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Motivation

• Similarity Measures: Heuristics to select useful cases 

• Knowledge-Poor 

Similarity Measures

• e.g. Hamming Distance

• mainly based on 

syntactical differences 

• consider no or only little 

domain knowledge

+ easy to define

– lead often to poor retrieval 

results

traditional

approach
• Knowledge-Intensive 

Similarity Measures

• e.g. use of sophisticated 

local similarity measures

• based on knowledge about 

influences on the utility of 

cases

+ better retrieval results

– require deeper analysis 

of the domain and more 

modelling effort

alternative



Local Similarity Measures

• compare query and case values of single attributes
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encodes knowledge about the 

functionality of CD-Drives

symbolic: similarity table
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• representation depends on attribute type

Problems:

• modelling of local similarity 

measures is costly

• necessary domain knowledge 

is usually difficult to acquire

Idea: Application of 

Machine Learning 

Techniques



Learning Similarity Measures from 

Case Order Feedback
User / Expert

Query

computes

Case 3

Partial-Order S

Case 8

Case 1
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Similarity
CBR-System

Similarity

Measure
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Utility

Case 3

case order 

feedback 

Learning Goal: Finding a similarity measure that minimises E

• measures quality of 

nretrieval results

• it must hold:

E = 0  U = S

Error Function E



• Advantages

– robust and powerful search strategy

– ability to handle complex entities such as local similarity mesaures

– adequate representation of local measures as individuals

Evolution Programs (EP)

• search algorithms based on the mechanics of natural 

genetics, selection, and the principle “survival of the fittest“

• reproduction via crossover and mutation of individuals 

GA 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 0 ...

EP 0.3 1.3 2.6 -0.1 1.4 0.7 4.1 7.6 -2.3 4.0 0.0 0.1 -0.7 8.3 2.4 6.2 0.1 ...

(example)

• differentiation from (standard) genetic algorithms

1. representation of individuals

2. specialised genetic operators



• Similarity Functions per Sampling

Representing Individuals

“Target“ Similarity Measure

c-q

sampling (s=7)

Sampled Similarity Measure

c-q

Representation as Individual

index     sim value

1 1.0

2 1.0

3 1.0

4 1.0

5 0.2

6 0.05

7 0.0

usage

Approximated Similarity Measure

c-q

• Similarity Tables as Matrices
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Specialised Genetic Operators

Exemplary Operators:

• simple mutation
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• in-/decreasing 

mutation

Specialised Genetic Operators



Exemplary Operators:

• simple mutation

• in-/decreasing 

mutation

• simple crossover

Specialised Genetic Operators



Exemplary Operators:

• simple mutation

• in-/decreasing 

mutation

• simple crossover

• arithmetical crossover

Specialised Genetic Operators



Exemplary Operators:

• simple mutation

• in-/decreasing 

mutation

• simple crossover

• arithmetical crossover

• line/row crossover

Specialised Genetic Operators



Control Algorithm

• simultaneous learning of several local similarity 

measures: round robin optimisation

Initial

Population P

Initial

Evaluation
BREEDING

1. choose mating partners

2. Po := set of individuals

created by 

crossover/mutation

EVALUATION
1. assign fitness value

2. assign lifetime value

SELECTION
1. add Po to P

2. increase age

3. remove dead/

unfit individuals

loop

1. translation: individual

to similarity measure

2.export sim measure

3.retrieval

4.error calculation 



Experimental Evaluation (I)

• Idea: learn a similarity measure that considers provided

case adaptation possibilities during case retrieval

Semantic 2:
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• Scenario: product recommendation system for PCs 

with adaptation rules for customisation
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Semantic 1:• Example:



Experimental Evaluation (II)

• Automated Creation of Training Examples

Utility Measure

Query
Retrieval

C1´ C2´ C3´ Cn´...

applying  case adaptation rules

C3 C1 C4 Cm...

REORDERING

reassessing utility

case order

feedback

• Measuring Learning Results

– CR1

– CR3

?optimal case:

learned measure retrieves:

C3

...

C1 C2 C3 Cn...

cases



Dependency on Training Data Size

54,3

64,2

76,3

47,8

35,4

29,3

0

10

20

30

40

50

60

70

80

90

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
2

0

1
6

0

2
0

0

#Training Examples

P
e

rc
e

n
ta

g
e

CR3avg

CR1avg

Experimental Evaluation (III)

Weight

Learning Learning Local Similarity Measures



Summary

• Learning Knowledge-Intensive Local Similarity Measures

– simplified definition of accurate similarity measures

– overcome the problems of knowledge acquisition

– better approximation of the underlying utility function

• Necessary Precondition

– sufficient amount of easily acquirable training data

• Future Work:

– applying the approach to other, real-world domains

– analysing the relations between weight learning and learning local 

similarity measures more thoroughly

– incorporating background knowledge to improve the learn process
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