3 0.0 5.0 2.6 0.0

Text-line 5.1 1.3 0.2 5.1 1.3 0.2

Docstrum 4.5 9.0 0.0 2.5 3.6 0.01

Voronoi 4.9 0.8 0.02 2.9 1.3 0.02

Table 4. Text-line detection errors [%] for each of the algorithms separated for one-,
two-, and three-column documents, and separated for photocopies or direct scans.

No. of columns Photocopy

Algorithm 1 2 3 No Yes

Dummy 8.3 75.6 88.5 68.7 46.2

X-Y cut 19.9 15.6 11.7 14.7 17.4

Smearing 23.5 7.9 5.8 6.6 15.1

Whitespace 14.5 6.7 5.6 2.9 10.8

Text-line 13.3 5.3 4.4 3.6 9.2

Docstrum 5.8 6.2 5.2 6.2 5.9

Voronoi 6.9 4.6 3.4 2.8 5.8

ticle names in footers or headers. Single digit page numbers are missed by
the text-line finding algorithm, because it requires at least two connected
components to form a line.

– In the Voronoi and Docstrum algorithms, the inter-character and inter-line
spacings are estimated from the document image. Hence spacing variations
due to different font sizes and styles within one page result in split errors
in both algorithms. However, since both algorithms find text regions, and
not individual text-lines, huge noise bars along the border do not result in
split errors, as the bounding box of the text region includes the characters
merged in the noise bar if at least one text line has no merged characters.

Table 4 shows the error rates of the algorithms separated for different doc-
ument characteristics. First, the documents were separated according to the
‘maximum columns number’ attribute recorded for each page. There are 362,
449, and 67 one-, two-, and three-column documents in the test set of 878 pages.
We can observe that the smearing, whitespace, and text-line algorithms perform
much worse on one-column documents than on the average. This behavior can
be explained by the stronger effect of the noise blocks occurring in photocopied
images for these one-column documents, because each line is affected. We fur-
ther investigated this hypothesis by separating the documents according to their

10

‘degradation type’ attribute. There are 776 photocopied and 102 directly scanned
documents in the test set and the respective results are shown in Table 4. We
can observe that the algorithms performing worse on one-column documents in
fact also perform worse on the photocopied images due to the noise blocks. In-
terestingly, especially the Docstrum algorithm does not gain accuracy for clean
documents, while the Voronoi-based algorithm still performs best. The smearing,
whitespace and text-line algorithms are most effected by the photocopy effects.
This suggests that they would perform better for current layout analysis tasks
in which most documents are directly scanned.

The timing of the algorithms cannot be directly compared because of the dif-
ference in their output level. Whitespace, Docstrum, Voronoi, and X-Y cut algo-
rithms give text blocks which have still to be separated into text-lines. Whereas
the constrained text-line finding algorithm directly gives the text-lines as out-
put. Secondly, the smearing algorithm also includes a block-classification step,
which is missing in other algorithms. Furthermore, the Docstrum, whitespace,
and constrained text-line finding algorithms depend on the computation of con-
nected components in the image, which were calculated offline and stored in the
database. However, an informal ranking of the running times from fastest to
slowest is: X-Y cut, Voronoi, Docstrum, whitespace, smearing, and constrained
text-line finding. All algorithms completed page processing in an average of less
than 7 seconds on a 2GHz AMD PC running Linux.

6 Conclusion

In this paper, we compared the performance of six different page segmenta-
tion algorithms on the UW-III dataset using a text-line detection accuracy
based performance metric. The evaluation results showed that generally the X-Y
cut, smearing, and whitespace algorithms perform poorer than the Docstrum,
Voronoi, and constrained text-line finding algorithms. The high variance in the
detection error rate prohibits the marking of any algorithm as a clear winner.

We also inspected the results visually and generally observed the following.
The constrained text-line finding algorithm is more robust to within page varia-
tions in font size, style, inter-character and inter-line spacing than any other al-
gorithm. However, due to page curl and photocopy effect, the characters merged
with a noise block are ignored by the text-line finding algorithm resulting in
more split errors. Note, though, that the text-line method is not a full-fledged
layout analysis method yet. On the other hand, page numbers are more reliably
found by Voronoi and Docstrum algorithms. Since each algorithm has different
strengths and weaknesses, combining the results of more than one algorithm may
yield promising results.

The results also reveal several limitation of the UW-III database. First, all
images have the same resolution. This fact favors algorithms with many param-
eters that can be tuned to the task and contributes significantly to the good
results of algorithms based on thresholds on layout distances. Furthermore, the
presence of many photocopied pages that are not well binarized is not representa-

11

(a) X-Y cut (b) Smearing (c) Whitespace

(d) Docstrum (e) Voronoi (f) Text-line

Fig. 2. Segmentation results from applying each algorithm to one page image. The
page contains a title in large font and a big noise strip along the right border. (a) The
X-Y cut algorithm fails in the presence of noise and tends to take the whole page as one
segment. (b) The smearing algorithm also classifies the detected regions as text/non-
text, and thus misses the lines joined by the noise bar. (c),(d),(e) Due to the large font
size and big inter-word spacing, the Voronoi, Docstrum, and whitespace algorithms
split the title lines. (f) Due to the noise bar, several characters on the right side of each
line in the second column were merged with the noise bar and the text-line finding
algorithm did not include these characters.

tive of the majority of scanned documents that are captured today. In summary,
although the diversity of layouts found in the UW-III database is good, we con-
sider the variability of physical properties like resolution and image degradation
to be too limited for a good evaluation; and we therefore need to test the ro-
bustness of algorithms using more heterogeneous document collections. It would
be an important step to make available a larger, ground-truthed database with
more variability for future research.

12

Acknowledgments

This work was partially funded by the BMBF (German Federal Ministry of
Education and Research), project IPeT (01 IW D03). The authors would also
like to acknowledge Joost van Beusekom’s work in implementing the run-length
smearing algorithm.

References

1. Cattoni, R., Coianiz, T., Messelodi, S., Modena, C.M.: Geometric layout analysis
techniques for document image understanding: a review. Technical report, IRST,
Trento, Italy (1998)

2. Mao, S., Rosenfeld, A., Kanungo, T.: Document structure analysis algorithms: a
literature survey. Proc. SPIE Electronic Imaging 5010 (2003) 197–207

3. Yanikoglu, B.A., Vincent, L.: Ground-truthing and benchmarking document page
segmentation. In: Proc. ICDAR, Montreal, Canada (1995) 601–604

4. Liang, J., Phillips, I.T., Haralick, R.M.: Performance evaluation of document struc-
ture extraction algorithms. CVIU 84 (2001) 144–159

5. Kanai, J., Nartker, T.A., Rice, S.V., Nagy, G.: Performance metrics for document
understanding systems. In: Proc. ICDAR, Tsukuba, Japan (1993) 424–427

6. Das, A.K., Saha, S.K., Chanda, B.: An empirical measure of the performance of a
document image segmentation algorithm. IJDAR 4 (2002) 183–190

7. Mao, S., Kanungo, T.: Empirical performance evaluation methodology and its
application to page segmentation algorithms. IEEE TPAMI23 (2001) 242–256

8. Antonacopoulos, A., Gatos, B., Bridson, D.: ICDAR 2005 page segmentation com-
petition. In: Proc. ICDAR, Seoul, Korea (2005) 75–80

9. Antonacopoulos, A., Gatos, B., Karatzas, D.: ICDAR 2003 page segmentation
competition. In: Proc. ICDAR, Edinburgh, UK (2003) 688–692

10. Nagy, G., Seth, S., Viswanathan, M.: A prototype document image analysis system
for technical journals. Computer 7 (1992) 10–22

11. O Gorman, L.: The document spectrum for page layout analysis. IEEE TPAMI
15 (1993) 1162–1173

12. Kise, K., Sato, A., Iwata, M.: Segmentation of page images using the area Voronoi
diagram. CVIU 70 (1998) 370–382

13. Wong, K.Y., Casey, R.G., Wahl, F.M.: Document analysis system. IBM Journal
of Research and Development 26 (1982) 647–656

14. Baird, H.S.: Background structure in document images. In: Document Image
Analysis, World Scientific, (1994) 17–34

15. Breuel, T.M.: Two geometric algorithms for layout analysis. In: Document Analysis
Systems, Princeton, NJ. (2002)

16. Breuel, T.M.: Robust least square baseline finding using a branch and bound
algorithm. In: Doc. Recognition & Retrieval, SPIE, San Jose, CA. (2002) 20–27

17. Guyon, I., Haralick, R.M., Hull, J.J., Phillips, I.T.: Data sets for OCR and doc-
ument image understanding research. In: Handbook of character recognition and
document image analysis, World Scientific, (1997) 779–799

18. Mao, S., Kanungo, T.: Software architecture of PSET: a page segmentation eval-
uation toolkit. IJDAR 4 (2002) 205–217

