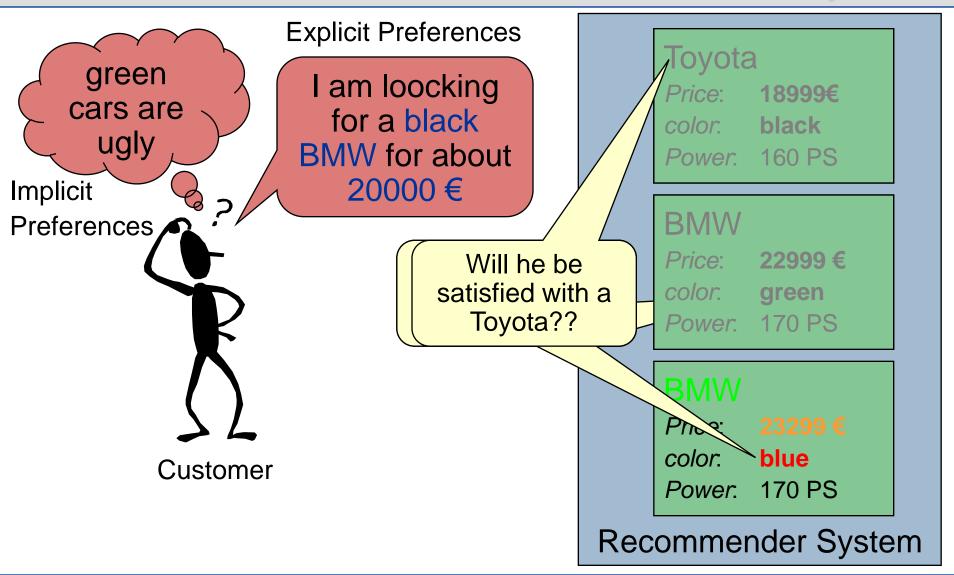
Combining Case-Based and Similarity-Based Product Recommendation

Armin Stahl

German Research Center for Artificial Intelligence (DFKI) Image Understanding and Pattern Recognition Group Kaiserslautern, Germany

Considering Customer Preferences in Product Recommender Systems

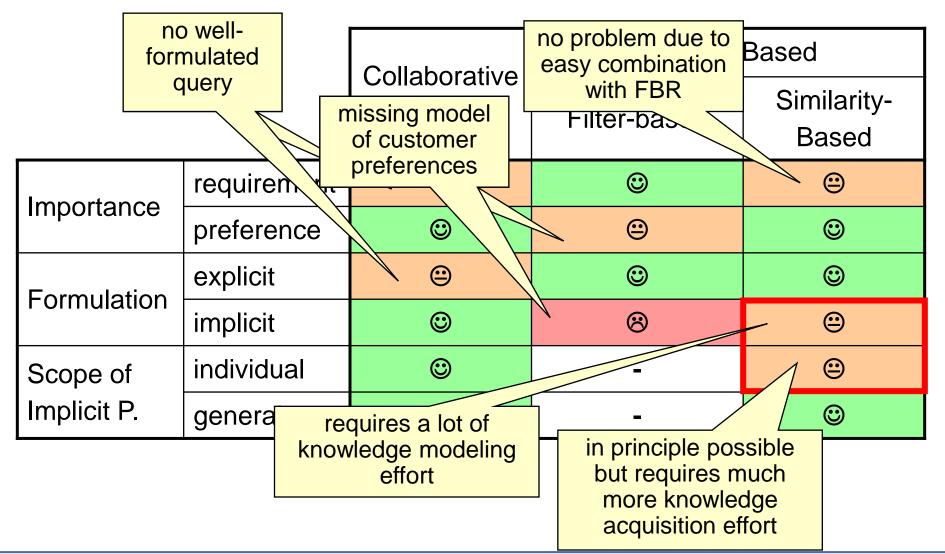


- 1. Product Recommender Systems (PRS)
- 2. State-of-the-Art: Similarity-Based Recommendation
- 3. New Approach: Case-Based Recommendation
- 4. Experimental Evaluation
- 5. Conclusions and Future Work

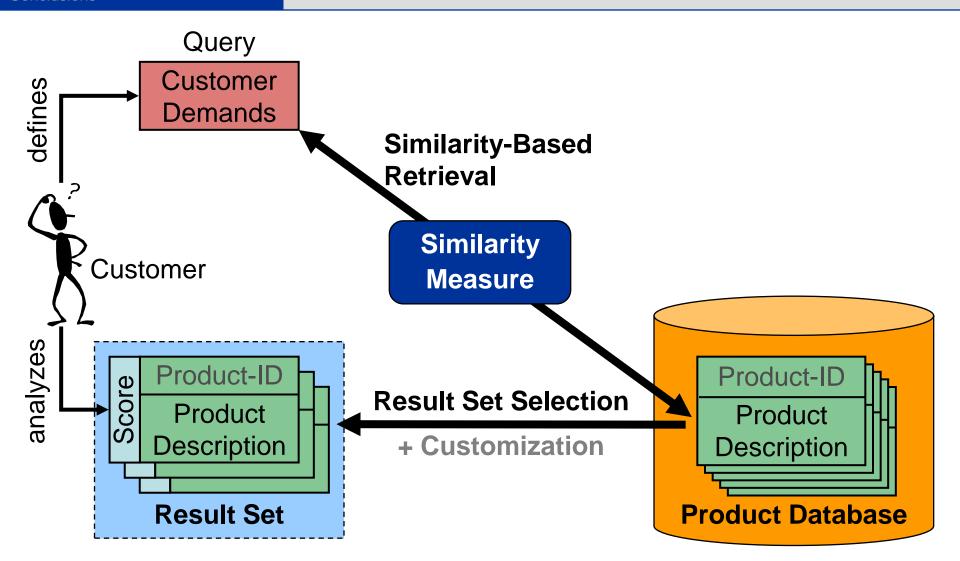
- Collaborative Filtering (CF)
 - recommendation is based on correlations between product ratings
 - does not rely on explicit modeling of product features
- Content-based Recommendation
 - Filter-based Recommendation (FBR)
 - recommendation is based on an exact-match query (e.g. SQL)
 - Similarity-based Recommendation (SBR)
 - recommendation is based on a similarity-based retrieval
 - can be combined easily with FBR
- Hybrid Approaches
 - try to combine the advantages of CF and FBR/SBR

- Quality of Recommendation depends on
 - knowledge about the offered products
 - knowledge about the requirements and preferences of the customers
 - ability to find the best match between these aspects
- Kinds of Customer Needs
 - Importance:
 - hard requirements vs. preferences
 - Formulation:
 - explicit vs. implicit preferences
 - Scope of Implicit Preferences:
 - general / average vs. individual preferences

Recommender Systems Modeling Customer Preferences



Similarity-Based Recommendation



Armin Stahl German Research Center for Artificial Intelligence (DFKI) Image Understanding and Pattern Recognition Group

© 2006

Similarity-Based Recommendation Analysis

- Different Types of Similarity Measures
 - knowledge-poor
 - compute simple distance between query and product description
 - measure only how far the explicit preferences (query) are matched
 - knowledge-intensive
 - allow to model implicit preferences
- No CBR: Match between Problems and Solutions
- Utility-Oriented Matching [Bergmann et al., 2001]
 - estimation of the products' utility w.r.t. a given query q
 - utility can be defined as the probability that a product will be accepted by the customer, i.e. $u(q, p_i) = P(p_i \ accepted \ | \ q)$
 - similarity measure as approximation of unknown utility function *u*

Similarity-Based Recommendation Modeling of Implicit Preferences

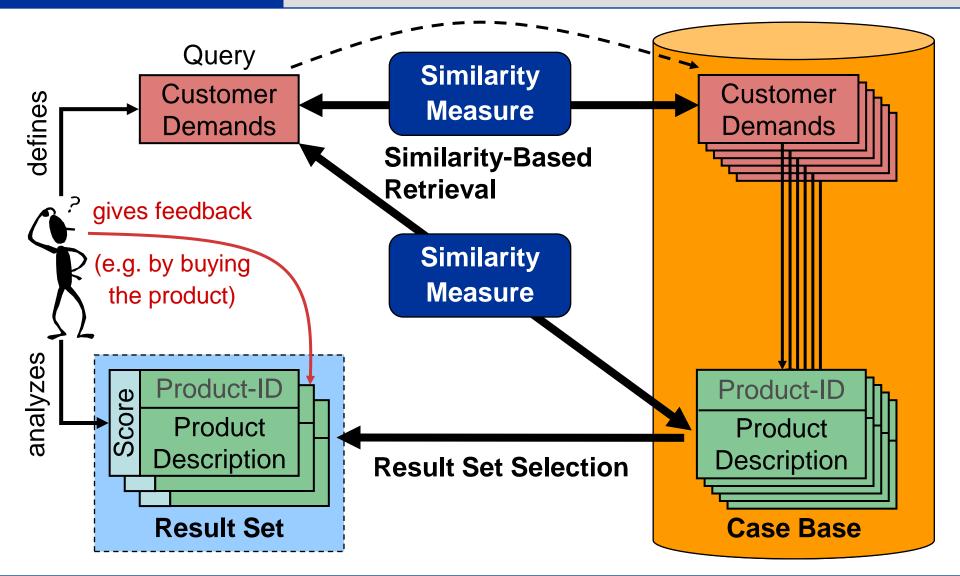
- Utility u is influenced by different Kinds of Preferences
 - not all can be modeled easily with common similarity measures

$Sim(q, p) = \sum_{i=1}^{n} w_i \cdot sim_{f_i}(q_i, p_{f_i})$			
		Example	Model
general importance of features		"the price is very important"	feature weights
certain values of features	independent from q an other features	"black cars are generally preferred over green cars"	local similarity measures
	depending on q but independent from other features	"if the customer wants a black car he will prefer a blue over a red car"	local similarity measures
	depending on other features	"if he wants a BMW he will prefer a black over a red car"	?
product specific		"the BMW 320d/silver is a very popular car"	case specific similarity or additional attribute

- Knowledge Acquisition Problem
 - implicit customer preferences are usually a-priori unknown
 - possible solution: learning approaches [Stahl & Gabel, 2003; Stahl, 2004]
- Common Similarity Measures have restricted Expressivness
 - e.g. assume attribute independence
- Similarity-based Recommendation is not really case-based
 - similarity measure alone is responsible for the complex mapping between customer needs and product properties

Why not reusing Experience Knowledge about Customer Buying Behavior??

Case-Based Recommendation Idea



Armin Stahl German Research Center for Artificial Intelligence (DFKI) Image Understanding and Pattern Recognition Group

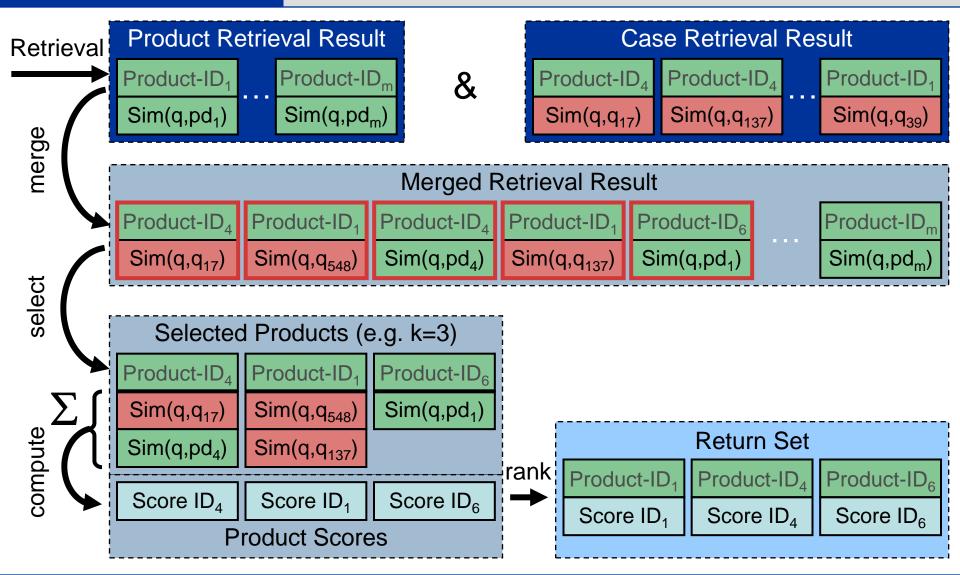
- Advantages
 - more simple similarity measures are sufficient
 - complex mapping between preferences/products is encoded in cases
 - alternative to learning similarity measures
 - allows learning of more complex customer preferences
 - e.g. dependencies between different features
- Problems
 - requires many cases (depends on size of product database)
 - acquisition of high quality cases
 - relative slow learning rates due to
 - missing generalization

Case-Based Recommendation Integration with SBR



Armin Stahl German Research Center for Artificial Intelligence (DFKI) Image Understanding and Pattern Recognition Group

Case-Based Recommendation Result Set Selection



Case-Based Recommendation Improving Case Acquisition

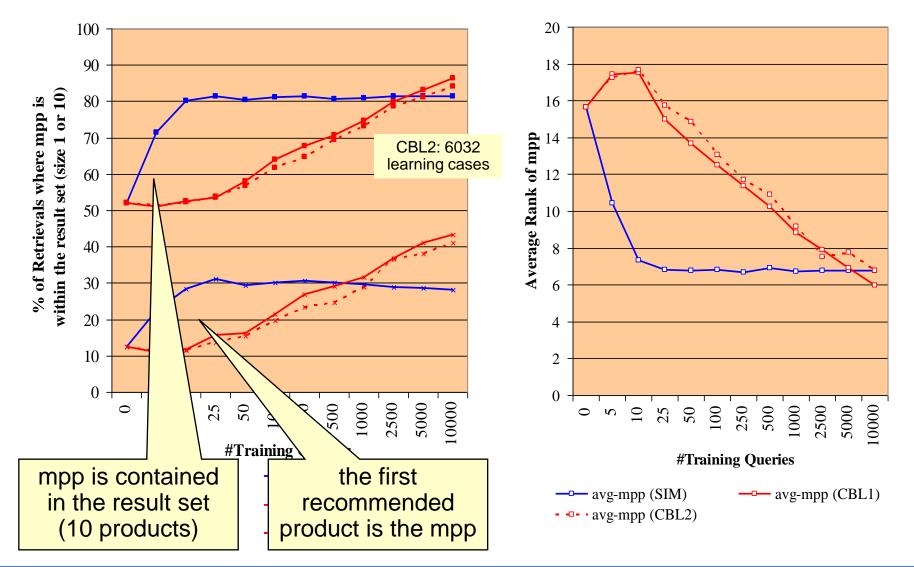
- Quality of the Cases is important
- Product Selection by Customer triggers Case Generation
 - but the retrieval set does often not include the most preferred product (mpp) available in the product base
 - i.e., the customer selects a suboptimal product
 - this leads to cases with reduced quality
- Initial Quality of Result Set influences Case Quality
- Idea: Combination with Similarity Learning
 - observation:
 - learning feature weights requires only few training examples [Stahl, 2001]
 - optimize feature weights first until learning converges
 - start case learning afterwards

Experimental Evaluation Test Domain

- Used Cars
 - 8 features (4 numeric, 4 symbolic)
 - 100 cars (extracted from real web data)
- Initial Similarity Measure
 - knowledge-poor, i.e. simple distance (numeric) and exact match
- Result Set
 - fixed size (10 products)
- Simulation of (General) Customer Preferences
 - selection of the preferred product from the result set
 - additional knowledge-intensive similarity measure
 - feature weights
 - specific local similarity measures for each attribute

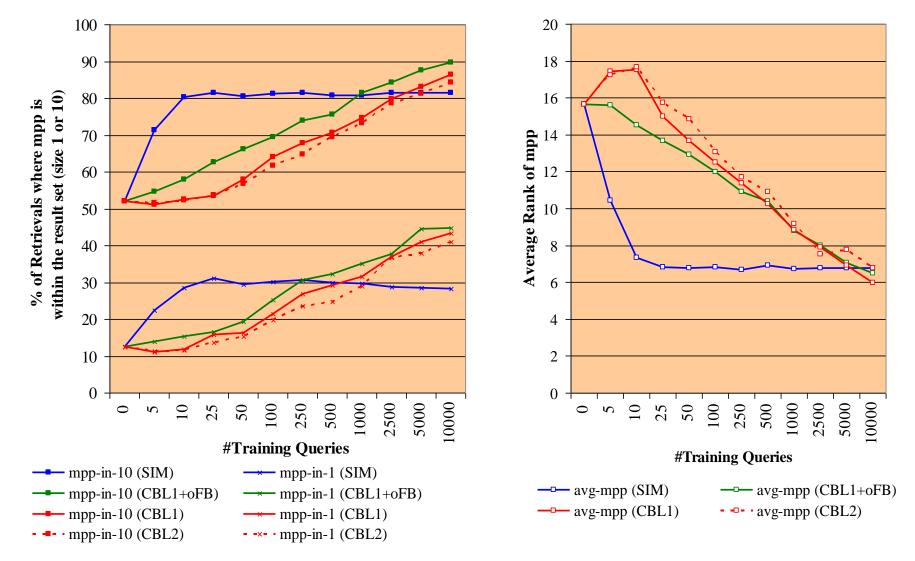
- CBL1/2: Case-Based Recommendation integrated with SBR
 - apply two different case learning policies cf. [Aha, 1991]
 - CBL1: each query of the training set is used to generate a new case
 - CBL2: a case is only generated if the preferred product is not the first
- SIM-CBL1/2: Combination with Similarity Learning
 - learning of feature weights until learning converges
 - then start of CBL1/2
- Evaluation:
 - use increasing number of training queries
 - measure retrieval quality on 250 independent test queries
 - % of retrievals where mpp is the first recommended product
 - % of retrievals where mpp is contained in the result set
 - average rank of mpp

Experimental Evaluation Results: CBL1/2

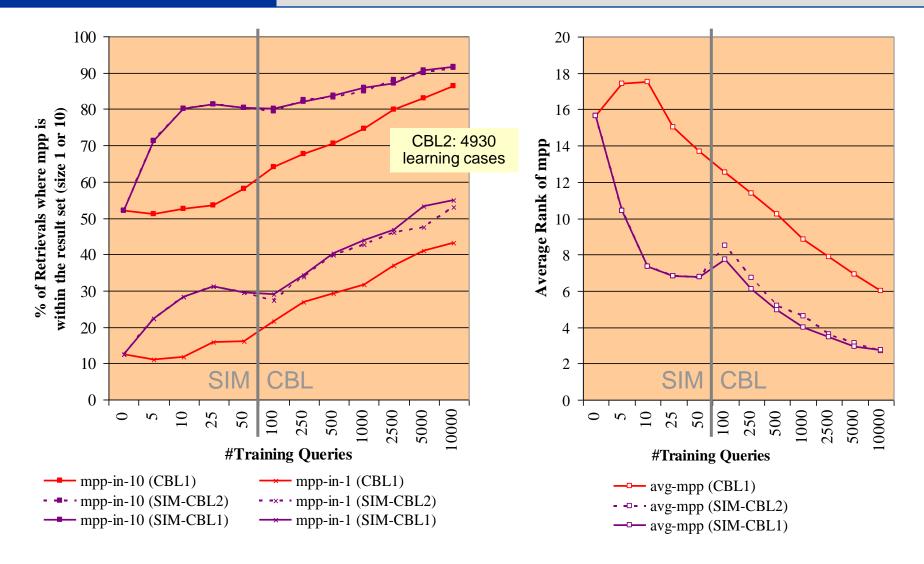


Ar Gr

Experimental Evaluation Results: CBL1/2



Experimental Evaluation Results: SIM-CBL1/2



Conclusion

- Considering Customer Preferences in PRS is important
- State-of-the-Art: Similarity-Based Recommendation
 - requires well-defined and complex similarity measure
- New Approach: Case-Based Recommendation
 - apply "real" CBR to product recommendation (quite unusual today!)
 - enables a PRS to learn customer preferences automatically
 - avoids the necessity of a very complex similarity measure
 - can be integrated easily in existing SBR systems
- Results of First Evaluation
 - outperforms similarity learning if enough training data is available
 - combination with similarity learning leads to best results

Future Work

More Realistic Evaluation

- · customers do not act consistently and deterministically
- simulation of some undeterministic behavior
- Improvements
 - improved case learning strategies
 - remove obsolete or noisy cases (e.g. CBL3 [Aha, 1991])
 - combination with advanced similarity learning techniques
 - e.g. learning of local similarity measures [Stahl & Gabel, 2003; Stahl, 2004]
 - integrating learning of additional product features
 - query features may extend the product features contained in the product database
 - customers may ask for more subtle product properties (e.g. "I want a very sporty car")

Thank You!

Armin Stahl German Research Center for Artificial Intelligence (DFKI) Image Understanding and Pattern Recognition Group

© 2006

Combining Case-Based and Similarity-Based Product Recommendation

Armin Stahl

German Research Center for Artificial Intelligence (DFKI) Image Understanding and Pattern Recognition Group Kaiserslautern, Germany

