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Abstract

Constrained resolution allows the incorporation of domain specific problem
solving methods into the classical resolution principle. Firstly, the domain spe-
cific knowledge is represented by a restriction theory. One then starts with for-
mulas containing so-called restricted quantifiers, written as Vx.g F and 3x.p F,
where X is a set of variables and the restriction R is used to encode domain spe-
cific knowledge by filtering out some assignments to the variables in X. Formulas
with restricted quantifiers can be translated into clauses which consist of a (clas-
sical) clause together with a restriction. In order to attain a refutation procedure
which is based on such clauses one needs algorithms to decide satisfiability and
validity of restrictions w.r.t. the given restriction theory.

Recently, concept logics have been proposed where the restriction theory is
defined by terminological logics. However, in this approach problems have been
assumed to be given as sets of clauses with restrictions and not in terms of
formulas with restricted quantifiers. For this special case algorithms to decide
satisfiability and validity of restrictions have been given.

In this paper we will show that things become much more complex if problems
are given as sets of formulas with restricted quantifiers. The reason for this is
due to the fact that Skolem function symbols are introduced when translating
such formulas into clauses with restrictions. While we will give a procedure to
decide satisfiability of restrictions containing function symbols, validity of such
restrictions turns out to be undecidable. Nevertheless, we present an application
of concept logics with function symbols, namely their use for generating (partial)
answers to queries.
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1 Introduction

Deductive systems which aré based on the classical resolution principle in general do
not allow the incorporation of methods for domain specific problem solving: Firstly, a
set of (first-order) formulas is transformed into a set of clauses by a domain-independent
transformation algorithm. Then these clauses are tested on unsatisfiability by a more or
less blind search. Recently, a logic with restricted quantifiers has been introduced and,
building upon this, constrained resolution allows the incorporation of domain specific
knowledge into the resolution principle ([Bur91l, Biir93, BBH*90, BHL93]). The main
idea behind this approach is to represent domain-specific knowledge in a so-called
restriction theory and to extend the classical quantifiers as follows. If R is a restriction,
i.e. an open formula over the signature of the restriction theory, formulas V(,.rF" and
J(zy:rF are allowed which can be read as “F holds for all elements satisfying R” and “F
holds if there exists an element which satisfies R”, respectively. When transforming
such formulas into clauses one obtains so-called RQ-clauses which are of the form
C'|| R, where (' is a clause and R is a restriction. In order to prove unsatisfiability of
the obtained RQ-clauses set one can use the constrained resolution principle to derive
empty RQ-clauses O || Ry,...,0 || R,. This process is iterated until for each model
of the restriction theory there is a an empty RQ-clause C' || R whose restriction R is
satisfied by that model.

In order to profit from the constrained resolution principle one has to select a
restriction theory that provides both, a powerful language to represent domain specific
knowledge and (efficient) algorithms to decide satisfiability and validity of restrictions.
In this paper we investigate the use of terminological logics as restriction theory. To
represent knowledge of a problem domain in this formalism one starts with given atomic
concepts and roles, and defines new concepts using the operators provided by a so-
called concept language. For several reasons, terminological logics seem to be a good
candidate to define a restriction theory. On the one hand, they have widely been
accepted to be a knowledge representation formalism applicable to a large class of
problem domains. On the other hand, most terminological logics are a decidable and
well-investigated fragment of first-order logics.

Indeed, the use of terminological logics in the constrained resolution principle has
already been investigated in [BBH190] and was called concept logics there. In this
approach problems have been assumed to be given as a set of RQ-clauses together with
a restriction theory, and algorithms for deciding satisfiability and validity of restrictions
have been given. However, problems are usually not given by RQ-clauses but by
formulas (with restricted quantifiers), and we will show that things become much more
complicated in this case. The reason for this lies in the fact that function symbols
may be introduced via Skolemization. We thus need algorithms to test satisfiability



and validity of restrictions containing function symbols, which was not addressed in

[BBH*90).

This paper is organized as follows. In Section 2 syntax and semantics of a logic
with restricted quantifiers are given and the constrained resolution principle is recalled.
Besides from Skolem function symbols, which are introduced by Skolemization, we al-
low RQ-formulas to contain user-specified function symbols. Since all variables in
RQ-formulas are constrained, it is appropriate to take restrictions into account when
interpreting these function symbols and thus each of them may have a function decla-
ration. Section 3 presents the concept language ALC and it is shown how constrained
resolution can be instantiated if the restriction theory is given by the terminological
logic based on this concept language. In [BHL93] we proposed an optimization of the
constrained resolution provided that the restriction theory satisfies a certain condition
which is satisfied when using ALC. That means we do not need to consider RQ-clauses
with arbitrary satisfiable restrictions, but only RQ-clauses whose restrictions satisfy an
additional condition, called constraint unifiability.

In Section 4 we investigate algorithms for testing constraint unifiability and valid-
ity of restrictions containing function symbols. We will present an algorithm to decide
constraint unifiability of a restriction. However, testing validity of a set of restrictions
turns out to be undecidable. Though this result shows that there is no algorithm to
decide whether the derived empty RQ-clauses are sufficient to prove unsatisfiability
of an RQ-clause set, there is an interesting application of concept logics with func-
tion symbols which is presented in Section 5, namely using concept logics for query
answering. The main idea of this approach is to translate facts and a negated query,
both given as RQ-formulas, into a set C of RQ-clauses. Each restriction R of a derived
empty RQ-clause can then be read as an answer “the query is successful whenever R
1s satisfied”.

1.1 Related Work

The idea of clauses with restrictions has already been introduced by Hohfeld and Smolka
[HS88] who did not aim at a refutation procedure, but at query answering for logic
programming. The basis of our work is [Bir91], [Biir93] where a logic with restricted
quantifiers and the constrained resolution principle have been introduced. Constrained
resolution generalizes several approaches of building in theories into resolution based
deduction systems. An important example for building in such theories are sorted

logics (see, e.g., [Obe62], [Wal87], [Wal88], [Sch89], [W090], [Coh92], [Wei92]).

The use of terminological logics as restrictions, so-called concept logics, has been
discussed in [BBH*90]. In that approach, problems have been assumed to be given as a
set of RQ-clauses without function symbols, together with a terminological restriction



theory. For this case, algorithms for deciding satisfiability and validity or restrictions
have been given.

The transformation of formulas with restricted quantifiers into a set of RQ-clauses
while preserving satisfiability has been given in [BHLY3]. Building upon this trans-
formation procedure a refutation procedure for formulas with restricted quantifiers
is given there, which is instantiated for concept logics with function symbols in the
present paper.

2 A Logic with Restricted Quantifiers

In this section we recall a logic with restricted quantifiers (RQ for short). Syntax and
semantics of RQ-formulas are given in Subsections 2.1 and 2.2, respectively. Subsection

2.3 introduces a resolution principle for RQ-clauses.

2.1 Syntax

A signature ¥ consists of three pairwise disjoint sets of symbols: a set Fy of function
symbols, a set Vi of variables, and a set Py of predicate symbols. The notions of
(ground) terms and formulas are defined as usual. Given a formula F* with exactly the
free variables x;,...,x,, then VI denotes the universal closure Va,...Vz,F of F
and 3F denotes the existential closure 3, ... 3z, F of the formula F.

We now introduce restricted quantification systems (RQS) to represent domain
specific (or background) knowledge and RQ-signatures which extend an RQS by fore-
ground language symbols. An RQS consists of three parts, that is, a signature A, a set
of (open) A-formulas, which define the syntactically allowed background formulas, and
a restriction theory, which represents the possible interpretations of the restrictions.

A restricted quantification system (RQS) R consists of

e a signature A with equality,

e aset of (open) A-formluas, the restriction formulas or restrictions which are
closed under conjunction and instantiation of variables, and

e a theory over A, the restriction theory.
The restriction theory can be given either as a set of axioms or as a set of A-

structures. Note that in the latter case the restrictions need not have a first-order
axiomatization.



A signature with restricted quantifiers or an RQ-signature ¥ consists of an
RQS R together with an additional set of predicate symbols Py and an additional set
of function symbols Fy, both disjoint from the symbols of A of the RQS. In order to
simplify our notation we will use the prefix “X-” if we denote objects—terms, atoms,
formulas, etc.—that are built upon symbols out of Fy, and Px, and variables out of Vx
only.

Given such an RQ-signature ¥ we now define formulas with restricted quantifiers
w.r.t. ¥. Therefore we allow quantifiers to be indexed not only by variables, but by

pairs of a variable set X and a restriction formula R. These extended quantifiers are
written as Vx.r and Jy.g, and we call them restricted quantifiers. Note that the

restrictions represent background information and the ¥-formulas foreground informa-
tion, respectively. We define RQ-formulas over ¥ by

1. all ¥-atoms are RQ-formulas,

2. Vx.pF and Jdx.gF are RQ-formulas, where F' is an RQ-formula, R is a restriction,
and X contains at least the free variables in R,

3. FAG, FVG,-F, F — G, F & G are RQ-formulas, where F', G are RQ-formulas,

and z is a variable.

In the second definition the formula F' may contain free variables of X that are now
bounded by the restricted quantifiers Vx.gr or dx.gr. The formula R is called the re-
striction for the variables of X and can be seen as a sieve that filters out the possible
assignments of elements to these variables.

An RQ-clause (or constrained clause) consists of a Y-clause (', the so-called
kernel, together with a restriction R. Such a clause, written as C' || R, represents the
RQ-formula Vx.rC', where X contains exactly the free variables in C' and R. If C is
empty we call it an empty RQ-clause, written as O || R.

Without loss of generality we can assume that the set Fy of foreground function
symbols is empty. We can always achieve this by modifying an RQS as follows: the first
step is to extend the background signature A by the symbols in Fy. But after doing
this we are neither allowed to use these symbols in our foreground language (since Fy
is empty now), nor to use them in a restriction, because the set of restrictions does not
contain any formula over these function symbols up to now.! Of course, we want to be
able to express the same facts before and after the extension of Fn. To guarantee this
we use unfolding, i.e., we replace every Y-term, e.g. f(z), by a new variable z, and
then we enlarge the set of restrictions by the equation z = f(x). Therefore the second

INote that the original signature A of the RQS did not contain any of these additional function
symbols, and restrictions are (open) formulas over this original signature A.



step is to extend the set of restrictions such that it contains in addition all equations
of the form x = t, where x is a variable and t is a ¥-term.

2.2 Semantics

We first recapitulate the semantics of first-order formulas (with equality) by using -
structures and Y-assignments. Then we extend these Y-structures to RQ-structures,
which gives a semantics of RQ-formulas.

Let ¥ be a signature. A Y-structure A consists of a non-empty universe U4 and
maps each n-ary function (predicate) symbol to an n-ary function (relation). A X-
assignment « maps each variable = € Vi to an element u € /. This mapping is
extended to terms as usual: if + = f(ty,...,1,) is an arbitrary term, then we define

o f ity » o atn)) 1= fAleltr),: - 0ty ).

Satisfiability of formulas without restricted quantifiers is defined as usual. We
write (A, a) | F if F is satisfied by the Y-structure A and the Y-assignment a. A
Y-structure A is a ¥-model of a formula F', written A |= F, if and only if (A, ) |= F
holds for every S-assignment . A formula F' is called valid if and only if every -
structure A is a ©-model of F'. Two formulas are equivalent iff they have exactly the

same models.

To simplify our notation we will use some abbreviations: Flzy,...,z,] denotes a
formula F that contains at least the free variables x4, ..., x,. With F[z « t] we denote
the formula which is obtained from F by replacing every free occurrence of the variable
x by the term #. Analogously, F'la, « t;,...,x, « 1,] denotes the replacement of every
free variable z; by the term #;, ¢ = 1,...,n. If v is an element of the universe, then

to 2. As above, this abbreviation is extended to a[z, —u;,...zn—un], Where z1,..., 2, and
uy,...,u, are variables and elements of the universe, respectively.

The semantics of restricted quantifiers can be given by relativization, that is, one
can transform any RQ-formula into an equivalent first-order formula by replacing

Vyx.rEF by Ve,...Vz,(R — F)
dx.rF by Jey ...z, (RAF)

where X = {x;,...,2,} is a set of variables.

We will use an alternative characterization which maintains the separation of fore-
ground and background symbols. Let ¥ be an RQ-signature over the RQS R. An
RQ-structure over ¥ is a Y-structure A such that the restriction of A to A, writ-
ten A|a, is one of the A-models in R. As we assumed that ¥ introduces only new
predicate symbols but no function symbols, we obtain the different RQ-structures by



expanding every model of the restriction theory with all possible interpretations of
theses new predicate symbols. If the restriction theory is given by a A-axiomatization,
RQ-structures are exactly those structures that satisfy the axioms of R, considered as
formulas over the extended signature.

Let A be an RQ-structure over the RQ-signature ¥, a be a Y-assignment, and
X = {z1,...,2,} be a set of variables. RQ-satisfiability of an RQ-formula F is
defined as an extension of the satisfiability of first-order formulas by:

(A, ) |=EVx.rF iff forall uy,...,u, € UA with
(A'Ava[zu—ul ..... xn<—un]) |: R holds
('Aaa[ru—u,...,xnhu,.]) ': i

(A,a) = 3x.rF iff there are u,,...,u, € U4 such that

,,,,, Saai]) B and

Tne—Un) ) ": V

.....

A closed RQ-formula F' is RQ-satisfiable if and only if there is an RQ-structure
A such that (A,a) E F for each ¥-assignment a. In this case, A is a ¥-model
of I, written A = F. The RQ-formula F' is called RQ-valid if and only if every
RQ-structure A is a ¥-model of F'.

Given a restriction R, we say R is RQ-satisfiable if and only if there exists an
RQ-structure which satisfies the existential closure of R (that means iff there exists a
A-model in R that satisfies 3 R). Analogously, a restriction R is called RQ-valid if
and only if the existential closure of R is satisfied by each RQ-structure.

2.3 RQ-Resolution

Given a set C of RQ-clauses we need an appropriate resolution calculus, which allows
one to check C on RQ-unsatisfiability. Such a calculus is given in [Biir91] and consists
of two rules, called RQ-resolution and RQ-factor rule. Using a predicate redundant (cf.
[BHL93]) generalized forms of these rules have been given, namely

RQ-resolution rule (RR)

pley, . 2 PGV O R
<l iRV RN NP H S
GV e W Dy s v AL AR RO B

if not redundant (RASAT)

where I' is the conjunction of the equations z; = y;, 1 =1,...,n.

The inferred RQ-clause is called RQ-resolvent.



RQ-factor rule (FR)

1

p(zd, . oyad YV oo iv plad . 0zl ) v Oe V. ooV Gyl R
1
¥

1
_ if not redundant (R A
p(zl,. .., 2 VO V.. VO |[RAT if not regungant (ALY

where I is the conjunction of the equations ! = z/,7=1,...,nandj =2,...,m.

The inferred RQ-clause is called RQ-factor.
If C|| Ris an RQ-clause, then redundant (C'|| R) is true iff this RQ-clause is

redundant to prove RQ-unsatisfiability of a set of RQ-clauses.? Thus, given a fixed
RQS, the predicate redundant has to be instantiated in an appropriate manner in order
to guarantee refutation completeness of the RQ-resolution principle. For example,
one can instantiate this predicate by redundant (C || R) iff R is RQ-unsatisfiable. In
this case, refutation completeness is guaranteed for arbitrary restricted quantification
systems (see [Biir91]). Another instantiation of this predicate will be presented in
Section 3.

For sake of simplicity we will sometimes use constant symbols in the kernels of RQ-
clauses, though we assumed that the foreground language introduces new predicate
symbols only.? For example, we simply write

q(a,y) || p(y) instead of g(x,y) ||z =a N p(y).

An RQ-resolution step C — C’ transforms a set C of RQ-clauses into a set C’ by
either choosing two suitable clauses in C and adding their RQ-resolvent, or by adding
an RQ-factor to C. An RQ-derivation is a possibly infinite sequence Co — C; — C; —

. of RQ-resolution steps. An RQ-refutation of a set Cy of RQ-clauses is an RQ-
derivation which starts with Cy and satisfies the following condition: For each model
A of the restriction theory there is an RQ-clause set C; in the derivation containing
an empty clause O || R, whose restriction is satisfied by this model, i.e. A = JR. In
contrast to the classical resolution principle we need in general more than one empty
RQ-clause to prove the RQ-unsatisfiability of an RQ-clause set (cf. [BHL93]).

3 Concept Logics

Terminological logics have are used as a knowledge representation formalism in Arti-
ficial Intelligence. To represent knowledge of a problem domain in this formalism one

2Cf. the classical resolution principle where tautological clauses are redundant to prove unsatisfia-
bility of a clause set.

3Note that in Subsection 2.1 we required the set Fyx of additional foreground function symbols to
be empty.



starts with given atomic concepts and roles, and defines new concepts using the oper-
ations provided by a so-called concept language. Thereby, concepts can be considered
as unary predicates which are interpreted as sets of objects, and roles as binary predi-
cates which are interpreted as binary relations between objects. Examples for atomic
concepts may be woman or queen, and for roles likes-the-same-clothes-as. The use of
terminological logics in restrictions of RQ-formulas is called concept logic.

In this section we will present the terminological logic which uses operators of a
distinguished concept language, called ALC. This logic has widely been accepted to be
an adequate knowledge representation mechanism for a large class of problem domains,
and it is a decidable and well-investigated subclass of first-order logics. In Subsection
3.1 we introduce syntax and semantics of the language ALC. In 3.2 syntax and seman-
tics of function declarations are given, while 3.3 presents a restricted quantification
system over ALC. A refutation procedure for concept logics, which is an instantiation
of the general refutation procedure presented in [BHL93], is given in Subsection ?7.

3.1 The Concept Language ALC

The concept language ALC provides two formalisms to describe a particular problem
domain: a terminological formalism to represent taxonomical knowledge by defining
concepts, and an assertional formalism which can be used to describe concrete objects.
Therefore we assume in the following a signature A = (Fa, Va, Pa) to be given, where

e F5 consists of a set of function symbols,
e V), consists of a set of variables, and

o P, consists of a set of unary predicates (atomic concepts), the symbols T and
L, and a set of binary predicates (roles).

In ALC, concepts can be built up from atomic concepts, the top concept T, the
bottom concept L, and roles with the help of the operators M (concept conjunction),
U (concept disjunction), = (concept negation), V R.C' (value-restriction), and 3 R.C
(exists-restriction) as follows:

1. Each atomic concept, T, and L are concepts.
2. If C and D are concepts, then C 11 D, C' U D, and —~C' are concepts.

3. If C is a concept and R is a role, then V R.C' and 3 R.(' are concepts.

Let A be a A-structure. Then the semantics of roles and concepts is given by

10



e A4 C U4 for each atomic concept A in Pa.
e RACUA x U# for each role R in P .
e TA=UAand LA =0.

[CnDA=CAnD4 [Cu DA = €A DA, and [HCA = UAN-GA

The value- and exists-restriction are interpreted by

VR.CA {ueUA|Vu': (u,u') € RA = u' € C4}
[BR.CIA = {ueU* | : (u,u') € RAANY € CA)

where R is a role and (", D are concepts.
p

Using these operators, we can, e.g., define the concept of women who like the same
clothes as a queen by : woman M 3 likes-the-same-clothes-as.queen, if woman and queen
are atomic concepts, and likes-the-same-clothes-as is a role. In 3.3 we will show how
to use concepts to restrict the possible assignments to variables by quantifying over
elements in a given concept only.

Note, that concepts can be seen as first-order formulas (without equality) with one
free variable. For example, the concept V R.C' represents the formula Vy (R(x,y) —
C(y)) where @ is a free variable.

In the following we will sometimes need a concept C' to be in negation normal
form, i.e., negation signs in (' only occur immediately in front of atomic concepts. It
is easy to show that each concept (" can be transformed into an equivalent concept in
negation normal form. For example, =V R.C' is rewritten as 3R.~C (cf. [Hol90]).

The terminological knowledge of a problem domain can be defined by a terminol-
ogy (TBox) which consists of a finite set of terminological axioms, i.e., expressions
of the form A = (" where A is an atomic concept and C' is a concept. For example, if
woman, person, and female are atomic concepts we can define “men are persons who
are not female” by the terminological axiom

man = person 1 ~female.

If child is a role we then can describe “not female persons with only female children”
by the expression man M V child.female. That means, terminological axioms allows
one to define abbreviations for concepts, and hence helps one to keep the definitions of
concepts simple. However, for reason of simplicity of presentation we do not consider
terminological axioms, i.e., we assume each concept only to be built up by atomic
concepts and roles but not by abbreviations for concepts. This assumption does not
influence expressive power. For technical details see, e.g., [Hol90].

11



The assertional formalism of ALC allows us to introduce concrete objects by
stating that they are instances of concepts and roles. Thereby, each ground term over
F, is called an object. For example, if John is a constant, and father is a unary
function symbol in Fj, then John as well as father (John) are objects. In general, only
constants are allowed as objects in the concept language ALC. But this view is not
sufficient for us since, by Skolemization, function symbols may occur in the restrictions
of RQ-clauses (cf. Section 3 in [BHL93]). The assertional formalism is given by concept
instances and role instances which are defined as follows:

1. If 0 is an object and C' a concept, then o : C' is a concept instance.

2. If 0 and o’ are objects and R is a role, then oRo’ is a role instance.

A A-structure A maps objects to elements of the universe U4 and satisfies o : ' iff
o2 € C4, and oR0' iff (OA,OIA) € RA. Concept instances and role instances are called
assertional axioms. A finite set of assertional axioms is called an ABox. We say an
ABox A is consistent iff there exists a A-structure A which satisfies every axiom in

A, written as A = A.

With these axioms we can, e.g., define that Elizabeth is a queen and that Mary
likes the same clothes as her mother by

Elizabeth : queen and
Mary likes-the-same-clothes-as mother (Mary)

respectively.

3.2 Function Declarations

By definition, RQ-formulas may contain n-ary function symbols. Consider, for example,
the RQ-formula
v

where human is a unary restriction, male is a predicate, and father a function symbol.
Up to now we interpreted these function symbols free, i.e., we assumed a ¥-structure
A to map each n-ary function symbol f to a function fA : UA x...x U4 +— UA, where
U# is the universe of A. Indeed, since all variables in RQ-formulas are constrained, it
is appropriate to take restrictions into account when interpreting function symbols. In
the above example it is more intuitive to define the unary function symbol father to

{Iv}:humanma]e(father(x))

map from human to human instead of mapping arbitrary elements of the universe to
the universe.

Thus, we extend the restriction theory by function declarations for the function
symbol occurring in RQ-formulas. If f is an n-ary function symbol and Ry,..., R,, R



are restrictions, a function declaration is of the form
Fo Ry X oo \Ry ' R,

We assume that there is exactly one declaration for each function symbol. A straightfor-
ward semantics of these function declaration could be defined by Vz, ... Vz,, (Rl(ml) A

A Rn(:cm)) — R(f(xy,...,2,)). We additionally assume the range of a function to
be non-empty what strongly simplifies the algorithm for testing satisfiability of ALC
restrictions (cf. 4.3). More formally, a E-structure A satisfies the function declaration

f: Ry x...x R, — Riff Asatisfies

L. V21 ... V2 (Ri(21) A ... A Ro(em)) = R(f(21,...,%m)) and
2. R#0.

In [BHLY3] a method for transforming a set of RQ-formulas into a set of RQ-clauses
while preserving RQ-satisfiability has been described. In this transformation restricted
existential quantifiers are eliminated via Skolemization. Thereby, for each n-ary Skolem
function symbol f a Skolem declaration is added to the restriction theory. A Skolem
declaration is of the form

(R#0) > f: Ry x...x R, — R

where Ry,..., R,, R are restrictions (cf. 3.2 in [BHL93]). A EY-structure A satisfies this
Skolem declaration iff

1. A satisfies R = () or

2.AsmmﬁwVm.“Vm&Rﬂu)A”.ARALU)—+RU@3P“,Lﬂy

When looking at the transformation of RQ-formulas into a set of RQ-clauses, the
following property can easily be shown.* If C'|| S is an RQ-clause where S contains a
Skolem function symbol f with the Skolem declaration (R # 0) — f: Ry x...x R, —

R, then S contains a conjunct R # (), where R # () is an abbreviation for the formula
Jdz R(z). For example, the transformation of the RQ-formula

v{.1.'}:1213{1/}:% P(Tay)
results in the RQ-clause set

P(-T,?/) ” Rl(x)/\y:fSkalem(m)ARZ#w
O || Ri(z)ARy=0

4Cf. quantifier splitting (Subsection 3.1) and Skolemization procedures (Subsection 3.2) in [BHL93].
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and an extension of the restriction theory by the Skolem declaration

(RQ # m) = fSkolem : Rl F=h RZ-

That means, whenever there is an RQ-clause whose restriction contains a function
symbol or a Skolem function symbol with range R, we only have to take ¥-structures A
with R4 # () into consideration when testing satisfiability or validity of this restriction.

3.3 A Restricted Quantification System over ALC

In this subsection we show how the concept language ALC can be used to define a
restricted quantification system RQS. We therefore have to say how the signature, how
the restrictions, and how the restriction theory are to be defined.

Firstly, in order to use concepts as restrictions we allow restricted quantifiers of
the form V;y.c and J(;}.c where C is a concept, i.e., a unary predicate. This leads
to restrictions of the form z : ' where z is a variable. Secondly, we assumed the
set Fy of foreground function symbols to be empty (see Subsection 2). This can
always be obtained by unfolding and leads to restrictions of the form y = f(ty,...,t,),
where y is a variable, f is a function symbol, and t,,...,t, are terms. Finally, when
transforming RQ-formulas into a set of RQ-clauses restrictions of the form €' = §) and
C # () are introduced which are abbreviations for the closed formulas Yz =C(z) and
Jz C(z), respectively. This is the third kind of restriction we take into consideration.
In the following definition of an RQS over ALC these three types of restrictions are
introduced.® We thus obtain the following definition of a restricted quantification
system over ALC which is given by

e A signature A = (Fa,Va, Pa) as described above.

e A set of restrictions which are A-formulas of the form

z:(C (containment)
y = f(t1,...,1,) (equational restriction)

C=0,C#0 (closed restriction)

where C is a concept, x,y are variables, and t;,...,t, are A-terms. These re-
strictions are called ALC-restrictions. Note, that we assumed restrictions to be
closed under conjunction and instantiation of variables.

e A restriction theory which is given by an ABox A and a set F' of declarations,
i.e. function declarations or Skolem declarations, such that

5Note, that RQ-formulas must not obtain restrictions of the form C' = @ or C' # 0. Furthermore,
equations in restrictions of RQ-clauses can only be of the form y = f(t1,...,t,) where y is a new
variable. This is due to the fact that equations are introduced only by unfolding.
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1. each Skolem function symbol in Fa has exactly one Skolem declaration in
F', and

2. each function symbol in Fa which is not a Skolem function symbol has
exactly one function declaration in F'.

Thus, a A-structure A is an RQ-structure iff it satisfies A and each declaration in F'.
We then write A =AU F.

3.4 Constrained Resolution applied to Concept Logics

In this subsection we will show an important property restricted quantification systems
over the concept language ALC have, namely that the redundant predicate of the RQ-
resolution and the RQ-factor rule can be instantiated by constraint unifiability, which
will be defined below.

In [BHL93], a general refutation procedure for a set of RQ-formulas has been pre-
sented. The main idea of this refutation procedure is as follows. Firstly, the RQ-clauses
are transformed into a set of RQ-clauses while preserving RQ-satisfiability. To prove
RQ-unsatisfiability of an RQ-clause set C then the RQ-resolution and the RQ-factor
rule are used which successively add new RQ-clauses to C. This process is iterated
until a set of empty RQ-clauses O || Ry,...,0 || R, is derived such that B, V...V R,
is RQ-valid.

In the same paper it has been shown that constraint unification can be used to
instantiate the redundant predicate of the RQ-resolution and the RQ-factor rule if the
RQS satisfies a certain condition, called (TM). Let R=FE;A...AE, AN A... NNy,
be a restriction, where Fy,..., E, are the equational restrictions in R. Then R is
constraint unifiable with substitution o iff there exists an RQ-structure A and a
Y-assignment « such that

1. By A...A E, is unifiable with o, and

2. (A,a) EoNiA... NaNy,.

If the restriction R is constraint unifiable with o we call o a constraint unifier
of R. If a constraint unifier o is a most general unifier of the equational restrictions in
R we call o a constraint mgu of R. We say R is constraint unifiable iff there is a
substitution o such that R is constraint unifiable with o.

Example 3.1 Let A and B be predicate symbols of a background signature A, and let
R be the restriction (y = f(x)) A A(x)A B(y), where f is a function symbol. Obviously,
the only equational restriction in R, y = f(z), is unifiable with mgu o = {y « f(z)}.
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1. Let f have the function declaration f : A — —B. Since function declarations are
part of the restriction theory, each RQ-structure A has to satisfy f : A — B,
ie., fA(u) € BA if u € AA. By definition, R is constraint unifiable with o
iff there exists an RQ-structure A and a A-assignment a such that (A, «)
o(A(z)) A o(B(y)). This is the case iff a(z) € A% and fA(a(x)) € BA. Because
of the function declaration such a pair (A, «) cannot exist, i.e., R is not constraint
unifiable with o.

2. If f has the function declaration f : A — A, then R is constraint unifiable with o
iff there exists an RQ-structure A and a A-assignment a such that a(z) € A4 and
fA(a(z)) € BA. Because of the function declaration we know f4(a(z)) € A4 if
a(z) € AA. Thus R is constraint unifiable with o if there exists an RQ-structure
A such that A4 N BA #£ (). |

In order to formulate the condition (TM) we need the notion of a term-model. If
S is a set of formulas over some signature A, then A is a term-model of S over A
iff A =38, all elements in the universe U4 are interpretations of A-ground terms, and
two different A-ground terms denote different elements in U#.

The property (TM) the RQS has to satisfy is given by: Let 7 be a satisfiable
restriction theory and let Ry,..., R, be a set of restrictions, then (TM) is defined by

5 B dtR, el VRS
(TM) iff
there exists a term-model A of 7 such that A =3(R, V...V R,)

The following theorem, proved in [BHL93], shows the connection between condition
(TM) and constraint unifiability.

Theorem 3.2 Let T be a satisfiable restriction theory, and let Ry, ..., R, be a set of
restrictions such that

1. T does not contain (explicitly or implicitly) equations.

2. Fach restriction R; can be written as FE; N N;, where E; is a conjunction of
equations and N; does neither contain (explicitly or implicitly) equations nor
disequations.

Then T and Ry, ..., R, satisfy condition (TM).

In an RQS over ALC the restriction theory is given by an ABox A together with
a set F of declarations. Obviously, neither A nor F' contain (explicitly or implicitly)
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equations since A consists of concept and role instances and F' of (Skolem) function
declarations only.® Furthermore, each ALC-restriction R is given as a conjunction of
containments x : ', closed restrictions C' = 0, C' # 0, and equational restrictions
y = f(t1,...,t,). Hence, each ALC-restrcition can be written as £ A N where F is a
conjunction of equations and N does neither contain (explicitly or implicitly) equations
nor disequations. Thus, by the above theorem, we know that an RQS over ALC satisfies
condition (TM).

We therefore can apply the next theorem, also proved in [BHL93], which tells us
that only RQ-clauses with a constraint unifiable restriction need to be derived in order
to test RQ-unsatisfiability of an RQ-clause set with ALC-restrictions.

Theorem 3.3 Let A be a signature, let T be a satisfiable set of A-formulas, and let
Ry, ..., R, be restrictions such that condition (TM) is satisfied. If each restriction
R; is given by By N ONE NN N Goo NNy nhere By L By, are the equational
restrictions in R;, and if each conjunction E; N ... N E;_ s unifiable with the mgu o;,

then T = 3(RyV...VR,) iff T =31 N1 V... Vo, N,).

Summing up, if we use restricted quantifiers V,y.c and 3. where (7 is a con-
cept,-a set § of RQ-formulas can be tested on RQ-unsatisfiability as follows. Firstly,
S is transformed into a set C of RQ-clauses while preserving RQ-satisfiability. An
algorithm for this is described in Section 3 of [BHL93]. Then C can be tested on RQ-
unsatisfiability via constrained resolution, where only RQ-clauses with a constraint
unifiable restriction need to be considered. We thus obtain an instantiation of the
general refutation procedure in Section 4 of [BHL93] which is given in Figure 1.

The problems of how to test constraint unifiability of an ALC-restriction and how to
check RQ-validity of a set of ALC-restrictions will be investigated in the next section.

4 Testing Constraint Unifiability and RQ-Validity
of ALC-Restrictions

In order to give an algorithm which tests constraint unifiability of an ALC-restriction
we use the notions of containment sets and (admissible) containment combinations,
which are given in Subsection 4.1. We will show that testing constraint unification can
be reduced to a top consistency test of a given concept Dy, i.e., to a test whether there

6Usually, objects are assumed to satisfy the unique name assumption, i.e., different objects are

mapped to different elements of the universe. However, if A is a model of an ABox A, there exists a

model A’ of A which satisfies the unique name assumption (and vice versa). This is due to the fact

that cardinality of C4 cannot be restricted in ALC for a concept C. Thus, if 0% = ot =ue UA
o )

one can extend U# by a “duplicate” u’ of u and define o uand o'? =
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Input: A set S of RQ-formulas and a restriction theory 7 which is given by
an ABox A and a set of declarations

Output: RQ-unsatisfiable iff § is not RQ-satisfiable

RQ-satisfiable or the algorithm does not terminate, else
Initializing

Transform S into a set C of RQ-clauses while preserving RQ-satisfiability as
described in Section 3 of [BHL93], and let 7' be the modified restriction theory.
Remove an RQ-clause C' || R from C if R is not constraint unifiable.

Testing

1. If 0| Ry,...,0|| R, are empty RQ-clauses in C such that Ry V...V R,
is RQ-valid w.r.t. 77, then return RQ-unsatisfiable.

2. If there is an RQ-clause to which the RQ-factor rule (FR) is applicable,
but has not yet been applied, then apply the RQ-factor rule to this RQ-
clause and add the RQ-factor to C.

3. Find two RQ-clauses which can be resolved against each other by the
RQ-resolution rule (RR) (of course the two RQ-clauses have to be chosen
by a fair strategy). If there does not exist such a pair of RQ-clauses,
return RQ-satisfiable. Otherwise, add the RQ-resolvent to C (after an
appropriate variable renaming) and goto 1.

Figure 1: The refutation procedure.

exists a X-structure A such that D' = T4 (= U#). An algorithm for this test is given
in Subsection 4.2. Building upon this, an algorithm for testing constraint unifiability of
an ALC-restriction is given in 4.3, and its termination, correctness, and completeness is
proved. Finally, in 4.4, we show that validity of a set of ALC-restrictions is undecidable.

4.1 Admissible Containment Combinations

Suppose we want to test constraint uniafibility of an ALC-restriction R. By definition,
R can be written as F;A...AE, AN; A... AN,, where F,,..., E, are the equa-
tional restrictions in R. We then have to test whether (z) the equations FE,..., E,
are unifiable and (22) if Fy,..., F, are unifibale and o is the most general unifier of
E,,..., E, we furthermore have to test whether there exists an RQ-structure A such

that AEoN; A... NoN,,.
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Algorithms for testing unifiability of a set of equations £y, ..., E, and for comput-
ing the most general unifier o of Fy,... | E, are well-known. Thus, we still need an
algorithm for testing RQ-satisfiability of the restriction e Ny A... Ao N,,. That means.
we need an algorithm for testing the existential closure of conjunctions of A-formulas

on RQ-satisfiability which have the form

o /:(C
o U=0,C#0

where t is a A-term, and (' is a concept. Restrictions of this form are called equation
free restrictions.” Thereby. restrictions of the form ¢ : (" arise from containments
x : (' by unifying the variable &« with a term f. e.g..in o : C Ao = f(y).

There are two straightforward possibilities to simplify equation free restrictions.
Firstly, for testing RQ-satisfiability of the existential closure 3R of an equation free
restriction R it is sufficient to test RQ-satisfiability of the restriction R’ which arises
from 3xR by removing the quantifier Jr. replacing each occurrence of &+ in R by a
new constant a, and adding the function declaration a :— T to the set [ of function
declarations. The restriction R’ is then called the ground version of K.

Analogously. we can assume that the ground version of an equation free restriction
does not contain closed restrictions of the form (" # (. Note. that a restriction of the
form RAC # (0 is equivalent to (R A w: (') and thus to R A« : (" where a 1s a new
constant.

For example, testing RQ-satisfiability of the restriction f(r.y): ~DAxr: DA B #
O A E =0 is equivalent to testing RQ-satisfiability of the restriction f(a.b): =D Aa :
DAc:BAE =10 where a,b, ¢ are new constants.

Thus, we assume in the following restrictions to be given by conjunctions of -
formulas which have the form / : (" or (" = {0 where  is a ground term and (" is a
concept. For testing constraint unifiability we now need an algorithm which tests such

restrictions on RQ-satisfiability.

In order to guarantee that the the range of cach function which has a function
declaration in [ is non-empty (cf. semantics of function declarations). we assume in
the following that an ABox A contains a containment « : (" for each function declaration
f:Cy x...x Cy— Cin I7.1f this is not the case. we extend A by a : (7 where a is a
new object. Because of the semantics of function declarations this does not influence
RQ-satisfiability.

"Note that (! = 0 and (' # 0 are abbreviations for the A-formulas Ve=('(r) and 3rC(r),
respectively.
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We are now going to give such an RQ-satisfiability algorithm, the main idea of
which is as follows. Suppose a containment f(#;...., t,) : D and a function declaration
f:Cyx...xC,— C tobe given. Then, a A-structure A satisfies both, the function
declaration and the containment iff

e ey =100, n implies [f(ty,.... L. e O2

Thus. in order to find a A-structure A which satisfies f(¢;,...,t,) : D w.r.t. the
function declaration f : ('; x...x (', — C, we can do the the following. Firstly, for each
argument t, of f we choose non-deterministically whether t2 € C# or t# € [~C;]* holds.

Analogously. we decide non-deterministically whether or not [f(#y,... tn)]A R
holds. The only restriction on these decisions is: If we choose fA € (C; Afori=1,...,n,
then we choose [f(#;..... e CA

Now suppose. we made such decisions t# € CA where C; is either C; or ~Cj,

and. ffti.; oo t.) : C where C is either C' or =(C'. Then there exists a A-structure
which satisfies both. the containment f(t,..... t,) : D and the function declaration
f:Cy x...%xCy -, C.3f the restriction

s s A i Oy i scvhs « T LA E b sbels B
1s satisfiable.

Let us define this more formally. If A is an ABox and R is a restriction, then the
term set of A and R is given by the set all (sub)terms in A U {R} with a leading
function symbol. For example if Ris given by a: AA f(b,g(c)) : B, the term set of R
is given by {a. f(b.g(c)). b, g(c).c}.

For each term # in a function term set .S we now construct a non-deterministic
concept set ncs(t) of # (w.r.t. §). The intuitive idea of a set ncs(t) is to determine all
concepts C' for which we non-deterministically have to decide whether t € (' or t € ~C
(restrictions on the possible decisions are formulated below). These sets are defined by

1. If t is a constant with the function declaration t :— (' or with the Skolem decla-
ration (C # 0) — ¢ :— C, then nes(t) := {CYU{D; | g(t1,... . tic1, ttigr, ..., 10)
is a term in S and ¢ has the function declaration ¢ : Dy x ... x D, D or the

Skolem declaration (D #0) — ¢g: Dy x ... x D, D}.

2. If tis a term f(#,,...,1,) where f has the function declaration f : C) x ... x
C,. — C or the Skolem declaration (€' # ) — f: ), x ... x C,, — C, then
nes( e YT el Tl B B, 0 B B & derin in S rand 9y bas
the fun(,tmn declaration ¢ : Dy x ... x D,, — D or the Skolem declaration

(D#0)—g:Dy «...xD,— D}

20)



Obviously, the non-deterministic concept set of each term t in a term set 1s not empty.
Let now S be a term set and let for each term ¢ in S the non-deterministic concept
set be given by ncs(t). Now we represent the non-deterministic decisions for ¢ in so-

called containment sets. If, for some term ¢ in S, ncs(t) = {A;,...,A,} then each
set {t : Ap,...,t : A,} is called a containment set of t (w.r.t. S) if each A; is
either A; or —A;. For exam])le if nes(f(a {B C} then {f 1B, fla) : C},
{f(a) : =B, f(a) : C}, {f(a) : B, f(a) : ﬂ(} {f(a) : =B, f(a) : ﬂ(/‘} are all the

containment sets of fla).

A set which consists for each term t in a term set S of one containment set is
called containment combination of S. More formally, if ¢, ..., are exactly the terms
in S and cont (1;) is a containment set of #;, then the set {cont(t,),..., cont(t,)} is
called a containment combination of S. Finally, we are not interested in all possible
containment combinations, but only in those combinations which are compatible with
the declarations in /: A containment combination C is an admissible containment
combination iff for each term f(#,,...,1,) in S holds: if f has the function declaration
PLap N L i AR N P R 90 O 48 10C O = 10N D then O EH 13V 80 SR
in C. Observe that if @ is a constant with the function declaration a :— (', each
admissible containment combination contains a : (!. Furthermore, if a Skolem function
symbol fs occurs in a term set of an ABox A and a restriction 2, this Skolem function
symbol occurs in R but not in A. Let now the Skolem declaration of fg be given by
(D # 0) - fs: Dy x...x D, — D (n >0). Then the restriction R contains a
conjunct D #  (cf. Subsection 3.2). Thus, for testing satisfiability of R w.r.t. A and
F we only have to consider Y-structures A such that DA # (.®

Example 4.1 Let the set I’ contain the function declarations

f:AxBw(C
g: "B~ D
a— T
hise=s T .

Furthermore, let an ABox A be given by {a : A, f(b,¢(b)) : ('} and a restriction R by
F(bg(B)): BAg(b): E

Then the term set S of A and R is {a, f(b,g(b)), b, g(b)}. The non-deterministic concept
set of the terms in .S are given by:

ncs(a) o an

(
ncs(b) = {T,A,~B}
nes(g(h)) = {B,D}
nes(f(bg(5)) = {C)

8Thus, as an optimization, admissible containment combinations could be defined such that they
contain fs(t1,...,t,) : D whenever fs appears in a term set and has the Skolem declaration (D #£
M) — fs:Dy x...x Dy — D.



Now the set
{a:T,b:T,b: Ab:~B,g(b): B,g(b): D, f(b,g(b)) : C}
is an admissible containment combination, while the set
{a:T,b:T,b:A,b:-B,g(b): B,g(b): D, f(b, g(b)) : ~C}

is not an admissible containment combination, since f(b,¢(b)) : C has to be in an
admissible containment combination C if b: A and ¢(b) : B are in C (cf. the function
declaration of f). [ |

In order to check RQ-satisfiability of a restriction R w.r.t. to a given ABox A and a
set F' of declarations we will use admissible containment combinations as follows. If S
is the term set of A and R, and C is an admissible containment combination of S, then
we will test whether or not there exists a A-structure A which satisfies both the ABox
which is given by AUC, and R. In other words, we test whether R is RQ-satisfiable
w.r.t. AUC. We will show that R is RQ-satisfiable (w.r.t. A and F) iff there exists an
admissible containment combination C of S such that R is RQ-satisfiable w.r.t. AUC.

Since the ABox which is given by A UC may contain role instances, an algorithm
which tests RQ-satisfiability of a restriction R w.r.t. A UC must test satisfiability of a
set of

e concept instances ¢ : €', where t is a ground term and C' is a concept,
e role instances sRt, where s, are ground terms and R is a role, and
e closed restrictions (' = (), where (' is a concept.
Thereby, concept instances and role instances may occur in the ABox AUC, and closed

restrictions and concept instances may occur in the ground version of the equation free
restriction.

Example 4.2 Consider the ABox A = {a : C, f(a,a) : B}, theset FF = {f: A x B~
C,a 2= T,b:— T,c:— T,d:— T} of function declarations, and the restriction R,

given by
fib ey 2D AS ' DAc: DAdBRE= .

The term set of A and R is {«, f(a,a), f(b,c),b,c,d}. Obviously, the set
C=fa:T.a: A BT hyAe: T otB 8 Tsfln a): 5C, f(be): O}

1s an admissible containment combination. In order to test RQ-satisfiability of R w.r.t.
A UC we have to check whether there exists a A-structure A such that



1. A satisfies the ABox which is given by AUC, i.e., A satisfies the concept instances
{a:T,a:Aja:Bb:T,b:Ac:T,c:B,d:T,f(a,a):~C, f(b,c):~C}, and

2. A satisfies R, i.e., Al= f(b,¢c): =DAb:DAc:DAd: BNE =0.

Note that the test does no longer take the function declarations into account. L]

An algorithm for testing RQ-satisfiability of a restriction R w.r.t. AUC is given in
the next subsection.

4.2 Testing Top Consistency

Algorithms for testing satisfiability of an ABox, i.e., of a set of variable-free concept
instances and role instances are well-known (see, e.g., [Hol90]). For additionally testing
satisfiability of closed restriction of the form C' = 0, we introduce the notion of top
consistency: a concept [y is top consistent w.r.t. an ABox A iff there exists a A-
structure A such that A |= A and D@ = TA(= U#). The next lemma shows that
testing satisfiability of an ABox together with a set of closed restrictions of the form
(' = () can be reduced to a top consistency test.

Lemma 4.3 Let A be an ABox, and let Cy = 0,...,C, = 0 be a set of closed re-
strictions. Then there exvists a A-structure A such that A satisfies A and A = C) =
OA...ANC, =0 iff the concept ~C, ... M =C,, is top consistent w.r.t. A.

Proof: The closed restriction (/; = () means that —(C; is equivalent to the top concept
T. Thus, Cy = O A ... AC, = 0 is satisfied iff each of the concepts [-Ci]4, ..., [~C,]A
is equivalent to T4, and hence iff [-C; M ... M =C,]4 is equivalent to T, m]

An algorithm for testing top consistency of a concept Dy w.r.t. a given ABox A is
given in [Lau92]. In this algorithm only constants are allowed as objects. However,
since we only want to handle ground terms as objects and since equations between
these ground terms cannot be expressed by an ABox, we can handle these ground
terms exactly like constants in this algorithm.

The top consistency algorithm is based on the notion of a constraint system. A
constraint system is finite non-empty set of constraints of the form a : (' or aRb,
where (' is a concept, R is a role, and «, b are constants. A constraint system .S contains
a clash iff () S contains two concept instances a : A and a : = A where a is an constant
and A is an atomic concept or (i7) S contains a constraint a : L for some constant
a. We say S is clash-free iff S does not contain a clash. A constraint system S is
satisfiable iff there exists a A-structure A such that A |= s for each constraint s in S.



1. S —=nf{a:Crya:Cy} U.S
if ¢:CiflCyisin &
and S does not contain both constraints a : C; and a : (y.
2. S—>y{a:D} U S
it a2 Chasainay,
neither ¢ : ("; nor a : Cy is in S, and D is C, or C,.
38 9y {b:CF U 8
if a:VR.C and aRRb are in S
and b: (C is not in S.
4. S -3, {aRbb:Cb: D5} U S
if a1 dRE BIRS,
Dy,.... D, are exactly the constraints of the form « : VR.D; in S,
there exjets poe guch thates (. c: Dy o ob et Dy, e DY are’'in'5,
and b is a new constant.
5.05 —3, {aRe} U S

it 2 RChasem S
Dy, ..., D, are exactly the constraints of the form « : VR.D; in S,
the comstraints ‘¢: C,¢i: Dy,...v¢: Dy e Dy are all in S,
and aRc is not in S.

Figure 2: Propagation rules of the top consistency test.
g pag | )

Given an ABox A and a concept Dy, we say the constraint system S is induced
by A and Dy iff S = AU {ay : Dj,ay : Dgj,...,a, : D} where ag is a new constant,
D; is the negation normal form of Dy, and ay,...,a, are exactly the objects in A.
The top consistency algorithm has a concept Dy and an ABox A as input and starts
with the constraint system S which is induced by A and Dy. It then successively adds
new constraints to S by the five propagation rules given in Figure 2 until no more
propagation rule is applicable. A constraint system S to which no more rules are
applicable is called complete.

The following theorem has been proved in [Lau92].

Theorem 4.4 Let A be an ABox, and let Dy be a concept. Then Dy is top consistent
w.r.t. A iff there exists a chain Sy —, S, —, ... —, S, where

1. Sy is the constraint system which is induced by A and Dy,
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2. —; is the leftmost propagation rule in the sequel —n, —, —v, —3,, —3, which

is applicable to S;_y,

3. S, is complete and clash-free.

Thus, a concept Dy is top consistent w.r.t. an ABox A iff a complete and clash-free
constraint system S can be obtained from the constraint system which is induced by
A and Dy. We assumed each occurrence of a term f to be replaced by a new constant
a,. Obviously, replacing each occurrence of a, by t in the resulting constraint system
S preserves satisfiability and hence we assume S to contain the object # instead of the
constant a;. Analogously to [Lau92] one can show that the following A-structure A

satisfies S:

e U% is the set of objects in S,
o A4 :={o|o: Aisin S} for each atomic concept A in S,
o RA:={(o,p) | oRpis in S} for each role R in S,

e 0* :=0 € /A for each object o in S.

We will call this A-structure the free A-structure of S.

4.3 Testing Constraint Unifiability

Now we are able to give an algorithm for testing RQ-satisfiability of an equation free
restriction R w.r.t. an ABox A and a set I of declarations. This algorithm has as input
an ABox A, a set I of declarations, and an equation free restriction K. The algorithm is
given in Figure 3 and tests whether there exists an admissible containment combination
C of the term set of A and R such that R is RQ-satisfiable w.r.t. AUC. Note that the
set F' of function symbols is implicitly represented in the containment combination C.

We will now show that the RQ-satisfiability algorithm returns “RQ-satisfiable”
iff the restriction R is RQ-satisfiable w.r.t. the ABox A and the set F' of function
declarations. Firstly, we will show that the algorithm always terminates.

Lemma 4.5 Let A be an ABox, I be a set of declarations, and R an equation free
restriction. The RQ-satisfiability algorithm with input A, F', and R terminates.

Proof: Let S be the function term set of A and R, and let ncs() be the non-deterministic
concept set of t w.r.t. F'. Obviously, the set ncs(t) is finite for each term ¢. Therefore,
only a finite number of containment combinations (and thus of admissible containment



1. Let S be the function term set of A and K.
2. Let R" be the ground version of R.
3. For each term ¢ in S let nes(t) be the non-deterministic concept set of 1.

4. et iGlp =i 5y (", = 0 be the closed constraints in /', and let Ay be
the ABox which consists of the containments in R’.

Check whether there is an admissible containment combination C of S

ot

such that =", M...M=(", is top consistent w.r.t. the ABox which is given
}')y AuUuCU A;;/.

6. If there exists such an admissible containment combination C. then return

RQ-satisfiable, else return not RQ-satisfiable.

Figure 3: The RQ-satisfiability algorithm for equation free restrictions.

combinations) exists. In [Lau92] has already been shown that the top consistency
algorithm terminates. a

The next lemma states that the RQ-satisfiability algorithm is sound.

Lemma 4.6 Let A be an ABox. I be a sel of declavations, R be an cquation free
restriction, and S be the term set of A and R. Furthermore, let R be the ground
version of R, C'y = 0.....C = 0 be the closed restrictions in R, and Ape be the set
of containments in R'. [If there exists an admissible containment combination C of S
such that =C'y ... ="y is top consistent w.r.t. AUCU AR, then R is RQ-satisfiable
(w.r.t. A and I).

Proof: Since ="y M ... N = is top consistent w.r.t. AUC U Ags, the top consistency
algorithm with input ', M. ..M=C" and AUCUA ;i constructs a constraint system, say
S*, which is complete and clash-free (cf. [Lau92]). Thus, if A* is the free A-structure
of §*, then A" = s for cach constraint s in S™.

Let now A be a A-structure which is identical to A*, but interprets the function
symbols in F' as follows:

tyy S L L P Gy = 1, o0, m) are ¥kactly the
containments of the form f(#;,...,1,): C in S and
[f(ty, . o t))f o= wy is some element in [, M ... 1 CA
uy, if there is no containment of the form
f(ty, ... t,) (' in S and uy is some element in DA



if fis not a Skolem function symbol and has the function declaration 2 Dyt ¥
D, +— D. Furthermore, if fs is a Skolem function symbol with the Skolem declaration

(D#Q)— f: D, x...x D, — D, Ainterprets fg by

uy, i f(fyy .o t,) 2 C5 (0= 1,....m) are exactly the
containments of the form f(#,..., f,): ("in S* and
wy is some element in [y 7.1 (',,,]A
w,, i there is no containment of the form
[fs(ty,... . ta)]* = Tty ty) s Cin S*0 DA £,
and uy is some element in DA
uy, i there is no containment of the form
flh,..., 1,): Cin S*, DA =0,

and wy is some element in (74

We already know that A" = A and A" | A since A satisfies 8™ We still have

to show that A satislics cach function declaration i F.

Firstly, let [ be a function symbol which is not a Skolem function symbol and
which has the function declaration f: Dy x ... x D, — D. We have to show that (z)
DA # 0 and (/i) whenever 4 € DA for @ = 1,..., ny then [f(H, ..., LI € DA dlor
(1), remember that for the function declaration of [ there is a concept instance a @ [ in
A where a is a new constant. Since A satisfies S and a : Disin S (sincea = D s in A),
DA # 0 holds. For (/1) we distinguish two cases: if [ is a function symbol which does
not occur in S*, then. by definition of A, [f(/, .. A =y € DA, Suppose, on the

other hand, f(1,,.... 1) occurs in S and /;-4 - /)IA fore=1..... n. By definition of A,
l; € DlA holds ifl 7, : D, is a constraint in S*. Furthermore, since (1, ..., l,) occurs in
S [l 1) and 1., ., {, arc elements in the function test set of A and R, Thus,

the admissible containment combination C contains either £, = D, or t, : =D, for cach
1 € {l,....n}. Since we assumed 1, @ D; to be in 8™ and since 8™ is clash-free, £, 0 =D,
cannot occur in C (¢ = 1,...,n). Finally, because C is admissible, f(f;,...,1,) : D is
in C. That means, f(/y,...,t,): D occurs in S™ and thus [f(/,, ..., /,,)]A & hA

Secondly, let f be a Skolem function symbol which has the Skolem declaration
(D #0)— f:D; x...xD,— D. We have to show that cither DA = 0. or that
DA %G and [f(1y.....1,)]* € DA whenever cach 14 € DA If DA = there is nothing
to show. If. on the other hand, DA # 0 the argumentation is the same as in the
non-Skolem case above.

Summing up, A satisfies both A and I, i.c.; A is an RQ-structure. Furthermore,
A satisfies C; = @ for ¢ = 1,...,k since =~CA = TA". Finally, A satisfies each
containment in R’ since A satisfies Ap. That means, A = R" and therefore A |= 3R,
i.e., R is RQ-satisfiable (w.r.t. A and F). a

Completeness of the RQ-satisfiability algorithm is shown by the following lemma.



Lemma 4.7 Let A be an ABoux, let F be a set of declarations, and let R be an equation
free restriction. Furthermore, let R' be the ground version of R, Cy = 0,...,C, =0 be
the closed restrictions in R', Ap the set of containments in R', and S the term set of
A and R. If there exists a A-structure A such that A= AUF and A |= R’, then there
exists an admissible containment combination C of S such that ~Cy ... M =CY is top
consistent w.r.t. AUCU Ap.

Proof: We will show that there exists an admissible containment combination C of S
such that A |= C. Therefore, let {s;,...,s,,} be the terms in S and for each term s; in S
let ncs(s;) be the non-deterministic containment set of s;. Obviously, for each concept
D in ncs(s;) either s € D# or s € [=D]* holds. Now, if D is a concept in an arbitrary
non-deterministic containment set ncs(s;), let D be D if sA € DA and let D be —D if
s & DA. Then the set C = {s; : D | s, is a term in S and D is a concept in nes(s;)}
1s a containment combination of S. Furthermore, let f(#,,....1,) be an arbitrary term
in S, where f has the function declaration f : Dy x ... x D, ~ D. Then, if t# € D,-A
fors.=1,.. ;n, we know t/{,0% f,,)]A € D? because A satisfies F'. Thus, C is an
admissible containment combination of S. Finally, let fs be a Skolem function symbol
with the function declaration (D # 0) — fs: Dy x ... x D, — D. If DA = () there is

nothing to show, and if D4 # () the argumentation is the same as in the case above.

Hence, we can conclude that 4 |= C. We already know that A satisfies A and,
because of A = R', both A= C; =0A...ACr =0 and A |= Ap holds. Summing
up, [FCh1Y = T4,.. . |26t = 12, and-A Satisfies A.-€ and Agp:.. That means,
—~C; M...M=C% is top consistent w.r.t. AUC U Ap. a

Summing up the above results, we obtain the following theorem.

Theorem 4.8 Let A be an ABox, let I be a set of declarations, and let R be an cqua-
tion free restriction. Then R is RQ-satisfiable (w.r.t. A and F') iff the RQ-satisfiability
algorithm with input A, F', and R rcturns “RQ-satisfiable”.

Proof: Because of Lemma 4.5 the RQ-satisfiability algorithm with input A, F, and R
terminates. By definition, R is RQ-satisfiable iff there exists a RQ-structure A such
that A = 3R, i.e., iff there exists a A-structure A which satisfies A and F such that
A |= JR. Let S be the term set of A and R. Firstly, if A is an RQ-structure such
that A = 3R, then A E R where R’ is the ground version of R. Then, because
of Lemma 4.7, there exists an admissible containment combination C of S such that
~Cy M. N =y s top consistent w.r.t. AUC U Ag (where Cy = 0,...,Cr = () are the
closed restrictions in R' and Ap/ is the set of containments in R’). In this case, the
RQ-satisfiability algorithm returns “RQ-satisfiable”.



i fsetidty 2585 Lo, camidl N e \,,, the equational and non-equational restric-

tions in IR, respectively.

el 6810 N I2, is not unifiable, return not constraint unifiable, else let o

be the most general unifier of £y, .. .. B

3. If the equation free restriction o Ny A ... Ao N, is RQ-satisfiable w.or.t. A

and I, return constraint unifiable, else return not constraint unifiable.

Figure 4: The constraint unifiability algorithm.

Conversely, suppose the RQ-satisfiability algorithm returns “RQ-satisfiable™. Then
there exists an admissible containment combination C of S such that =, M ... 11 =
is top consistent w.r.t. AUCUA. Thus, R is RQ-satisfiable hecanse of Lemma 1.7. 0O

Now it is straightforward to give an algorithm for testing constraint unifiability
of a restriction R (w.r.t. a given ABox A and a set [ of declarations). Il R s a
restriction and £,,.... [, and N,,.... N,, are the equational and the non-equational
restrictions in R, respectively, we firstly have to compute the most general unifier o
of Ey,....E, (provided these equations are unifiable). Then we can apply the RQ-
satisfiability algorithm to o Ny A ... A o N, since this restriction is equation free. The
constraint unifiability algorithm is given in Figure 1. It has an ABox A, a set ' of
declarations, and a restriction B as input and returns “constraint unifiable™ il R is

constraint unifiable (w.r.t. A and [I').

4.4 Testing RQ-validity of ALC-Restrictions

Let us now recall the refutation procedure of Figure 1. In the “testing part” of this algo-
rithm it is tested whether or not some derived empty RQ-clauses are sufficient to prove
RQ-unsatisfiability of the input RQ-formulas. More technically, if Of|lty,..., O[[ 2, are
derived empty RQ-clauses we have to test By V...V R, on RQ-validity w.r.t. the given
restriction theory. However, the following theorem shows that this test is undecidable

for ALC-restrictions.
Theorem 4.9 RQ-validity of a sct Ry...., R, of ALC-restrictions is undecidable.

Proof: We will show that an algorithm which decides RQ-validity of a set of ALC-
restrictions could also be used to decide satisfiability of an arbitrary clause set, what
is known to be undecidable.



Let C = {C1,...,C,} be a set of clauses over some signature ¥. Furthermore, let
A be a new unary predicate and f, be a new m-ary function symbol for each m-ary
predicate symbol p in C. We firstly use the following translation:

p(ty, ... t,) 1s mapped to the formula ACTl vt
=p(t,...,tm) is mapped to the formula —A(f,(t1,...,tx))

for each literal p(ty,...,t,,) or =p(ty,...,t,) occurring in C. We denote the application
of this reduction to C by C* = {C},...,Cx}. It is easy to verify that C is unsatisfiable
iff C* is unsatisfiable: Let M be a model of C and let M* be defined such that such
M* = A(fp(ty, ..., ty)) iff M = p(ty,...,1n). Then M* obviously satisfies C* iff M
satisfies C.

Furthermore, since the clause set C* represents the formula VO7 A L. A CF) we
obtain that C* is unsatisfiable iff 3-C7 Vv ...V =" is valid. Let now C* be the clause
set {CF,...,CF} where C'F is obtained from ('7 by replacing A(f,(fy,...,1,,)) and
Affoltis. s b)) bY Fulbyy ot ) 84 and Kbly oo, 1) 1 A, vespéctively.- Then
each O represents an ALC- restriction since A is unary predicate, i.e., a concept.
Obviously, testing validity of 3-C7 Vv ...V ~('" is equivalent to testing RQ-validity of
=Ct V...V =C} wr.t. the following restricted quantification system over ALC:

e the signature A is given by the concept A and the set of function symbols occur-
ring in C*,

e restrictions are of the form ¢ : A only, where 7 is a A-term,
e the restriction theory is given by an empty ABox and a declaration

R B B Y
N’

™m

for each m-ary function symbol in A.

Summing up, if we had an algorithm for deciding RQ-validity of a set of ALC-
restrictions we could decide RQ-validity of C* and thus of the clause set C. a

That means, we cannot decide whether or not a given set of ALC-restrictions is
RQ-valid. The reason for this lies in the fact that we allowed function symbols. If we
restrict ourselves such that no function symbols occur, neither explicitly in RQ-formulas
nor implicitly in restricted existential quantifiers which are eliminated by introducing
Skolem function symbols, RQ-validity is known to be decidable (cf. [BBH*90]).

30



5 An Application: Query Answering

Though the result of the previous subsection shows that one cannot obtain a decidable
refutation procedure for concept logics, we will now show that concept logics can be
applied, e.g., in query answering or in abductive systems.

Let us firstly have a look at the query answering capabilities of concept logics. If we
use the classical resolution principle to test unsatisfiability of a clause set, we obtain
answers yes or no (provided that the algorithm terminates at all). For example, let us
apply classical resolution to the following problem: In a knowledge base it is explicitly
represented that the supermarket is open each day except from sunday, i.e., the clause

set
day (monday)

day (sunday)
supermarket-open (monday)

supermarket-open (saturday)
—supermarket-open (sunday)

is stored. Obviously, the query Q, “is the supermarket open on wednesday?”, can be
answered with yes, what is intuitively adequate, by a single resolution step. But, on
the other hand, the query Q. “is the supermarket closed some day?”, will be answered
with yes as well. Though this answer is logically correct, it is an unsatisfying answer if
one wonders whether to go to the supermarket on saturday or on sunday.

There exist extensions of the classical resolution principle which can answer the
query Q, in such a way that “the supermarket is closed on sunday” can be generated
from this answer. One example is the use of ProLoc (e.g., [Llo84]) where the variable
bindings, which have been made to generate a refutation, are stored explicitly. Thus,
queries containing unbound variables are not only answered by yes or no but, addi-
tionally, by an appropriate variable binding of their free variables. As a disadvantage
of this approach one might consider the use of negation as failure. That means,
if Proroc fails to prove a fact p, it considers =p as proved. For example, if it was
not stored in the above database whether or not the supermarket is open on thursday,
ProroG would give two answers to query Qz, namely thursday and sunday. Another
approach has been presented in Section 4.7 of [GN87]. There, a special answer lit-
eral Ans (vy,...,v,) is introduced where vy, ..., v, are the free variables of the query
which are bounded to values during the refutation process. Unfortunately, the problem
whether or not one has found all possible answers of the query is undecidable.

Now, how can we use concept logics for query answering and what advantages does
this approach have? Firstly, we can assume a knowledge base to be given by a set of
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RQ-formulas, and a restriction theory by an ABox A and a set I of declarations. A
query, given as RQ-formula, can then be answered by constrained resolution as follows.
The RQ-formulas and the negated query are translated into a set C of constrained
clauses. Then we start deriving empty RQ-clauses O || R from C, where each of these
empty RQ-clauses tells us that the query is a logical consequence from the knowledge
base whenever R is satisfied. In the above supermarket example we can represent some
part of the knowledge in an ABox A, e.g.,

monday : Day

sunday : Day

where Day is a concept.” Which days the supermarket is open can be stored as follows
(already translated into a set of RQ-formulas)

supermarket-open (xy) || 1 = monday

supermarket-open (xg) || vy = saturday
—supermarket-open (x7) || v = sunday.

The negated query Q; can be represented by the RQ-clause supermarket-open (x)|]x :
Day, and by a single RQ-resolution step we obtain the empty RQ-clause

O ||z : Day A x = sunday.

From this empty RQ-clause the constructive answer “the supermarket is closed on
sunday” can be obtained immediately.

The approach of using concept logics for query answering has two advantages.
Firstly, logical negation is used instead of negation as failure. That means. even if
none of the facts “the supermarket is open on thursday”™ nor “the supermarket is closed
on thursday” would be represented, RQ-resolution only gives a single answer to query
Q;, namely sunday. Secondly, a part of the knowledge base can be represented in an
ABox such that one can reason on this part of the knowledge base by using specialized

algorithms (e.g., [Hol90]).

Let us now reconsider the above generated empty RQ-clause O || x : Day A v =
sunday. This empty RQ-clause tells us that the query is answered in each model of the
restriction theory which satisfies sunday : Day. As shown in subsection 4.4, the problem
whether the restrictions of a set of empty RQ-clauses are RQ-valid is undecidable
(provided there are function symbols in some part of the complete knowledge base).
That means, if empty RQ-clauses O || Ry,...,0|| R, are derived from a clause set C,
we can in general not decide whether these empty RQ-clauses are sufficient to prove

9For sake of readability we omit function declarations here (e.g., monday +— T,...).



RQ-unsatisfiability of C. However, given the above empty RQ-clause it is easy to verify
that the restriction DayAx = sunday is satisfied by each model of the restriction theory
since sunday : Day is contained in the ABox A.

But even if we cannot decide whether a given set of empty RQQ-clauses represents a
contradiction in all or only in some models of the restriction theory, there are interesting
applications of this kind of query answering. We will now show how to use concept
logics in abductive reasoning components. As an example, suppose the following part
of a (colloquial language) knowledge base to be given

(A) If there is high water at place z, then z is wet
(B) If it is raining at place x, then z is wet.

Furthermore, assume we have observed that the 4th Avenue is wet and are interested
in a possible explanation for this fact. In order to solve this (abductive) reasoning
task we can represent (A), (B), and the negated observation by one RQ-clause each.
Thus, using an appropriate restriction theory we may obtain the following constrained
RQ-clause set '

(1) wet (z1) || 1 : highwater

(2)  wet (z2) || x2 : raining

(3) - wet (z) ||« = 4th Avenue.

By applying one constrained resolution step to (1) and (2) we obtain the empty RQ-
clause
(4) O||x : highwater A x = 4th Avenue.

This empty RQ-clause solves our reasoning problem by giving a possible explanation,
namely, there is high water at the 4th Avenue. This is due to the fact that the RQ-
clause set {(1),(2),(3)} is RQ-unsatisfiable in all models of the restriction theory which
satisfy 4th Avenue : highwater and can be seen as an abductive reasoning step (cf.,

e.g., [BN92)).

6 Conclusion

In this paper we presented an instantiation of the general refutation procedure given
in [BHL93] for restricted quantification systems over the concept language ALC. We
showed that such an RQS satisfies condition (TM) and thus, as an optimization, ALC-
restrictions can be tested on constraint unifiability instead of RQ-satisfiability (cf.
[BHL93]), and an algorithm for this constraint unifiability test has been given. In
contrast to concept logics without function symbols [BBH*90] it turned out that RQ-
validity of ALC-restrictions becomes undecidable when allowing function symbols in
these restrictions. Thus, as a noteworthy result, describing problems in terms of RQ-
clauses without function symbols or in terms of RQ-formulas is more than syntactical
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sugar. The reason for this is due to the fact that Skolemization may introduce Skolem
function symbols into restrictions. We proved that allowing function symbols in ALC-
restrictions together with disjunction (which is needed to test a set of restrictions on
RQ-validity) is as expressive as ordinary clause logic which is known to be undecidable.

However, it turned out that there are interesting applications of concept logics with
function symbols. Firstly, we presented a query answering approach based on concept
logics. For giving (partial) answers to a query we only need to test constraint unifiability
of ALC-restrictions, whereby each empty RQ-clause O || R with a constraint unifiable
restriction R represents an answer in all models of the restriction theory which satisfy
R. Testing validity of a set of restrictions is only needed if we want to decide whether
the derived empty RQ-clauses give an exhaustive answer to the query. Secondly, it
turned out that concept logics with function symbols can be used within abductive
reasoning systems in order to generate possible explanations for an observation.
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