
DOCUMENT IMAGE ZONE CLASSIFICATION
A Simple High-Perfomance Approach

Daniel Keysers, Faisal Shafait
German Research Center for Artificial Intelligence (DFKI) GmbH, Kaiserslautern, Germany

{daniel.keysers, faisal.shafait}@dfki.de

Thomas M. Breuel
Technical University of Kaiserslautern, Germany

tmb@informatik.uni-kl.de

Keywords: Document Image Analysis, Zone Classification

Abstract: We describe a simple, fast, and accurate system for document image zone classification — an important sub-
problem of document image analysis — that results from a detailed analysis of different features. Using
a novel combination of known algorithms, we achieve a very competitive error rate of 1.46% (n = 13811)
in comparison to (Wang et al., 2006) who report an error rate of 1.55% (n = 24177) using more complicated
techniques. The experiments were performed on zones extracted from the widely used UW-III database, which
is representative of images of scanned journal pages and contains ground-truthed real-world data.

1 INTRODUCTION

One important subtask of document image processing
is the classification of blocks detected by the physical
layout analysis system into one of a set of predefined
classes. For example, we may want to distinguish be-
tween text blocks and drawings to pass the former to
an OCR system and the latter to an image enhancer.
For a detailed discussion of the task and its relevance
please see e.g. (Wang et al., 2006).

During the design of our block classification sys-
tem we noticed that among the approaches we found
in the literature a detailed comparison of different fea-
tures was usually not performed, and in particular we
did not find a comparison that included features as
they are typically used in other image classification or
retrieval tasks. In this paper we address this shortcom-
ing by comparing a large set of commonly used fea-
tures for block classification and include in the com-
parison three features that are known to yield good
performance in content-based image retrieval (CBIR)
and are applicable to binary images (Deselaers et al.,
2004). Interestingly, we found that the single feature
with the best performance is the Tamura texture his-
togram, which belongs to this latter class. Another re-
sult we transfer from experience in the area of CBIR
is that often a histogram is a more powerful feature
than using statistics of a distribution like mean and

variance only. We show that the use of histograms im-
proves the performance for block classification signif-
icantly in our experiments. By combining a number
of different features, we achieve a very competitive
error rate of less than 1.5% on a data set of blocks ex-
tracted from the well-known University of Washing-
ton III (UW-III) database. In addition to the data used
in prior work we include a class of ‘speckles’ blocks
that often occur during photocopying and for which a
correct classification can facilitate further processing
of a document image. Figure 1 shows example block
images for each of the eight types distinguished in our
approach. We also present a very fast (but at 2.1% er-
ror slightly less accurate) classifier, using simple fea-
tures and only a fraction of a second to classify one
block on average on a standard PC.

2 RELATED WORK AND
CONTRIBUTION

We briefly discuss some related work in this section,
for a more detailed overview of related work in the
field of document zone classification please refer to
(Okun et al., 1999; Wang et al., 2006). Table 1 shows
an overview of related results in zone classification.

Inglis and Witten (Inglis and Witten, 1995)
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Figure 1: Examples of document image block types distinguished in our approach.



Table 1: Summary of UW zone classification error rates from the literature along with the number of pages, zones and block
types used. Note that an exact comparison between all error rates is not possible.

reference # pages # zones # types error [%]
(Inglis and Witten, 1995) 1001 13831 3 6.7
(Liang et al., 1996) 979 13726 8 5.4
(Sivaramakrishnan et al., 1995) 979 13726 9 3.3
(Wang et al., 2000) 1600 24177 9 2.5
(Wang et al., 2006) 1600 24177 9 1.5
this work 713 13811 8 1.5

present a study of the zone classification problem
as a machine learning problem. They use 13831
zones from the UW database and distinguish the three
classes text, halftone, and drawing. Using seven
features based on connected components and run
lengths, the authors apply various machine learning
techniques to the problem, of which the C4.5 decision
tree performs best at 6.7% error rate.

The review paper by Okun et al. (Okun et al.,
1999) succinctly summarizes the main approaches
used for document zone classification in the 1990s.
The predominant feature type is based on connected
components (see also for example (Liang et al.,
1996)) and run-length statistics. Other features used
include the cross-correlation between scan-lines, ver-
tical projection profiles, wavelet coefficients, learned
masks, and the black pixel distribution. The most
common classifier used is a neural network.

The widespread use of features based on con-
nected components run-length statistics, combined
with the simplicity of implementation of such fea-
tures, led us to use these feature types in our exper-
iments as well, comparing them to the use of features
used in content-based image retrieval. Our CBIR fea-
tures are based on the open source image retrieval
system FIRE (Deselaers et al., 2004). We restrict
our analysis for zone classification to those features
that are promising for the analysis of binary images
as described in the following section. (The overall
most successful features in CBIR are usually based
on color information.)

The most recent and detailed overview of the
progress in document zone classification and a very
accurate system is presented in (Wang et al., 2006).
The authors use a decision tree classifier and model
contextual dependencies for some zones. In our work
we do not model zone context, although it is likely
that a context model (which can be integrated in a
similar way as presented by Wang et al.) would help
the overall classification performance. Wang et al.
use 24177 zones extracted from the UW-III database
to evaluate their approach. In our experiments we
use only 11804 labeled zones (plus 2007 additional

zones of type ‘speckles’) extracted from the UW-III
database because many zones occur in different ver-
sions in the database. In Section 5 we further illus-
trate this shortcoming and our approach to overcome
it. As the authors use 9-fold cross-validation to obtain
their results, it might be possible that the error rates
they present (the best result is an overall error rate of
1.5%) may be influenced positively by this fact, be-
cause it is likely that instances of blocks of the same
document occur in training and test set. In a simi-
lar direction, Wang et al. use one feature that “uses
a statistical method to classify glyphs and was exten-
sively trained on the UWCDROM-III document im-
age database.” It is not clear to us if this implies that
the glyphs that occur in testing have also been used in
the training of the glyph classifier.

We expand on the work presented in (Wang et al.,
2006) in the following ways:

• We include a detailed feature comparison includ-
ing a comparison with commonly used CBIR fea-
tures. It turns out that the single best feature is
the Tamura texture histogram which was not pre-
viously used for zone classification.

• We present results both for a simple nearest neigh-
bor classifier and for a very fast linear classifier
based on logistic regression and the maximum en-
tropy criterion.

• We introduce a new class of blocks containing
speckles that has not been labeled in the UW-III
database. This typical class of noise is important
to detect during the layout analysis especially for
images of photocopied documents.

• We present results for the part of the UW-III
database without using duplicates and achieve a
similar error rate of 1.5%.

• We introduce the use of histograms for the
measurements of connected components and run
lengths and show that this leads to a performance
increase.



3 FEATURE EXTRACTION

We extract the following features from each block,
where features 1-3 are chosen based on their perfor-
mance in CBIR (Deselaers et al., 2004) feature 4 was
expected to help distinguish between the types ‘draw-
ing’ and ‘text’ and features 5-9 were chosen based on
their common use in block classification (Okun et al.,
1999; Wang et al., 2006). Due to space limitations we
refer the interested reader to the references for imple-
mentation details.

1. Tamura texture features histogram (TTFH)

2. Relational invariant feature histograms (RIFH)

3. Down-scaled images of size 32×32 (DSI)

4. The fill ratio, i.e. the ratio of the number of black
pixels in a horizontally smeared (Wong et al.,
1982) image to the area of the image (FR)

5. Run-length histograms of black and white pixels
along horizontal, vertical, main diagonal, and side
diagonal directions; each histogram uses eight
bins, spaced apart as powers of 2, i.e. counting
runs of length ≤ 1,3,7,15,31,63,127 and ≥ 128
(RL{B,W}{X,Y,M,S}H)

6. The vector formed by the total number, mean,
and variance of the runs of black and white pixels
along the horizontal, vertical, main diagonal, and
side diagonal directions as used in (Wang et al.,
2006) (RL{B,W}{X,Y,M,S}V)

7. Histograms (as in 5) of the widths and heights of
connected components (CCXH, CCYH)

8. The joint distribution of the widths and heights of
connected components as a 2-dimensional 64-bin
histogram (CCXYH)

9. The histogram of the distances between a con-
nected component and its nearest neighbor com-
ponent (CCNNH)

4 CLASSIFICATION

To evaluate the various features, we use a simple near-
est neighbor classifier, that is, a test sample is clas-
sified into the class the closest training sample be-
longs to. The distance measures used are the Jensen-
Shannon divergence for histograms and the Euclidean
distance for all other features (Deselaers et al., 2004).
If different feature sets are combined, the overall dis-
tance is calculated as the weighted sum of the indi-
vidual normalized distances. The weights are pro-
portional to the inverse of the error rate of a particu-
lar feature. No tuning with respect to these weights

or with respect to the distance measures has been
performed. Although a k-nearest-neighbor approach
gives better results in many cases we only evaluated
the 1-nearest-neighbor classifier. The nearest neigh-
bor error rates are determined using leave-one-out
cross-validation.

The nearest neighbor classifier serves as a good
baseline classifier, although in many cases we can find
a more suitable classifier for a given task. As we con-
centrate on features in this paper, we did not test any
other classifiers. However, an important shortcoming
of the nearest neighbor classifier is its requirement on
computational resources. Both memory and run-time
can be prohibitive for some applications. To explore
a very fast approach with minimum requirements on
computational resources, we also trained a log-linear
classifier using the maximum entropy criterion (Key-
sers et al., 2002). The classification using this clas-
sifier can be obtained by computing a dot product of
the feature vector with a weight vector for each class
and choosing the maximum, and is thus very fast.
As only these weight vectors need to be stored, the
memory requirement is also minimal. Furthermore,
the maximum entropy approach yields a probabilistic
model, such that we obtain an estimate of the poste-
rior probability for each class. The maximum entropy
approach was evaluated on a regular 50/50 split of the
data into training and test set and thus only uses half
the amount of training data. The histograms were not
normalized for the maximum-entropy approach, but
the absolute numbers were used instead to allow the
classifier to utilize this additional information.

5 DATA SET

To evaluate our approach for document zone classifi-
cation, we use the University of Washington III (UW-
III) database (Guyon et al., 1997). The database con-
sists of 1600 English document images with bound-
ing boxes of 24177 homogeneous page segments or
blocks, which are manually labeled into different
classes depending on their contents, making the data
very suitable for evaluating a block classification sys-
tem, e.g. (Inglis and Witten, 1995; Wang et al., 2006).

The documents in the UW-III dataset are catego-
rized based on their degradation type as follows:
1. Direct scans of original English journals
2. Scans of first generation English journal photo-

copies
3. Scans of second or later generation English jour-

nal photocopies
Many of the documents in the dataset are dupli-

cated and differ sometimes only by the degradation



(a) E00D (b) C000 (c) E04A (photocopy) (d) W033 (direct scan)

Figure 2: Example document pages from the UW-III database. Note that some documents, as shown on the right, occur in
different versions. For our experiments, we made sure that no such duplicates were used.

applied to them. This type of collection is useful
when one is evaluating a page segmentation algorithm
to see how well the algorithm performs when pho-
tocopy effect degradation is applied to a document.
However, the degradation introduced by photocopy-
ing a document does not affect the contents of a doc-
ument to a large extent. One such example can be
seen in Figure 2, where the same document is present
in the dataset four times (E04A, W033, S04A, W133,
two of them shown here). Although the photocopied
documents are darker than the corresponding direct
scans, the difference is not substantial. This dupli-
cation of documents tends to bias the evaluation re-
sults towards lower error rates when some of these
documents are used in training, while others are used
in testing. This effect seems to have been unnoticed
previously by some researchers who use the complete
dataset for the evaluation of their algorithms.

We decided to use a subset of the UW-III dataset
to avoid using duplicate documents. We chose doc-
uments in the scans from the first generation photo-
copies category because they were largest in number.
We use all the documents with prefixes A0, C0, D0,
IG, H0, J0, K0, E0, V0, I03, and I04. There are 713
documents of this type. We extracted the ground-
truth zones and their labels from each of these 713
documents. We observed that there were very few
examples of some of the zone types like ‘seal’, ‘an-
nouncement’, ‘advertisement’, etc. Therefore we se-
lected only those classes for evaluation that contained
at least ten example images.

One limitation of the UW-III ground-truth zones is
that they do not contain any example of noise regions,
i.e. regions that emerge from noise introduced dur-
ing the scanning or photocopy process. These regions
mostly consist of speckles and dots present along the
border of the document. Since such regions often ap-

pear in practice, it is important to detect such regions
as noise so that these can be removed from further
processing. The UW-III dataset images contain many
such regions but these are not labeled. In order to ex-
tract examples of such regions we used the page seg-
mentation algorithm from (Kise et al., 1998) to ex-
tract page segments. Then all the segments that did
not overlap with any of the ground-truth zones were
filtered out as examples of the noise zones. However
these contained both textual and non-textual noise.
Textual noise appears only along the left or the right
side of a document when the facing pages of a book
are scanned. Since these extraneous symbols cannot
be distinguished from the actual contents of the doc-
ument based on their appearance alone, we do not
consider examples of textual noise. Therefore we
only take examples of non-textual noise, i.e. speck-
les as noise class. The speckles heavily depend on the
degradation of the document and vary considerably
from the direct scan of a document to its first genera-
tion photocopy as can be seen in Figure 2. Therefore,
for the speckles class, we extracted examples from all
1600 documents of the UW-III database. The corre-
sponding number of examples used for each zone type
is included in Table 3.

6 EXPERIMENTAL RESULTS

Table 2 shows the error rates that the nearest neighbor
classifier achieves for each single feature along with
the dimensionality of the feature vectors and the av-
erage time used to compute the feature vector. (All
timing information is given for a standard PC with
1.8GHz AMD Athlon processor without special per-
formance tuning of the algorithms.) The last rows
show results for combined feature sets.



Table 2: Leave-one-out nearest neighbor error rates and ex-
traction run-times for each feature and for combinations.

feature # features extr.-time [s] error [%]
TTFH 512 5.51 3.4
RIFH 512 12.59 7.8
DSI 1024 0.01 8.1
FR 1 0.02 27.3
RLBXH 8 0.01 7.9
RLWXH 8 0.01 5.1
RLBYH 8 0.01 8.2
RLWYH 8 0.01 5.6
RLBMH 8 0.01 11.8
RLWMH 8 0.01 6.6
RLBSH 8 0.01 10.5
RLWSH 8 0.01 6.2
RLBXV 3 0.01 12.9
RLWXV 3 0.01 9.7
RLBYV 3 0.01 14.6
RLWYV 3 0.01 12.1
RLBMV 3 0.01 17.2
RLWMV 3 0.01 12.6
RLBSV 3 0.01 16.7
RLWSV 3 0.01 12.2
CCXH 8 0.04 14.5
CCYH 8 0.04 14.9
CCXYH 64 0.04 6.2
CCNNH 8 0.05 19.0
RL**V, constant weight 4.1
RL**H, constant weight 1.8
RL*, CC*, 1/error weight 1.5
FR, RL*, CC*, 1/error weight 1.5
TTFH, FR, RL*, CC*, 1/error weight 1.5
RL*, CC*, logistic, 50/50 data split 2.1

We can observe the following results:

• The Tamura texture feature is the single best fea-
ture but is more than 100 times slower to compute
than most other features.

• The use of histograms as descriptors of the run-
lengths distribution leads to much lower error
rates than the use of number, mean, and variance.
The combination of these histograms alone leads
to a very good error rate of 1.8%.

• Interestingly, the use of the white (background)
runs for the computation of features consistently
leads to better results than the use of black (fore-
ground) runs.

• Among the run-lengths based features, those
based on the horizontal runs lead to the best er-
ror rates.

• The fill ratio as a single feature does not lead to
good results, which is not surprising as it consists

only of a single number. However, it is very use-
ful to distinguish drawings from text. This is how-
ever also achieved by using the distribution of the
white run lengths, such that the FR feature is not
part of the best observed feature set.

• By using a logistic classifier trained with the max-
imum entropy criterion (training time a few min-
utes, time for one classification in the order of a
few microseconds) on a feature set that is very
fast to extract, we can construct a zone type clas-
sifier that can classify more than five zones per
second even without performance tuning. At the
same time, the error rate is at 2.1% only slightly
higher than that of the best observed classifier.

Table 3 shows the frequency of misclassifications
between different classes of the best classifier. We can
observe that high recognition accuracy was achieved
for the text, ruling, speckles, math, halftone, and
drawing classes. However, our system failed to rec-
ognize logos correctly, and most of the logos were
misclassified as either text, or halftone/drawing. Note
that the accuracy rate for type ‘logo’ in (Wang et al.,
2006) is even lower at 0.0%. The reason for this ef-
fect is the very small number of samples for this class,
which on the other hand implies that it has only a very
small influence on the overall system error rate. Sim-
ilarly, the table detection accuracy was not high, and
about 21% of the tables were misclassified as text.

To visualize the errors made, we looked at the
nearest-neighbor images for each misclassified block.
Figure 3 shows some typical examples. It can be seen
that some of these images cannot be simply classified
correctly by using the block content alone, and even
humans are likely to make errors if they are asked to
classify these images.

7 CONCLUSION

From the analysis of the obtained results we can con-
clude that we can construct a very accurate classi-
fier based on run-lengths histograms alone. These
features are very easy to implement and fast to ex-
tract and thus should be part of any practical baseline
system. Interestingly, the distribution of the back-
ground runs is more important for document zone
classification than the distribution of the foreground
runs. Including a few more features based on run-
length and connected component measurements we
achieved a very competitive1 error rate of below 1.5%
on zones extracted form the UW-III database without

1For a comparison to our results also note that at most
0.2% (53/24177) of the error rate Wang et al. present is
caused by their distinction between the text classes of dif-



Table 3: Contingency table showing the distribution of the classification of zones of a particular type in percent. (The total
number of errors equals 201 within 13811 tests.) The labels M, L, T, A, D, H, R, S correspond to the types math, logo, text,
table, drawing, halftone, ruling, and speckles, respectively.

M L T A D H R S error [%] # samples
M 90.8 0.0 8.6 0.0 0.0 0.6 0.0 0.0 9.2 476
L 9.1 27.3 36.4 0.0 9.1 9.1 0.0 9.1 72.7 11
T 0.1 0.0 99.8 0.0 0.0 0.0 0.0 0.0 0.2 10450
A 0.8 0.0 20.7 68.6 9.9 0.8 0.0 0.0 31.4 121
D 1.5 0.3 3.0 5.5 86.0 3.5 0.0 0.3 14.0 401
H 0.0 0.9 0.0 0.0 9.7 86.7 0.9 1.8 13.3 113
R 0.4 0.0 1.3 0.0 0.4 0.0 96.1 2.2 3.9 232
S 0.1 0.0 0.5 0.0 0.1 0.1 0.0 99.4 0.6 2007

the need for features based on glyphs or the Fourier
transform. By employing a fast logistic (log-linear)
classifier trained using the maximum entropy crite-
rion on these features, we arrived at a fast and ac-
curate, yet easy to implement overall classifier with
a slightly higher error rate of 2.1%. In our experi-
ments we did not use context information as done in
(Wang et al., 2006) and thus could keep the decision
rule very simple. However, context models are likely
to help in the overall classification and an inclusion
of our approach into Wang et al.’s context model is
possible. Examining the errors made by the system
makes it seem likely that further improvements sig-
nificantly below the reached error rate may be difficult
to achieve without a significantly increased effort, for
example by using a dedicated sub-classifier to distin-
guish between text and table zones.
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Figure 3: Examples of misclassifications showing the misclassified image and its nearest neighbor from a different class.


