Using Evolution Programs to Learn Local Similarity Measures

Armin Stahl Thomas Gabel

 Universität Kaiserslautern

 Arbeitsgruppe Wissensbasierte Systeme und Kunstliche Intelligenz

 Artificial Intelligence – Knowledge Based Systems Group

- 1. Motivation
- 2. Learning Similarity Measures from Case Order Feedback
- 3. Evolution Programs to Learn Local Similarity Measures
 - Specialised Genetic Operators
 - Control Algorithm
- 4. Experimental Evaluation
- 5. Conclusion

Universität Kaiserslautern Arbeitsgruppe Wissensbasierte Systeme und Kunstliche Intelligenz

Artificial Intelligence - Knowledge Based Systems Group

Motivation

• Similarity Measures: Heuristics to select *useful* cases

approach

traditional

alternative

- Knowledge-Poor
 Similarity Measures
 - e.g. Hamming Distance
 - mainly based on syntactical differences
 - consider no or only little domain knowledge
 - + easy to define
 - lead often to poor retrieval results

- Knowledge-Intensive Similarity Measures
 - e.g. use of sophisticated local similarity measures
 - based on knowledge about influences on the utility of cases
 - + better retrieval results
 - require deeper analysis of the domain and more modelling effort

Universität Kaiserslautern

Arbeitsgruppe Wissensbasierte Systeme und Künstliche Intelligenz Artificial Intelligence – Knowledge Based Systems Group

Local Similarity Measures

compare query and case values of single attributes

$$Sim(Q,C) = \sum_{i=1}^{n} w_i \cdot sim_i(q_i,c_i)$$

• representation depends on attribute type

numeric: difference-based similarity function

symbolic: similarity table

prices will be tolerated"

qC	ROM	RW	DVD
ROM	1.0	1.0	0.9
RW	0.0	1.0	0.3
DVD	0.0	0.3	1.0

CD-Drive

encodes knowledge about the functionality of CD-Drives

Problems:

- modelling of local similarity measures is costly
- necessary domain knowledge is usually difficult to acquire

a: Application of Machine Learning Techniques

Universität Kaiserslautern

Arbeitsgruppe Wissensbasierte Systeme und Künstliche Intelligenz Artificial Intelligence – Knowledge Based Systems Group

Learning Similarity Measures from Case Order Feedback

User / Expert

Learning Goal: Finding a similarity measure that minimises *E*

Universität Kaiserslautern

Arbeitsgruppe Wissensbasierte Systeme und Künstliche Intelligenz Artificial Intelligence, – Knowledge Based Systems Group

Evolution Programs (EP)

- search algorithms based on the mechanics of natural genetics, selection, and the principle "survival of the fittest"
- reproduction via crossover and mutation of individuals
- differentiation from (standard) genetic algorithms
 - 1. representation of individuals

(example)

GA 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 0 ...

EP 0.3 1.3 2.6 -0.1 1.4 0.7 4.1 7.6 -2.3 4.0 0.0 0.1 -0.7 8.3 2.4 6.2 0.1 ...

- 2. specialised genetic operators
- Advantages
 - robust and powerful search strategy
 - ability to handle complex entities such as local similarity mesaures
 - adequate representation of local measures as individuals

Universität Kaiserslautern

Arbeitsgruppe Wissensbasierte Systeme und Kunstliche Intelligenz Artificial Intelligence – Knowledge Based Systems Group

Representing Individuals

Similarity Functions per Sampling

a

.75

.75

usage

Approximated Similarity Measure

• Similarity Tables as Matrices

q C	SD	DDR	RD	similari	ity table	indivi	du
SD	1.0	0.9	0.75	represe	ented as	matrix	K
DDR	0.5	1.0	0.75		1.0	0.9	C
RD	0.25	0.5	1.0		0.5	1.0	C
					0.25	05	

RAM-Type

Universität Kaiserslautern

Arbeitsgruppe Wissensbasierte Systeme und Künstliche Intelligenz Artificial Intelligence – Knowledge Based Systems Group

Exemplary Operators:

simple mutation

Exemplary Operators:

- simple mutation
- in-/decreasing mutation

Exemplary Operators:

- simple mutation
- in-/decreasing mutation
- simple crossover

Exemplary Operators:

- simple mutation
- in-/decreasing mutation
- simple crossover
- arithmetical crossover

Exemplary Operators:

- simple mutation
- in-/decreasing mutation
- simple crossover
- arithmetical crossover
- line/row crossover

Universität Kaiserslautern

Arbeitsgruppe Wissensbasierte Systeme und Künstliche Intelligenz Artificial Intelligence – Knowledge Based Systems Group

Control Algorithm

 simultaneous learning of several local similarity measures: round robin optimisation

Universität Kaiserslautern

Arbeitsgruppe Wissensbasierte Systeme und Künstliche Intelligenz Artificial Intelligence – Knowledge Based Systems Group

Experimental Evaluation (I)

- Idea: learn a similarity measure that considers provided case adaptation possibilities during case retrieval
- Scenario: product recommendation system for PCs with adaptation rules for customisation

•	Example:	Semantic 1:						Semantic 2: Utility with respect to				
		Utility with respect to performance					perfc consider	ation of adapt	e but u possi cases	inder bilities	to	
		q C	SD	DDR	RD			qC	SD	DDR	RD	
		SD	1.0	0.9	0.75			SD	1.0	1.0	0.75	
		DDR	0.5	1.0	0.75			DDR	1.0	1.0	0.75	
		RD	0.25	0.5	1.0			RD	0.25	0.5	1.0	
		RAM-Type					RAM-Type					

Universität Kaiserslautern

Arbeitsgruppe Wissensbasierte Systeme und Künstliche Intelligenz Artificial Intelligence – Knowledge Based Systems Group

Experimental Evaluation (II)

Automated Creation of Training Examples

Universität Kaiserslautern

Arbeitsgruppe Wissensbasierte Systeme und Künstliche Intelligenz Artificial Intelligence – Knowledge Based Systems Group

Experimental Evaluation (III)

Dependency on Training Data Size

Summary

- Learning Knowledge-Intensive Local Similarity Measures
 - simplified definition of accurate similarity measures
 - overcome the problems of knowledge acquisition
 - better approximation of the underlying utility function
- Necessary Precondition
 - sufficient amount of easily acquirable training data
- Future Work:
 - applying the approach to other, real-world domains
 - analysing the relations between weight learning and learning local similarity measures more thoroughly
 - incorporating background knowledge to improve the learn process

Universität Kaiserslautern

Arbeitsgruppe Wissensbasierte Systeme und Künstliche Intelligenz Artificial Intelligence – Knowledge Based Systems Group

Using Evolution Programs to Learn Local Similarity Measures

Armin Stahl Thomas Gabel

Detailed Contact Information:

Armin Stahl Thomas Gabel Knowledge Based Systems Group Kaiserslautern University of Technology 67663 Kaiserslautern GERMANY

eMail:

stahl@informatik.uni-kl.de tgabel@rhrk.uni-kl.de

Universität Kaiserslautern

Arbeitsgruppe Wissensbasierte Systeme und Künstliche Intelligenz Artificial Intelligence, – Knowledge Based Systems Group