3 ; 5 Deutsches ResearCh
: ‘]) Forschungszentrum
’ ? n fir Kiinstliche Report

Intelligenz GmbH RR-92-02

ITopA: The Paper Interface to ODA

Andreas Dengel, Rainer Bleisinger, Rainer Hoch,
Frank Hénes, Frank Fein, Michael Malburg

February 1992

Deutsches Forschungszentrum fiir Kiinstliche Intelligenz

GmbH
Postfach 20 80 Stuhlsatzenhausweg 3
D-6750 Kaiserslautern, FRG D-6600 Saarbriicken 11, FRG
Tel.: (+49 631) 205-3211/13 Tel.: (+49 681) 302-5252

Fax: (+49 631) 205-3210 Fax: (+49 681) 302-5341

Deutsches Forschungszentrum
far
Kinstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fur Kunstliche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbriicken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, Siemens and Siemens-
Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for Research
and Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using Al methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

Intelligent Engineering Systems

Intelligent User Interfaces

Computer Linguistics

Programming Systems

Deduction and Multiagent Systems
Document Analysis and Office Automation.

coc0o0oo

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research.

From its beginning, the DFKI has provided an attractive working environment for Al researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Friedrich J. Wend|
Director

IIopA: The Paper Interface to ODA

Andreas Dengel, Rainer Bleisinger, Rainer Hoch, Frank Hones,
Frank Fein, Michael Malburg

DFKI-RR-92-02

A short version of this report will be published in IEEE Computer, Special
Issue on Document Image Analysis Systems, June 1992.

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ ITW-9003 0).

© Deutsches Forschungszentrum fir Kunstliche Intelligenz 1992

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fiir Kinstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fiir Kiinstliche Intelligenz.

Iopa: The Paper Interface to ODA!

ANDREAS DENGEL, RAINER BLEISINGER, RAINER HOCH,
FRANK HONES, FRANK FEIN, MICHAEL MALBURG

German Research Center for Artificial Intelligence (DFKI)
Project ALV
P.O. Box 2080, 6750 Kaiserslautern, FRG
phone: (+49 631) 205 3215
email: dengel@dfki.uni-kl.de

Abstract

In the past, many people have proclaimed the vision of the paperless office, but today
offices consume more paper documents than ever before. As computer technology
becomes more and more important in daily practice of modern offices, intelligent
systems bridging the gap between printed documents and electronic ones, called paper-
computer-interfaces, are required.

In this report our model-based document analysis system ITODA is discussed in detail.
Basic ideas of the ODA standard for electronic representation of office documents are the
foundation of our document model. Moreover, different knowledge sources essential for
the analysis of business letters are incorporated into the IIODA model. The system
comprises all important analysis tasks. Initially, layout extraction includes a necessary
low-level image processing and segmentation to investigate the layout structure of a
given document. While logical labeling identifies the logical structure of a business
letter, text recognition explores the captured text of logical objects in an expectation-
driven manner. By this way, word hypotheses are generated and verified using a
dictionary. Finally, a partial text analysis component syntactically checks well-
structured text objects, primarily the recipient of a letter.

As output, [TopA produces an ODA conforming symbolic representation of a document
originally being captured on paper. Now, the document is available for any further
automatic processing such as filing, retrieval or distribution.

The inherent modularity of our system, however, allows a reuse of knowledge sources
and constituents of the architecture in other document classes such as forms or cheques.
Additionally, ITODA is an open and flexible system: improved and new analysis methods
can be integrated easy without modifying the overall system architecture.

Keywords
Document Analysis, Document Representation, Layout Extraction, Logical Labeling,
Text Recognition, Partial Text Analysis, Lexical Knowledge, ODA.

1 This work has been supported by the Germany Ministry for Research and Technology BMFT
under contract [ITW 9003 O.

RR-92-02 1

CONTENTS

1
2

3
B

%)

10
11

RRPEIRCTION: DRNC] SIS CIVBEVIENN. i.nibhsbivasinsss disnesiivorsonsnssibusipnip dubainntnsin 3
Standards for the Representation of Structured Documents............... 5
Document Architécttire Model in! QDA 000 o bl liiiiensessasassssessose 7
Document Architecture Model it TIODA: «+..«.vsvvereerereerereerereesesneresseresssseens 10
21 DACKR LONIIE &l 00 i s ot e netellio A v vidstapansoassosssnor Bilssaois it avspinrorss e 11
4.1.1 Meta:laver Lavoitt DIESCHDHOLY. oo cioc. \ocirs. s yoronsives s sevsssinssssnnoniisssisssnse 11

4.1.2" Mela Layer Fogieal DESSEIntIoN . = 2 o0 8. i i e 12

4.2 Document ClamB IO ii5 5. iusini - cbasstiv wosicssissssessssisisssssesesasississssse 13
42,1 EayoutObject CIasses i w ittt bl ainlisaiig 13

4.2.2 Logical Object Classesccccceeenss Tl A T T o o b st e 15
TR AR R SRR e B RSP At N NI oL A 17
P OUNE RIS & i s o ks il oiimtins b siasoss b NN s ++ 450 9o P g 20
61 I Low kievel Image ProcesSimg.. .« aih iuai. satii s « o 20
6.2 Segmentation ‘and Classification’..... L0 L0l BUE LLaals 21
BT R L T AT G SR TR B TR e T S 25
7.1 Representation of Logical Object Arrangements....................... 25
7.2 Geometric Description of Logical Objects........ccccceevivenurereruennns 26
g o et e e e R B e LS R U S U ORI TR IR 27
g T R R S R R e R R R A g 30
8.1 :Character Hypotheses GEnOratiBa .. oo vsmicmwsitsnisssoericeeshsrmwiios 31

8: 1k Feature, (escHptong iiisais. i iines . S ivn . adhabtile. ; §ivsiuess stk opts 31

8.1:2 Hypotheses Generation v it n ail b 5o iy ST sy sy e syessse s Fisd 32
8:2'Word Hypeétheses Verlfleation .. ./ 5. k. Sl siaisi. aa 34
8.2 1""Reduttion’ef thelCanididate Sets. . o). Jni DR R R LSRR 34

8.2:2 Global Canditiate ‘Assessment!. 2. ST TR L u G il B BAM 35

8.3 Dictionary Organization and Access Mechanisms..................... 36
R SRR . et s ok s e b G wit s o Bt s 38
el BSOS RNES OEAEIEBREER . o i huss s amrsasnisfbole i Ematrbioth et R s 40
9.1 Encoding the structure of addresses.............ccccevvvvvieviveeneeeeeennnnnnn 41
O Ve IR e TR o A JAE D oa0 i B L MO IRIo L 41
S T A RO RN AP R S R ARy e 43
.0 ORI Tl DIRORBRAORE . i i s i ety 44
BERRRINEE WORIE s ity ettt sisssbons sttt animanii I 47
ConbRESIONS: (01 L a TR vk S0l IRNESa TR AR a S OGN Al A AL STIBA L] 49
Lo S R A I Ll B S S B A e AR RSB SO 51

RR-92-02

1 INTRODUCTION AND SYSTEM OVERVIEW

In the last years, many people have proclaimed that computer technology is going to
provide an office environment where paper would be obsolete. Despite the efforts that
have been made, it appears, however, that offices produce more paper than ever before
(ISchafer & Froschle 86], [Hough 89]). One obstacle to realize the paperless office is the
fact that standardization of existing systems and means for external communication in
connection with high-speed networks are still lacking. But the biggest handicap lies in
the also lacking capabilities of how getting existing paper documents into a computer
(paper-computer interfaces) and moreover, how to represent and process them once they
have been acquired.

Office tasks are distributed processes that comprise a sequence of information
processing steps in which different clerks are involved. As a means for communication,
documents play the central role for exchanging any kind of information.

Generally, information may be of different modes, for example, text and graphics as
well as raster images, formulas, and tables. However, documents are not only charac-
terized by their individual contents, but also by a logical organization into components
that relate to a human perceptible meaning, called logical objects, e.g. the author of an
article or the recipient of a letter. This logical structuring is done in order to enhance the
comprehension of a document’s contents. For visualization (displaying or printing), the
information is formatted by defining corresponding two-dimensional presentation

aspects such as positions, shapes, and styles. The resulting layout structure, verified by a
certain block order, line spacing, number of columns, etc., underlines the originator’s

intention of logical document organization.

Usually, a document is locally generated by a given (in-house) document processing
system. Document interchange, by contrast, often takes place between different and
heterogeneous systems. In order to ensure that the processing of the document’s
components at the receiving end is consistent with that of the originator, a fundamental
common understanding of the structure of a document is necessary. Consequently, using
a well-known and accepted standard for the representation of structured documents
might be a promising vehicle solving all these problems of exchange. In IEEE Computer
of October 1985 ([Horak 85]) the international standard representation for office
documents ODA (Office Document Architecture) [ISO8613] has been presented. This
standard provides constructs for the representation of documents enabling their
interchange between open systems.

In the daily practice of modern offices, many companies rely on converting existing
as well as incoming paper documents into an electronic representation that allows for
information management including content-based retrieval and distribution. If it would
be possible to convert or transform printed information into an electronic standard
representation, it is not relevant whether the information is transmitted by electronic
means or by paper. As a consequence, both, paper documents and electronic ones are
represented by the same formalism, and may be further processed by the same software
tools.

In this report, we present our document analysis system IIODA (Paper Interface to
ODA). IToDA is a model-driven system bridging the gap between paper and computer.
Furthermore, the system is based on the ODA platform according to the ideas described
above. To support and to improve document analysis, various knowledge sources such as

RR-92-02 3

Introduction and System Overview

typesetting knowledge, geometric knowledge, and lexical or syntactic knowledge are
integrated. Exemplarily and rather pragmatical, the system is devoted to a particular
class of documents, the domain of business letters. The inherent modularity of the
system, however, allows a reuse of knowledge sources and constituents of the
architecture in other document classes such as forms or cheques. Figure 1 gives an
impression of our system including the underlying document model. Note that this
architecture will be refined in later chapters.

Paper
" | avour | vLoaicaL TEXT TEXT ‘
el Symbolic
———————— EXTRACTION LABELING RECOGNITION ANALYSIS 5
o Representation

Optical
Scanning

Document Architecture Model

Figure 1: System architecture of IIODA.

The entire system comprises several interlocked phases of analysis: Layout ex-
traction includes low-level processing such as image capturing, skew angle adjustment
and segmentation to investigate the layout structure of the given document ([Dengel 92]).
While logical labeling identifies the logical structure of a business letter ([Dengel 92]),
text recognition explores the captured text of logical objects in an expectation-driven
manner. By this way, word hypotheses are generated and verified using a dictionary
([Hones et al 90]). Finally, a partial text analysis component syntactically checks some
simply structured objects (sender, recipient, date). As output, [IODA produces a symbolic
representation of a business letter conforming to the ODA standard.

Our report is organized as follows: Chapter 2 considers international standards for
the representation of electronic documents and motivates why it is advantageous to use
ODA for document analysis. While Chapter 3 gives a brief survey of ODA and explains the
corresponding document architecture, Chapter 4 discusses the similar document
modeling of TTODA and corresponding extensions with respect to document analysis.
Subsequently, Chapter 5 exhibits more details of our system architecture and processing
steps. The following four chapters describe all phases of analysis in detail: layout
extraction, logical labeling, text recognition, and text analysis. These phases are
illustrated by a general example. Then, Chapter 10 takes account of similar approaches
and related work. Finally, Chapter 11 concludes the report and points to our current
research activities.

4 RR-92-02

2 STANDARDS FOR THE REPRESENTATION OF STRUCTURED
DOCUMENTS

In the last years the transfer and processing of electronic documents have taken a
central role in the field of office information systems. Hence, standards become more
and more important being a prerequisite for a successful exchange of documents between
heterogeneous systems.

Primarily, two international standards in the domain of office information systems
have been developed and used in several (prototypical) systems: the Office Document
Architecture and Office Document Interchange Format (ODA/ ODIF)2 (cf. [ISO8613],
[Horak 85]) and the Standard Generalized Markup Language (SGML) (cf. [ISO8879], [Bryan
89)).

Both standards provide formalisms for document structure representation, in
especially, for defining the logical structure of a document. This logical structure divides
the contents of a document (text, graphics, images) into logical entities that are
associated with an author's intellectual meaning. For example, a business letter may be
divided into logical objects such as sender, recipient, subject, and body. In SGML, this
formalism is described through so-called document type definitions (DTD's), while in
ODA it is designated by a generic logical structure of a document. The concept of logical
structure will be detailed in the next chapter.

Another possibility to consider the organization of a document is by its layout. The
layout structure is determined by hierarchically nested rectangular blocks. These may be
entire pages, graphic frames, image frames, and text frames, while the latter ones may be
further subdivided into lines, words and characters. Both structures, layout as well as
logical, are strictly hierarchical and express two different but complementary views to
the contents of a document.

In contrast to ODA, however, SGML does not support a description of the layout
structure of a document for reasons of simplicity and universality. SGML is designed for
the representation of any kind of structured text. For instance, SGML is typically used in
a publishing environment, where an author logically marks up a document's
components and the publisher performs all future processing such as copy-editing,
proof-reading and production, including the final distribution. In this closed
application area, standardized layout characteristics are less important. In contrast, the
scope of ODA covers office documents (business letters, reports, forms) in particular. An
office environment requires that documents may be sent to arbitrary recipients allowing
for an automatic reproduction and interactive modifications of the document at the
receiving end.

To complete the discussion about standards, a third and more commercial standard,
named EDIFACT (Electronic Data Interchange for Administration Commerce and
Transport) (cf. [ISO9735], [Frank 91]) should be considered here. EDIFACT specifies the
structure and formal semantics of a data stream for exchanging fixed and predefined
types of business letters, called message types, and enables further processing of the
message content. Each message type description includes optional or mandatory

2 ODIF is a convention how ODA structures are mapped into a corresponding data
stream for electronic exchange. Because this article is concerned with aspects of
document modeling, we neglect ODIF in the following.

RR-92-02 5

Standards for the Representation of Structured Documents

segments (records), data element groups, or data elements respectively. Such elements
represent logical components of a document; any layout information is taken away. At
moment, only two message types for business letters, invoice and order, have been
standardized ([Frank 91]).

Note that a multitude of in-house styles have also been developed (e.g. Interscript,
Scribe, DCA), but a discussion is beyond the scope of this report (for details see also
[Joloboff 89] and [Quint 89]).

Since low-level routines of document image analysis mainly focus on layout and
presentation aspects (e.g. skew adjustment, block segmentation), we base the document
model of our analysis system on the ODA platform, but we enhance the standard to the
requirements of document analysis as needed. Moreover, logical elements identified and
captured by EDIFACT message types have a strong influence on the design of our logical
model of business letters.

The next chapter gives a short introduction to the concepts of ODA emphasizing
crucial points with respect to our IIODA system.

6 RR-92-02

3 DOCUMENT ARCHITECTURE MODEL IN ODA

One of the most characteristic features of the document architecture model of ODA
[ISO8613] is a strict separation between the contents of a document and its structural
representation. Consequently, the notion of structure is a key concept of ODA (see also
[Brown 89)).

In ODA, there are two distinct, but complementary structures of a document, the lay-
out structure and the logical structure. Both structures are represented by a tree whose
nodes correspond to document components (layout objects, logical objects). The leaves of
each tree are associated with specific content portions of a document. An object that is
not subdivided into smaller objects (i.e. a leaf of a tree) is called a basic object in ODA. All
other objects are called composite objects, in especially the document root of each tree.
By this way, ODA provides a hierarchical and object-oriented document model.

ODA defines the following types of layout objects in the document architecture:

e block: a basic layout object corresponding to a rectangular area on the
presentation medium containing a portion of the document content;

e frame: a composite layout object corresponding to a rectangular area containing
one or more frames or blocks;

 page: a basic or composite layout object corresponding to a rectangular area on
the presentation medium, or containing one or more frames or blocks
respectively;

e page set: a set of one or more page sets or pages;

e document layout root: the highest level object in the hierarchy of the layout
structure.

For logical objects, the classification is less concrete comprising the types basic
logical object, composite logical object, and document logical root. Hence, logical objects
(e.g. of a business letter) are strictly application-dependent (e.g. sender, recipient, ...).

In a document, layout objects as well as logical objects can often be classified into
groups of similar objects, the so-called object classes. An object class is comparable to
the well-known class concept in object-oriented programming paradigm. Such a class
can be considered as a specification of characteristics, a pattern, that is common to its
members. The specification includes methods for creating new objects, methods to
determine the values of the object attributes, and methods to control the consistency
among objects.

Using these object classes, the logical structure of similar documents can be modelled
by a set of logical object classes. Analogous, their layout structure may be composed of a
set of layout object classes. This approach is called the generic structure concept. Generic
structures (generic logical structure, generic layout structure) provide a means for
defining document classes or "styles" that define the types and combinations of objects
allowed.

In ODA, the structures that are particular to a given document instance are named
specific logical structure and specific layout structure. Consequently, the generic logical
structure represents a set of rules from which specific logical structures are derived
during the editing process, while the generic layout structure comprises rules from which

RR-92-02 7

Document Architecture Model in ODA

specific layout structures are derived during the formatting process. Figure 2 shows the
example of a business letter and both specific structures.

specific layout structure contents specific logical structure
graphics block
DRERASK
| o) e 0
%‘-ﬂ_" 3
e i sender l—
Ne Androns.
—{toxtbiock } R oo i e D
EE-
[rage v subject { letter |
text block B> | B yrew bt of by 21 1900 | ey date §1—
text block
Dear De, Dangels
Thadh yous An yuue nscrost s ShyTeal

Y

text block I-ﬂ-ﬁp:l-.whh-{- comvtate of @ E_
--—-,Eh“—'o-
pusshace eset o the hardeass e § 0 000 and sns solbwars ovase
03 Up 10 § J 000,

P Rl uestan, s we,

Sinerrely.
/7“‘

hics block >

Ranay erpensiern
MaActuy Deocus

Figure 2: A specific business letter represented in ODA (simplified).

All objects of a document are supplied with specific characteristics or properties,
known as attributes in ODA. Attributes control document generation, in particular its
process of editing, layouting and imaging (processing model). Each attribute is identified
by its name and has a value that describes the property or also identifies constituents
(construction and relationship attributes).

The set of attributes associated with a document as a whole can be categorized into
layout attributes, logical attributes and shared attributes. When applied to object
descriptions, these attributes are either mandatory, non-mandatory (i.e., optional), or
defaultable (i.e., the attribute need not be specified for the constituent and the
corresponding value can be derived using a defaulting mechanism). Layout attributes are
further classified into property attributes (positions, dimensions), formatting attributes,
imaging attributes (imaging order, transparency, color, page position), and with respect
to content type, into presentation attributes. Logical attributes define e.g. protection
rights and layout styles. Shared attributes can be specified from both logical objects and
layout objects; they are subdivided into

* identification attributes (object type, object identifier, object class identifier),
* relationship attributes (subordinates, content portions, presentation styles),
e content architecture class attributes (content architecture class, content type),
* miscellaneous attributes (user-visible name, comments, bindings), and

* construction attributes (generator-for-subordinates, content generator).

The latter ones are responsible for controlling the generation of subordinate objects
and for controlling the generation of content.

Additionally, there are attributes which are attached to so-called layout styles (block
alignment, fill order, offset, concatenation, indivisibility, separation, etc.), presentation

8 RR-92-02

Document Architecture Model in ODA

styles (dependent from content architecture) and content portions (identification
attributes, common coding). Presentation styles affect the layout and imaging of the
content associated with basic objects and hence are content type specific. In contrast,
layout styles only affect the layout of objects, not their content. While presentation
styles control the mapping of content portions into layout blocks in a first stage, layout
styles place these blocks into appropriate pages and frames onto the presentation
medium in the second stage. For that purpose, there are no conflicts in processing both
styles.

One important type of attributes should be described in more detail, namely the
generator-for-subordinates attribute. This attribute defines how an object of a document
is built up from subordinate objects and combinations of these subordinates, e.g. a text
line may be built up from several words, or the recipient is built up from name, street,
city, and country. In addition, the generator-for-subordinates specifies an ordering
among these subordinates. It can best be thought of as construction mechanism.
Subordinates of an object may be optional (OPT), required (REQ), repetitive (REP, i. e.,
one or more occurrences), or optional repetitive (OPT REP). The relationship between
subordinates may be expressed as a sequence (SEQ, sequential order), an aggregate (AGG,
any order) or a choice (CHO, i. e., only one subordinate of a group occurs). For example,
the body of a business letter can be a sequence of the logical objects "salutation"
(required), "paragraph" (repetitive), "regards" (optional), and "signature" (required):

SEQ (REQ (salutation), REP (paragraph), OPT (regards), REQ (signature))

As mentioned above, the ODA standard specifies that only basic objects (logical as
well as layout), can be associated with content portions of a concrete document. These
content portions may have a more detailed internal structure depending on the type of
content.

The rules for processing different kinds of document contents are known as content
architectures. Currently, ODA defines three types of architectures: character content
(ASCII code), raster graphics content (images) and geometric graphics content (graphics
primitives). The contents of a basic logical object or a basic layout object is structured
according to only one content architecture.

The character content architecture comprises presentation attributes and control
functions that control the form and positioning of all ASCII characters. For instance,
characters are placed left-to-right starting at the top of a layout block and progressing
downwards. Other arrangements are allowed. Relevant content attributes are character
path, line progression, alignment, initial offset, orphan size, and so on.

A raster graphics content portion represents a two-dimensional pictorial image in the
form of a rectangular two-dimensional area of pixels. A large set of attributes is used to
control the presentation of image information, such as line progression, path
information, origin, dimensions, clipping region, etc.

At last, the geometric graphics architecture describes graphical primitives like lines,
rectangles, circles. It is entirely based on the Computer Graphics Metafile (CGM)
standard.

The following chapter shows how the philosophy and concepts of ODA are pursued for
the analysis of business letters.

RR-92-02 9

4 DOCUMENT ARCHITECTURE MODEL IN [IODA

Document analysis is a transformation problem, whereby the entire image of a
digitized document page has to be explored and converted into a corresponding symbolic
representation. The effectiveness of model-based analysis depends on the certainty and
completeness of the underlying model. Because any document is characterized by its
contents and its internal organization, we have developed a document architecture
model that obeys the ideas of ODA, but is extended in some parts that are fundamental
for document analysis.

Primarily, ODA has been developed as a guideline to represent and interchange
document structures that are electronically generated or at least electronically
available. However, the formalism can also be related to other media that capture
documents in a two-dimensional structural representation, e.g. paper or microfiches.

While generating an electronic document in ODA, the entered content portions are
related to specific logical objects (editing process) as well as to specific layout objects
(formatting process). The first task is done manually by the originator of the document.
The second task is performed automatically and is intended to produce a paper
document.

In TIODA. by contrast, the problem is to transform document structures from a non-
electronic medium, like paper, to the electronic medium. Here, following questions arise:
how to extract automatically specific layout objects from a given document image, how
to identify the specific logical objects of the document and, finally, how to relate specific
layout and logical objects.

For that purpose, various knowledge sources are incorporated into the document
architecture model of IIODA. The knowledge sources and their usage are:
¢ formatting knowledge is used in form of distance parameters during layout
extraction,
* geometric knowledge describing logical object arrangements employed for
logical labeling,
¢ lexical knowledge is needed in text recognition and text analysis tasks,
* syntactic knowledge is taken for partially text analysis of single logical objects.

Figure 3 schemes the document architecture model in TToDA inclusive the knowledge
sources attached .

The entire model in ITODA is composed of a two-layered architecture:

* a meta layer providing a framework for defining object classes of the several
structural views, namely, layout view, and logical view;

* a generic document class layer that reflects the generic structure of a specific
document class, such as of business letters.

The following sections focus on the document architecture model used in [TIopA by
giving detailed information about the facilities for different document structure
representations. First, the meta layers of the two views are described. Second, the
patterns for layout objects as well as for logical objects are presented in the context of
business letters. Thereby, the generic structural representation of business letters is
proposed.

10 RR-92-02

Document Architecture Model in [IODA

NN

Typesetting Knowledge
%ﬁc Knowledge

Syntactic Knowledge

Lexical Knowledge

Figure 3: Document Architecture Model in ITODA.

4.1 Meta Layer

In the former discussion about ODA, formalisms for describing object classes
including different sets of attributes and special construction operators have been
introduced. Therefore, the meta layer of the document architecture in IIODA provides
mechanisms for defining object classes, for relating object classes to another, and for
attaching additional knowledge which is required for an analysis. According to the two
structural views used in ITODA, the following paragraphs describe layout as well as
logical aspects. For both, layout and logical object class generation, the meta class
concept of the object-oriented paradigm is transferred to the IIopA-model.

4.1.1 Meta Layer Layout Description

At least, the attribute specification of the layout meta class has to cover relevant
features which are required for representing a document’s presentation with respect to
document image analysis and document representation in an ODA conforming manner.
Consequently, a classification of these attributes is useful.

All attributes are applicable either to object classes or object instances, or to both.
While creating an object class as subclass of the meta class, all attributes are inherited
automatically and only values for object-class-attributes and shared-attributes may be
defined. In contrast, by instantiating an object class, only the instance-attributes as well
as the shared-attributes including the default values are inherited. As in the object-
oriented programmng, values of the object-class-attributes are only readable. After
instantiation the instance-attributes may be filled and the values of the shared-
attributes considered as default may be changed.

Figure 4 shows the layout meta class of the [IoDA-model containing typical attributes.
Moreover, basic methods, e.g. for creating objects or accessing values, are indicated.

RR-92-02 11

Document Architecture Model in [IODA

(Layout Meta Class)

(* Object Class Identifier

. Genoralor for Subordinates |object-class-attributes

shared-attributes

instance-attributes

generate, initialize,
attribute value access, methods
display, tree traversal, ...

Figure 4: Layout Meta Class.

Most of the attributes are ODA standard attributes for layout objects, e.g. object class
identifier, position and dimensions which are mandatory. Additionally, any important
optional ODA standard attributes, such as generator-for-subordinates, are incorporated.

Some attributes, however, are additional defined as IToDA extensions. Once, there is
an attribute to store intermediate results of the analysis, but also attributes are included
that enable an attachment of knowledge portions assisting the analysis process. The
knowledge portions are object dependent information used from several experts for
expectation driven analysis. Additional instance attributes are introduced, one for
representing the relationship superordinates to refer to the parent instance — inverse to
subordinates — and one for showing the actual content type hypothesis of layout objects.
The explicit representation of the superordinates relationship facilitates any analysis
tasks, especially bottom up oriented strategies. The content type hypothesis is needed as
a flag indicating the hypothesized mode of information, text or non-text.

For the IMODA attribute intermediate results, a list of name-value pairs may be
specified. The name identifies the type of result, e.g. character hypotheses (see Chapter
8.1), and the value quantifies the corresponding data. In this way, object related results
depending on algorithms used for document analysis are available for the whole
analysis task.

Furthermore, a list of name-value pairs can be associated with the [TopaA attribute
typesetting knowledge. For example, the maximal horizontal as well as the maximal
vertical permissible distance of layout objects may be defined (cf. Chapter 6).

4.1.2 Meta Layer Logical Description

Analogous to the definition of the layout meta class, however, focussing on the logical
view, attributes for the logical meta class are specified. The resulting description is
shown in Figure 5.

12 RR-92-02

Document Architecture Model in [IODA

object-class-attributes

shared-attributes

instance-attributes

generat
attribute value access, methods
display, tree traversal,

Figure 5: Logical Meta Class.

The set of TIODA specific attributes is treated in the same manner as those in the layout
meta class. For example, intermediate results may be relations from logical objects to

layout objects, stored explicitly in the object during logical labeling.

Finally, three attributes for knowledge attachment are incorporated. Geometric
knowledge is used by logical labeling to identify logical objects. This knowledge
comprises, for example, that the recipient is located in the upper right part of a business
letter (for details see Chapter 7). Lexical knowledge corresponds to groups or clusters of
words, for example, including all names of employees that are possible recipients of a
business letter sent to a company. This knowledge is mainly used for verifying text
recognition results (cf. Chapter 8). Syntactic knowledge is concerned with syntactic
structures of textual content of logical objects and assists text analysis and verification.
For instance, text within the logical object recipient can be described by a simple context
free grammar with attributes (cf. Chapter 9).

ODA standard attributes of both, layout and logical, are explained in the ISO standard
[1ISO8613] in detail.

4.2 Document Class Layer

In this section, a concrete document class model for business letters is established. In
particular, layout and logical object class descriptions on the basis of their
corresponding meta classes are introduced. The resulting architecture serves as a basis
for an automatic transformation of scanned letter images into an ODA conforming
format.

4.2.1 Layout Object Classes

In IToDA, the document class layout part is used for directing the analysis, especially
document segmentation following a model-based approach. In this sense, the
segmentation creates a specific layout structure according to a generic layout structure.

RR-92-02 13

Document Architecture Model in IODA

For establishing the generic layout structure of a document class (e.g. business letter),
one has to define appropriate layout object classes and structurally compose them,
similar as in the ODA standard specified. A layout object class is a subclass of the IToDA
layout meta class with initialized attributes. Figure 6 exemplary shows layout object
class "LINE".

(Layout Object Class LINE)
Object Class Identifier ~ 110(line) N\

Generator for Subordinates REP (wol
. Content Archttscture Class NiL

Figure 6: Layout Object Class "LINE".

As mentioned above, the generator-for-subordinates provides facilities for a
structural combination of object classes. In this sense, an entire generic layout structure
for business letters can be attained (cf. Figure 7).

e R
REP

block
C (composite)

IREP

)
((corrlli;:site))
)

REP

word
C (composite)

REP
(cﬁara&e‘r‘"j
(composite)
REP
connected-component
C (basic))

Figure 7: Generic layout structure for document class business letter.

14 RR-92-02

Document Architecture Model in [IODA

For image analysis of a given document, the declarations of ODA are not specific
“enough and the objects defined are to abstract. Thus, it is necessary to redefine the layout
structure of ODA by objects which correspond to the layout primitives resulting from
document image processing, e.g. characters and connected components of image pixels.

4.2.2 Logical Object Classes

As in the layout, a generic logical structure and the containing object classes are
applied for both, directing model-based analysis and representation of a given
document. That means, the specific logical structure is successively, but partially
generated during logical labeling (see Chapter 7) according to the generic logical
structure. While performing text analysis and verification, the specific document
structure is completed.

The generic logical structure of a document class consists of logical object classes
which have to be defined at first. They capture attributive descriptions of logical
document components which comprise ODA standard attributes as well as attributes
that are needed during the analysis.

Figure 8 shows the logical object class "RECIPIENT" filled with specific values.

(Logical Object Class RECIPIENT

[Ob]ect Class ldentrﬁer

Figure 8: Logical Object Class "RECIPIENT".

Within the document architecture model of [ToDA, we have specified the following
logical object classes for business letters. First of all, a grouping in three parts is
performed: the letter thematic part contains the subject and the body of a letter; in the
sender specific part objects such as sender, sender short form, company logo, and
company specific printings are incorporated; the procedure relevant part is composed of
relation data, e.g. "your sign" or "our sign", date, and the recipient. These object classes
are structurally related and constitute the generic logical structure of the document class
“business letter” (see Figure 9).

RR-92-02 15

Document Architecture Model in [IODA

(business letter)

AGG
REQ | REQ |rREQ
(letter thematic parts) (sender specific parts) Lprocedure ERRNSIN Lavee)
AGG OPT ,—-A—IGG
REQ OPT CH:EQ i

(ltetter body) (subject) recipient relation data
: gt T
(regards)... (salutation) (s,ender short form) @ ESENE T T

dat
(company specific printings) @

Figure 9: Generic logjcal structure for document class business letter (incomplete).

Any logical object class, such as letter body or recipient, may be further subdivided
into basic logical objects. As example, the definition of the logical object class in Figure 8
constitutes the refined logical structure of the recipient. Because in this paper the
recipient is focussed as example for the analysis tasks, especially for text recognition
and text analysis, this logical object is illustrated in more detail shown in Figure 10.

(recipient >

SEQ
OPT [ReQ CHO REQ | |opT
(tite) (Cname) REQ [———]REQ ((place) (country)
SEQ (street) ("box number) SEQ |
lopT REQ |REQ OPT OPT
(degree) (first name) ("last name)
REQ = JREQ REQ 5 58

((strestname) (" number in street) (#ip code) (_place name)

Figure 10: Generic logical structure of object "recipient”.

So far we have proposed the document architecture model of [ToDA without detailed
discussion of the attached knowledge portions. This knowledge is described in the
chapters of each analysis task where it is used. Moreover, all analysis tasks are
explained in detail in the following chapters emphasizing how they are influenced by the
overall document architecture model.

16 RR-92-02

5 ANALYSIS OVERVIEW

- So far we have presented our architecture model providing both a layout and a logical
view on a document. In the following we describe the distinct phases of analysis and how
they make use of the model.

Document analysis can be seen as an automatic transformation of printed
information into an electronic representation. More than that, it may be viewed as an
automatic generation of an electronic document by electronically reproducing some
non-electronic document. The document architecture model described above provides a
variety of knowledge for such a reproduction.

Both, the layout structure and the logical structure are essential knowledge sources as
well as an excellent orientation point for model-based document analysis. They enable
an understanding of scanned document images and their transformation into an ODA
conforming representation.

Within the ITODA-system, these structural views on a document serve as a basis for
several processing components. These are: layout extraction, logical labeling, text
recognition and partial text analysis. Figure 11 illustrates these phases indicating their
tasks, the underlying document architecture model and specific knowledge sources.

b e AR
. _ EXTRACTION LABELING | RECOGNITION | ANALYSIS

T—— '-°;”"-°"°' Logical Object | § | Character |} % Symbolic
= mage Generation Generation e ey Representation
i Processing : Syntax

Optical s°°'“';""““°" | | Logical Object |] Word — :
Verification [i“] Verificaton fi = AT

Document Architecture Model

Typesetting Knowledge

Generic Layout Structure Generic Logical Structure

W W Ca

N

Geometric Knowledge

Syntactic Knowledge

Lexical Knowledge

Figure 11: The IIODA system — analysis steps and architecture model.

In a first step, [IODA takes the scanned document image and extracts a part-of
hierarchy of nested layout objects, such as blocks, words, and characters, on the basis of
their presentation on the sheet. For layout extraction, low-level image processing is
initiated. It includes image capturing and skew adjustment procedures searching for the
dominant linear structure in the optically scanned document image to determine the
captured skew and to enable an internal correction. In a further step, a top-down
procedure stepwise refines the physical structure of the captured information, to

RR-92-02 17

Analysis Overview

separate text from non-text regions, and to map the different physical components into a
tree-like nested layout structure.

Subsequently, in a step called logical labeling, the layout objects extracted from the
image and their compositions are geometrically analyzed to identify corresponding
logical objects (e.g. sender, recipient, date in a business letter). This step is divided into a
logical object generation and a logical object verification task. First, the layout structure
is investigated for object arrangement providing hypotheses about the existence and
arrangement of logical objects. For verification, geometric rules that describe local
geometric properties of individual logical objects are applied. As a result, the system
generates logical objects that are related to one or multiple layout objects.

For further processing, PODA is restricted to recognition and analysis of text regions,
initially the recipient of a business letter. Therefore, all non-text layout objects are not
further considered and stored in a compressed form. The relations of layout objects and
logical objects are fundamental representing implicit restrictions of context.

The layout objects “WORD” are the starting point for the phase of text recognition. In
other words, the image contents of single word-blocks are taken as input to generate a
sequence of character hypotheses that might form a word. Subsequently, the character
hypotheses are verified using a word candidate generator. In I[IODA, the identification of
logical objects serves as a basis to initiate a context-sensitive text verification. So, the
word generator checks character hypotheses against lexical knowledge associated with
specific logical objects and representing a restricted view to text parts of a letter (e.g.
possible employee or city names).

Finally, those logical objects which are characterized by a high degree of syntactical
text structure are partially analyzed within text analysis. For that purpose, different
grammars for each logical object involved — in this report the recipient — are given as
input to a syntactic parser. During this syntactical check, the logical structure is further
refined according to the document model. For example, the recipient is divided into
name and destination, while the former, e.g., can be refined into title, first and last
name, abbreviations, etc. Moreover, analyzing the text of logical objects, results of text
recognition are additionally verified. In this way, for example, the recipient name of a
business letter can be determined and verified.

As output, TIODA produces an ODA conforming symbolic representation of a document
originally being captured on paper. Now, the document is available for any further
automatic processing such as filing, retrieval or electronical distribution.

In the following chapters all analysis tasks — layout extraction, logical labeling, text
recognition, and text analysis — are discussed in detail using the business letter shown in
Figure 12 as general example.

18 RR-92-02

Analysis Overview

Karnevalsgesellschaft Geierfalken

Verein zur Forderung von Brauchtumi und Gesellschaft

Herrn

Andreas R. Dengel
DFKI GmbH
Postfach 2080

D-6750 Kaiserslautern

Mltglled im Bund Deutscher
Karneval e.V., Kéln

Teilnahme an der Prunksitzung
Bietigheim, den Ol.Nov.1988
Sehr geehrter Herr Dengel,

wir bedanken uns fiir Ihr Interesse an unserer jahrlichen Prunk-
sitzung in der Festhalle zu GroBsachsenheim. Wir, die erste groBe
Karnevalsgesellschaft Geierfalken e.V. aus Bietigheim-Bissingen
mochten Thnen folgendes Angebot unterbreiten:

Kategorie Eintritt Menii
J bl DM 25,-- DM 45,--
B DM 35,- - DM 65,--

Die Veranstaltung findet am 18.02.1989 in der Stadthalle zu GroB-
sachsenheim statt. Saaloffnung ist voraussichtlich um 19.00 Uhr,
Einmarsch der Aktiven um 20.01 Uhr. Die Programmdauer betragt
2 Stunden, die anschlieBend mit 2 Stunden Tanz abgerundet
werden.

Wir bitten Sie, moglichst friihzeitig Reservierungen zu titigen,
damit Sie moglichst gute Plitze erhalten. Fiir weitere Fragen stehe
ich Ihnen gerne zur Verfiigung.

Mit freundlichen GriiBen

Walter Lachmut
1. Vorsitzender

Figure 12: Business letter example.

RR-92-02 19

6 LAYOUT EXTRACTION

The layout extraction phase actually comprises two tasks: low-level image processing
— consisting of image capturing, skew angle detection, and correction — and extracting
the layout by segmenting the electronic image.

Although often neglected, this phase is as essential for the whole system as are the
others, since the result of preprocessing is used as input by subsequent analysis steps.

6.1 Low Level Image Processing

For obtaining a first electronic representation of a paper document, we use an optical
scanner. A scanner just provides a raster image, i.e. an ordered set of millions of isolated
raster dots (pixels), of the paper copy. IIoDAobtains bitmaps at a maximum resolution of
300 dpi (dots per inch) from the scanner.

The result of image capturing is an instance of the class document layout root, i.e.
“PAGE” in our model, which contains the bitmap data as an intermediate result.

For further processing of the scanned image it is usually required that all text lines
are oriented horizontally on the page. Because this is often not the case (e.g. if the
document was produced on a worn-out typewriter or the scanner was operated
inaccurately), in a preprocessing step the skew angle in the raster image is determined
and subsequently adjusted.

Several well-known methods for skew detection and elimination [Dengel 90] exist. We
prefer Postl's Simulated Skew Scan method [Postl 86] in IIODA. As the name imposes, the
raster image is virtually scanned at different angles. The alignment of pixels at each
angle gives a measure of evidence. In fact, for the detection only parts of the document
image, i.e. samples arranged to a coarser raster, are used. The sample raster is rotated
continuously, and at each angle a so called premium number is computed, reflecting the
degree of uniformity between simulated and actual angle. The premium is given by
summing up the squared distances of neighbouring sample pixels. Those pixels placed
beyond the original raster bounds by the simulated skew are considered as being white.
So the highest premium is usually computed when simulated and real skew meet. This
method is relatively expensive, but very reliable. It is mostly insensitive to noise and
independent on font types and sizes. However, in rare cases graphics may fool the
detection. Tests confirm that it is normally sufficient to simulate angles from -4° to 4°,
stepped by 1°.

The original raster is replaced by an adjusted copy, if a skew angle other than O is
detected. The simple, but costly correction displaces all bits to the position
corresponding to a rotation by the inverse skew angle. Unfortunately, this also leads to a
slight dismembering of pixel clusters in the resulting raster.

Although this raises diffculties for character segmentation and recognition, skew
angle correction is required for top down segmentation of the raster into layout blocks.

20 RR-92-02

Layout Extraction

6.2 Segmentation and Classification

~ The principal task of document layout extraction is to determine nested layout objects
like pages, blocks, and lines. Consequently, the entire document can be represented by its
layout structure. This function is often referred to as document segmentation. Our
document architecture model (see Section 5) describes the possible layout classes of
IODA.

We use two segmentation methods to extract the complete layout from blocks down to
connected components. The first one serves to extract paragraphs, lines, and words of the
real document in a top-down manner. Subsequently, the second technique takes word
images to bottom up search for connected component (of black pixels) and character
images.

In the first segmentation method called Smearing which is derived from the Run-
Length Smoothing Algorithm (RLSA, [Wang & Srihari 89]) all black pixels within a
certain horizontal and vertical distance are connected by blackening the in-between
(non-black) pixels. Whenever a raster has been smeared the contained layout objects are
determined. By simply running down the boundaries of all smeared areas, the
coordinates of their respective enclosing rectangles are determined. Each segment
obtained is represented by a layout object containing these coordinates, which also serve
as a link to the corresponding image.

Beginning with the root class — which in the current model corresponds to the raster
image of a full “PAGE” — instances of layout objects are created and further segmented
using the typesetting knowledge prepared by the according generic layout class. Thus, the
method recursively proceeds with a big threshold analyzing the “PAGE” and extracting
the subordinates of class “BLOCK". The line structure inside the “BLOCK"s is
reconstructed by repeating the process with a smaller threshold on all blocks. In the
same way words within lines are segmented.

The distinction between text and graphics objects is done by checking segment size
and number of subordinates. This is unsatisfactory, but gives us tolerable results, since
we do not want to analyze graphics but treat documents consisting mainly of text. Objects
supposed as graphics by these criteria are denoted in the content-type-hypothesis by the
value “NON-TEXT".

The Smearing method is an adequate technique for segmenting down to word level
and easily to implement; disadvantages are its sensitivity against mixed font sizes and
high impact of image resolution on the performance.

Figure 13 schemes input and output of Smearing: the input raster, and the final layout
structure.

RR-92-02 21

Layout Extraction

Raster Image

Karnevaisgeselischaft Gelerfalken

Versia zur Forderung voa Branchtum und Gesellschaft

Herrn

Andreas R. Dengel
DFKI GmbH
Postfach 2080

D-6750 Kaiserslautern

Teilnahme an der Prunksitzung

Bictigheim, den Ol.Nov.1988

o) B e Y

e Result of Segmentation |

RefLell BN Jorderung gon BIdueniuig MG Aessllschal

Bes: - v

Andread R] PenEcl e
DFKXLmbE A R
Posach _PORO |

=573 KAIsCralaulern AT
',:_" ['{ v
Mitglied im Bund Deutscher

| Kaneval ¢V, K8ln |

prctigheim] tes (11 NOYIPHY

Cehitc ngeo
QY R O R g e)

Figure 13: Segmentation of the example letter by Smearing.

22 RR-92-02

Layout Extraction

After Smearing, the second method is applied in order to segment the word images
into character segments. This needs a finer method and cannot be done by Smearing. Our
approach uses chain code descriptions to encode the contours of “CONNECTED-
COMPONENTS". By investigating the word raster for certain patterns, starting points for
inner and outer contours are determined. Starting at these points, the entire word image
is tracked for contours. The underlying technique ([Hones et al 91]) considers the nesting
of inner and outer contours and therefore, represents them by a recursive nesting of
“CONNECTED-COMPONENTS".

The vertical arrangement of “CONNECTED COMPONENTS" is used in order to group
them to “CHARACTER"s. This also requires knowledge about the allowed overlap
between “CONNECTED-COMPONENTS”.

The approach is rather time consuming, but allows to extract layout structures of
arbitrary depth. A hierarchy of layout objects is displayed with a browser in Figure 14.

ER————— Segmentation Browser for Geierfalken %

/

' i','-':' '{ !ﬁ e
Mitglied im1 Bund Deutscher
Karneval e.V., Kéin

/ /
[Andreas R. De
G e Denge)

Andreas R. Dengel _[DFK1l

F osth 2080 \E @E’I@

-67350
750 Kaiserslauters—D-6750 Kaiserslauterd o
fi Kaiscrsls]

)
(] [

AR AHRR

Figure 14: System browser’s view of the segmentation result of the recipient.

RR-92-02 23

Layout Extraction

A typical specific layout together with the underlying generic layout structure is
schematically shown in Figure 15.

Object Identifier: W37
Object Class: WORD
Subordinates: (C69 .. C76)
Superordinates: (L12)

Position: VP = 2, HP = 205
Dimensions: VD = 18, HD = 145

Figure 15: Represention of the result of model-based segmentation.

Now, IIODA has extracted the specific layout structure of the example letter page.
Subsequently, the resulting specific layout structure is the input for the logical labeling
task. During logical labeling, parts of the specific logical structure are derived by
applying geometric knowledge on the specific layout structure.

24 RR-92-02

7 LOGICAL LABELING

Logical labeling, also designated as document understanding ([Tang et al 91]), is one of
the necessary and most important goals of document analysis. It refers to the task of
mapping the specific layout structure of a document into a specific logical structure. This
mapping is a necessary precondition to initiate a further processing of a specific
document constituent. If, for example, the layout blocks refering to the addressee can be
recognized, a further expectation-driven text recognition may be initiated matching the
results with prestored sets of zip codes or destination places ([Srihari et al 87]).

Within our research activities, we focus on an investigation of human reading tech-
niques and an employment of human knowledge sources for the automatic recognition
and partial understanding of printed information. One of these knowledge sources is
block arrangement (reading order)which is specifically for a certain document type.

Any type of document, such as medical records, reports, protocols, or business letters,
may be characterized by a certain arrangement of logical objects adapted to human
perception. There are documents with a prescribed structure and documents having a
more complex and variable one. Usually, paper documents have a high degree of
structure, which is seldom reflected by a human reader, but is directly used to filter
relevant information out of the printed data. For a certain type of document, the
respective structures are characteristic and can be represented specifically.

In lIopA, we use an approach described by [Dengel & Barth 88]. It is based on a special
decision tree classifier for decribing logical object arrangements in business letters. This
tree is processed by a hypothesize & test strategy providing logically labeled area items
which are equal to specific logical objects.

7.1 Representation of Logical Object Arrangements

To model logical object arrangements in business letters, we have developed a formal-
ism for document page representation that provides a global geometric view on a paper
sheet. The structural elements of a document page, such as columns, paragraphs, and
titles are generally laid out as rectangular blocks described by positions and dimensions.
Additionally, orientation of text is along horizontal and vertical directions, determined
by the rectangular shape of a typical sheet of paper. Thus, a single-sided business letter is
considered as a rectangle having features width and height. To describe logical object ar-
rangement, the page is divided into smaller rectangles by vertical and horizontal cuts.
Model cuts are placed in such a way that they do not intersect with printed text or non-
text blocks. The subrectangles can be recursively divided in the same way, until the
arrangement of logical objects on the page is described in sufficient detail. To define a
specific arrangement, different rectangles are assigned a label which describes the
corresponding logical meaning. The various arrangements of logical objects within
business letters are collected in a so-called geometric tree (cf. Figure 16).

A geometric tree is a specialization hierarchy. It allows a representation of logical
object arrangements on different specification levels. The root of the tree represents the
most general arrangement. Every single-sided document belongs to this class. The inter-
nal representation is organized in such a way that logical object arrangements of paren-
tal nodes are inherited by children. Consequently, most document pages can be
partitioned into nested rectangular areas by order, position, and orientation of cuts as
well as by assignment of logical labels. For our experiments, we use a tree having about

RR-92-02 25

Logical Labeling

40 terminal nodes. This part of model is associated with the root of the generic logical
structure, i. e. BUSINESS LETTER, as geometric knowledge. '

[Body
| 1 1 |
Logo |Sender

ISubject te IRecipient

Body Body

e

| 1 .
_____ Sender ILOQO ssune ssese
Subject |Date Subject

Body

Figure 16: Principle representation of a geometric tree.

Recipient

[Recipient
Body

Footer

7.2 Geometric Description of Logical Objects

In addition to the geometric tree, individual logical objects can be described indepen-
dent of the text they contain just by their shape. Therefore, each generic logical object
also includes a geometric knowledge slot capturing statistical results obtained by eval-
uating about 190 business letters under geometrical aspects. In particular, all logical
objects were examined with respect to their intrinsic geometric characteristics. For
example, the recipient in a business letter be geometrically characterized as follows:

0 ‘the position of the recipient is in the first upper third of the page;

S I AS .t

26

the left margin of the recipient is within the left quarter of the page;
the horizontal extension is not longer than a third of the page width;
the recipient is not written in an extremely large or small font;

the recipient consists of four to six text lines, which are left justified.

RR-92-02

Logical Labeling

Note again that these rules do not use content information, such as keywords. Up to
this processing step, we do not employ any procedure for the recognition or analysis of
text. To avoid all problems in connection with unrestricted text recognition and further-
more to provide a basis for expectation-driven text recognition, we concentrate on geo-
metric features of logical objects. To this end, we describe the following logical objects:

e sender, e recipient, ¢ letter-body,
e company-logo, e date, e subject,

¢ relational data, ¢ sender-short-form, e signature,
¢ footnote, e company-specific-printings.

Most of the probabilities resulting from the examination are represented as measures
of belief (MB) in subsets of rules. While they are applied for hypothesis confirmation,
others are applied for their refutation as measures of disbelief (MD = 1 - MB). For
example, geometric rules for the recipient in IIppA are as the following:

Feature Rule MB |MD

vertical origin (VO) |0<V0<0.25 0,89
0.25<V0<033 |0,10
0.33<VO 0,99
| left justified true 0,99
false 0,99
[number of lines (NL) | NL< 4 0,95
4<NL<6 0,92
NL=7 0,02
NL>7 0,99

Note, that values for a measure-of-(dis-)belief range between 0 and 1. The values in the
rules are relative to the width and the height of a page. Actually, in IIopa 11 logical
objects are described each by 11 different geometric features. This local assignment of
the subsets of rules to the generic logical objects allows a straightforward testing of
intrinsic features of given layout blocks as well as easy addition of new rules. When new
rules are added, MBs as well as MDs for existing rules need not to be altered because every
subset is independent from each other.

7.3 Logical Object Identification

Logical labeling of a given document amounts to finding a path from the root of the
geometric tree to one of its leaves, thereby stepwise matching the specific layout structure
against the alternative arrangements (see Figure 17). If an arrangement in a tree node fits
with the specific layout structure, i.e. does not intersect with specific layout objects —
small deviations are allowed, but reduce the credibility [Dengel & Barth 89] — the
respective label is assumed a hypothesis. For verification, all specific layout objects
related to the logical object are compared to the geometric rules in the appropriate
knowledge slot of its class. The MBs and MDs obtained are combined by Dempster-
Shafer’s rules of combination (for details see [Dengel 92]). In the case, hypothesis
verification succeeds, a specific logical object is generated as an instance of the
corresponding generic logical class.

RR-92-02 27

Logical Labeling

Specific
Layout Structure

Geometric Tree

Uniform-Cost
Search with
Backtracking

Logo | Sender

Body Body

_____ Sender Logo i
Subject IDate
Recipient
IBody

=

ISubject IDale Recipient
Recipient Sub'iect I Date

Letter
Specific
Logical Structure Sand 090 - 7
9 ((sender LB=—
< Subject L_, ,__.(Date X

el Fooler)™

Figure 17: Logical labeling applying the geometric tree.

RR-92-02

Logical Labeling

By combining measures of belief while stepping through the tree, it is possible to
quantify the degree of similarity between the current specific document layout structure
and the nodes in the geometric tree. For handling different intermediate results for
document arrangement class matching, the application of the decision tree allows easy
reduction of the search space.

All intermediate results are collected in an agenda [Dengel & Barth, 88]. In every stage
of the analysis, it provides the best intermediate solution for further examination. In
other words, to perform one step on the path in the geometric tree, the intermediate
solution with the highest measure of belief is chosen to refine an arrangement. Thus we
perform a best-first search, which represents a variant of the uniform-cost search [Barr
& Feigenbaum 81]. However, if logical labeling fails, ITODA initiates a resegmentation of
the document image. '

The specific logical objects generated during labeling represent instances of the
respective classes in the generic logical structure. Their relations to specific layout
objects provide an ODA conforming representation of a given document taking the two
structural but complementary views to information into account. The resulting
structures are sketched in Figure 18. They are the basis for a further expectation-driven
investigation of the text images captured within specific logical objects, e.g. for address
recognition in the logical object recipient.

recipien

1
353
L (__recipient)! ..
 Generic : e i o : o
Logical (letter thematic parts) - (" sender specific parts) (_procedure relevant parts)

Structure

Figure 18: Example for the representation of logical labeling results.

RR-92-02 29

8 TEXT RECOGNITION

For identifying the message of a document, it is not sufficient to solely label
important document parts. To serve a broader basis for a global document interpretation
and understanding, words captured in the labeled document parts have to be recognized.
We prefer words instead of single, isolated characters because only words can be related
to meanings. These sometimes ambiguous meanings together with their interrelations
within a phrase or a sentence enable the determination of the contents of logical objects
and consequently, the intention of the document's sender.

For that purpose, we have implemented a text recognition specialist using word
segments as well as their subdivision into characters as input and consequently
generates candidates of text strings as output. The features used for recognition are
robust and limited in amount. The global aim of this purpose was to generate ASCII
strings with a few but simple features. These features should not necessarily enable a
definite determination of character sequences. Instead, it should be investigated how
and up to which degree word context can be used for assisting recognition process as well
as for verifying and completing word fragments.

Regarding the above mentioned restrictions, a text recognition specialist has been
realized that interacts with a dictionary component. The two phases performed are

¢ hypotheses generation and
e hypotheses verification.
Figure 19 illustrates the two processing phases of text recognition in IIopA with
output and input characteristics.

Hypothesis Generation | -

Hypothesis Verification

Figure 19: Text recognition process of IIQDA.

30 RR-92-02

Text Recognition

The first step tries to generate weighted character alternatives where only image
information is considered, while the second step verifies the ordered set of character
alternatives as a set of legal, alternative strings. Here, no image information is used. The
second phase is based on dictionaries attached to logical objects. The construction and
behavior of both processing steps are described in the next sections.

8.1 Character Hypotheses Generation
As mentioned above, layout extraction results in determining image data for word
objects. While investigating word images for the purpose of text recognition, two main
problems arise:
¢ selection of relevant image features
e determination of a suitable classification schema

For selection of features, we have to decide if we prefer a set of complex and specific
features that is difficult to extract but enables an easy classification or rather few, but
general simple features that are easy to identify, but complicate the classification
process.

It is not a goal of our research activities to concentrate on improving existing
techniques in character feature recognition and combination, but rather to guide text
recognition by knowledge from beyond the image data level. Therefore, it seems to be a
good strategy to perform a classification based on simple features and to verify the
classification results by additional knowledge. Following this strategy, we evaluated the
robustness, the expense of extraction, and the significance of the features.

As result, following character features are used:
¢ circumscribing rectangle
¢ typographical context of a line segment
e projections to x and y axis

8.1.1 Feature descriptions

Before we start to explain the classification procedure, the mentioned features are
briefly described.

Circumscribing Rectangle

The circumscribing rectangle [Bartneck 87] defines two characteristics: the position
as well as the dimensions of a character on the document image. Figure 20 shows a
binary image of the character "A" with its position coordinates and its breadth and
height.

(350,220)

Height:20 mm

Breadth:16 mm
Figure 20: Character "A" and its box.

RR-92-02 31

Text Recognition

Typographical Context

Using these features and additional information from superior segments, the
typographical context of line segments can be calculated. Consequently, each character
can be categorized according to position within a line segment [Rohl 89]. As illustrated in
Figure 21, there are characters with ascenders (e.g. '1", "i"), characters with descenders
(e.g. "p". "y"), some characters with ascenders and descenders (e.g. "J"), and at last,
characters without both (e.g. "a", "m", "e"). For identifying these two areas, the line
segment is divided using the four imaginary lines: upper line, half line, base line, and
lower line (see also Figure 21).

lower line

Figure 21: Text line with ascender and descender information.

Projections

As a third category of features we use projections to the x and y axis [Dewes 92]. Both
features provide information about the pixel distribution of a character image. A
projection to the x axis (y axis) can be established adding all pixel columns (rows) of the
binary image. The resulting histogram is designated as x projection (y projection). Figure
22 shows the x and y projections of a character "a".

SRR

Figure 22: Image of character "a" with x and y projections.

Unfortunately, these projection measurements strongly depend on the size and the
font. But we aim to obtain character attributes that are more or less independent of such
variations. Therefore, the histogram is normalized. Each projection is divided into three
parts where for every part it is determined if there is a maximum (large number of pixels)
or a minimum (low number of pixels). In other words, we perform a transformation from
a histogram with any size to a input vector vj = (x| ,Xjg.X;3) where x{;,X2.X(3 € (0,1},
where "0" denotes a minimum and "1" a maximum. This representation produced builds
the input of the classification process. For a more detailed description, see [Dewes 92].

8.1.2 Hypotheses Generation

Beside the determination of robust and font-independent image features, their
combination is essential for recognition performance. Because features have different
credibilities, they cannot all be combined in the same manner. For example, ascender
and descender have a high credibility, because the four lines dividing a text segment into
three areas can be exactly determined. But the projection measurements are more
sensitive to noise and font styles and therefore, have a lower credibility.

32 RR-92-02

Text Recognition

Considering these circumstances, we have developed a two-step classification schema
where the first step performs a reduction of the candidate set while the second assesses
the remaining character hypotheses.

In the first step, each character image is characterized by ascender and descender
information. As seen in Figure 23, four possible classes can be established: characters
without ascender and descender, characters either with ascenders or descenders, and
characters having both. The distribution of characters to the single classes are 19.7%,
69.7%, 6.6%, and 4.0%. The order in which the single classes are established is not of
interest, because the two divisions are independent and therefore, both possibilities
yield the same result. In our approach, we first divide characters into classes with and
without ascenders. As result of step one, we obtain a reduced set of possible characters: in
the best case (characters with ascender and descender), the reduction is 96%, in the worst
case (characters only with ascender) 30.3%.

with ascender
only with and descender
descender

without ascender
and descender

only with
ascender

Figure 23: Character distribution caused by processing step one.

The remaining character candidates are assessed in a second step considering the
vector of projections. The vectors vy and vy denoting the modified x and y projection of a
character are exploited to determine two credibilities for candidate to character
attachments.

Let vgy and vy be the x and y projection of the reference class R of a character and v,
and v, the projections of an input character image I with vy = (XR).XR2.XR3). VRy=
(YR1.YR2:YR3): Vix = (*X11.X12.X13), and Vgy= (y11.Y12.Y13). Where Xgy, YRi. Xip. 1 € {0,1), 1 =
1,2,3. The function fwith

VR VD = /1 VR Vix): /1 VR Viy)) (8.1.2.a)
yields the credibility measurement that I belongs to the class R. Function f consists of
two separate successive applications of the function f; of the x and y axis. £ yields a

credibility measurement from O to 1 and has following construction:

NAVRx VI =773 1 (8.1.2.b)

lem-xnlz‘owﬁ
i=0

RR-92-02 33

Text Recognition

with a and B as trimming factors. They adjust which differences between a reference
class vector and an input vector have which effects for the credibility measurement.

A simple example illustrates the behavior of function ;. Assume o = 0.3 and B=1.1
and the vector of the x projection of the reference class "U" be (1, 0, 1). Now, if the input
vector would be

Tt o) A5 02 03s12]
1

ifle=(1,0.0), fl=|12‘03+11| =O.7’0r
1

if vix = (0, 0, 0), f1=|22_03+“| =04.

In TIQDA the two measurements f; (Vgy,Vi,) and fl (VRy.Viy) are combined using the

arithmetical average, that means the above mentioned function f has the following
construction:

11VRx Vi) + /1 (VRy . Viy)
2

Gl1 VRxVix). fi (VRy.Viy)) = (8.1.2.0)

It is obvious that the feature space stretched by the above specified features is too
small for uniquely identifying all characters. Several characters belongs to the same
cluster and therefore, ambiguities arise. But this fact was known while designing this
system. Instead to expand the feature space, we prefer to remedy this weakness
considering word context described in the next section.

8.2 Word Hypotheses Verification

As we have seen before, our character hypotheses generation process produces
ambiguous results, because for every character image more than one text candidate
possibly exist. In the context of words, the combinatorial connection of character
hypotheses leads to an implicit set of word hypotheses. In this way, most of these
ambiguities — caused of the restricted feature set — can be removed using additional
knowledge in form of dictionaries.

For hypothesis verification, two different and alternative techniques have been
tested:

¢ stepwise reduction of candidates
¢ global candidate assessment
Both techniques are described in the following two sections.

8.2.1 Reduction of the Candidate Set

The first technique assumes that all words of a dictionary are possible candidates for
a sequence of character hypotheses (see Section 8.1). Consequently, the verification
process attempts to reduce this candidate set considering the single character
hypotheses. For that purpose, dictionary words not corresponding with single character
hypotheses at a certain position are stepwise neglected. Starting with the first set of
character hypotheses, all words in the dictionary are eliminated that do not begin with
the corresponding characters. The same procedure is applied to the second and all
following word positions. Thus, each character at position i reduces the candidate set
produced by the first (i-1) positions. If the last character position is processed, the reduc-

34 RR-92-02

Text Recognition

tion process ends. For every character, a dictionary look-up is performed that controls if
words with such a prefix exist (prefix check). If no word is available, the amount of
possible words is not decreased.

Finally, we obtain following results:

e a set of dictionary words capturing only words that correspond with the given
character hypotheses or)
e dictionary words with the same prefix, if the real word is not in the dictionary.

The technique described is efficient and usually yields all corresponding dictionary
entries that means at least the correct word. But, if all hypotheses at a position are
wrong, especially at the beginning, some problems arise. For example, assume
hypotheses generation has produced following output for the input string "Ocean":

(2} = (F} e LN

Each parenthesis includes alternatives for one word position.

Since we stepwise reduce the word candidates, in the first step, all words not beginning
with "Q", "D", or "C" are eliminated, because there are words beginning with one of these 3
characters. Thus, "Ocean” can never be verified, since it was reduced from the candidate
set. If the defect is at the end like in "Oce?n", a reduction caused by the position 4 is not
performed, because no word exists starting with "Oce". "Ocean" is still in the candidate set
and therefore, can be a possible result. Similar problems occur regarding merged
characters.

8.2.2 Global Candidate Assessment

Our second technique, the global candidate assessment, avoids this problem. It also
checks all combinations of character hypotheses with the dictionary component, but no
candidate reduction is performed. Instead, all elements of the dictionary are assessed
considering the similarity of word hypothesis and dictionary word. The function

€

fa =m (8.2.2.3)

defines the assessment measurement of a dictionary entry where c¢ denotes the sum of
credibility measurements of the single character hypotheses which correspond with the
dictionary word, [the number of characters of the word hypotheses, and n the number of
characters of the dictionary entry.

The selection of ingenious candidates depends only on this measurement. All
dictionary words having a higher assessment measurement than a given threshold T are
added to the candidate set. If no such words exist, those one is selected having the highest
measurement. Thus, defects at any position in the word hypothesis do not directly
disqualify the correct dictionary word. Only its assessment measurement is reduced.

But also the second technique causes two problems: the adequate determination of the
threshold T and long runtimes. The parameter T is sensible, because large values
strongly reduce and small values glut the word set. The other problem is caused by the
global consideration of the entire dictionary. Because till to the end, all dictionary words
are considered as possible word candidates, a multitude of dictionary accesses is
performed that are time expensive although having a fast access mechanism.

RR-92-02 35

Text Recognition

As result, we obtain — like in technique one — dictionary entries, ordered by the
assessment measurement that corresponds with the hypothesis. If a defect at any
position occurs, the measurement is only decremented. Thus, in the above mentioned
example "Ocean” would be an element of the resulting word set.

In practice, this method can be only applied using very small dictionaries. In our
tests, the recognition of 300 words in combination with a dictionary of 8.000 entries, the
system needs about 6 hours. Therefore, we prefer technique one and tolerate that some
words cannot be identified.

One main aspect of both techniques is the identification of a hypothesis as a legal
word that means as a word of our dictionary. So far, we have only referenced a dictionary
component, but not their construction and abilities. Therefore, the next section
describes the lexical knowledge in more detail and explains its structure and access
techniques.

8.3 Dictionary Organization and Access Mechanisms

Applying contextual knowledge for the verification of results of text recognition can
be classified into three basic approaches: dictionary look-up methods, probabilistic
methods (Markov models) and combined methods ([Hanson 76)], [Sinha 88],
[Elliman 90]). While Markov methods use a-priori (statistical) knowledge about
transition probabilities of characters by n-grams (usually bigrams or trigrams),
dictionary look-up techniques verify the actual input string against a legal set of words
being collected in a dictionary.

We use a dictionary-based approach for two reasons: First, while Markov methods are
very fast and efficient, they are extremely sensitive in cases of misspelled or incomplete
input words. Second, storing dictionary entries and corresponding lexical information
explicitly will enable a subsequent partial understanding of text, e.g., involving keyword
analysis and parsing techniques.

A well-known and proved technique for dictionary organization is that of a trie
memory (retrieval; see also [Fredkin 60], [Knuth 73], [Aho et al 83], [Sinha 87], [Wells 90)).
Tries are attractive because of their simple and compact storage allocation. A trie con-
siders each word entry as an ordered sequence of characters being represented as nodes
in a tree. Common parts in the beginning of words, or prefixes, are stored exactly once.
Word access is performed character by character beginning at the root of the trie
structure. Note if a search is not successful, at least a best match has been found.
Advantageously, tries are well-suited for efficiently storing words which have common
prefixes and guarantee a linear access time (O(n), where n is the length of the input word).
For that purpose, a prefix check which is required of our word verification component
can be implemented easily. On the other hand, a disadvantage is that a trie structure
consumes a lot of memory in storing additional link and housekeeping information.

All these properties of tries are only true when the input string completely equals a
valid word in the dictionary. In the case of an incomplete or incorrect string, a lot of time
can be wasted, for example by a depth-first-search. To minimize search time, we propose
a so-called selective-access-matrix which will be described later. For a reduction of size—
in order to hold the trie in main memory—we use three different representations of a trie
node each of which is optimal under some conditions, including a bit-array

36 RR-92-02

Text Recognition

representation of a trie node, a character-pointer-array or string compaction. For
details of the representation of trie nodes see [Wells 90] and [Dengel et al 92].

So far, we have implemented two trie access mechanisms. First, and being the
simplest case, an input string (word or prefix) is completely known and solely needs to be
checked against the dictionary. This is a straightforward and basic operation on a trie
already explained. Second, when the input is only partially known, a more flexible
search method must be applied. Here, following situations may result from recognition:

(1) Alternatives of characters (designated by brackets “[,]")

(2) Rejection of single characters (designated by symbol “?7)

(3) Rejection of substrings (wildcards) at beginning or end of word

Situations (1) and (2) are handled by depth-first search. For dealing with situation (3),

we developed a so-called selective-access-matrix (SAM). The SAM is a (c*n)-matrix,
where c is the cardinality of the underlying alphabet and n a positive integer indicating
the actual position in a word. Each element of the matrix is a pointer array whose entries
point to trie nodes at level n containing character c (cf. [Dengel et al 92]). Figure 24
illustrates both the organization of the dictionary as trie and the corresponding SAM.

(fragmentary)

word h theses
pe N word candidates

logical context

Figure 24: A trie data structure with a selective-access-matrix (simplified).

A hybrid trie representation including the access matrix has been fully implemented
and tested. All tests were performed on a basic dictionary of about 8000 most frequent
German words. Results show that the additional storage needed for the SAM is smaller
than the memory saved by a hybrid organization using different types of trie nodes.
Moreover, retrieval of dictionary entries is fast, even if the corresponding input string is
rather disturbed through several wildcards (run time measurements are shown in
[Dengel et al 92]).

Although new entries are permanently added to the dictionary and hence storage
demand will increase successively, our trie remains a very promising component to
support the word verification phase. But, in parallel, we examine hash table methods

RR-92-02 37

Text Recognition

also allowing the access of fragmentary recognized words (see [Schiirmann 78], [Kohonen
78]). All in all, we develop a structured lexicon architecture involving several (logical)
partitions of lexical data by usage of sophisticated data structures and access techniques.
A structured lexicon will support and improve text recognition as well as higher-level
interpretations of documents (document understanding).

8.4 Results

In IIoDA only word segments related to the logical object recipient are considered as
input for recognition process. These layout objects and their subordinated character
segments serve as a basis for the character hypothesis generation. Consequently in a
second step, the sequences of hypotheses produced are verified as legal words performing
dictionary look-ups. In opposite to conventional OCR systems, the dictionary includes
only words usually occurring in the recipient block. Therefore, it is attached to the
logical object recipient. If for all word segments the corresponding text is ascertained,
content portions of type text are generated. For that purpose, the class content-portion is
instantiated and immediately attached to word objects of the specific layout structure.
As content attribute, the list of alternative words including the assessment
measurements are added.

Figure 25 fragmentarily shows our document structure after text recognition.

Content

Portions

Figure 25: Part of our document structure including text recognition results.

As mentioned, our recognition process is restricted to word objects related to the
recipient. But it can be easily expanded to other document parts. The only necessary
work we have to do is the establishment of dictionaries containing typically words of
that logical objects and their attachment to that object. Because the dictionary
component strongly influences the recognition performance, one problem exists: if the

38 RR-92-02

Text Recognition

word set of a logical object is very large (such as in the text body), recognition ambiguities
greatly increase.

In this way, the overall result of our text recognition phase is a specific layout
structure, an incomplete specific logical structure, and content portions that are linked
to layout objects of type word. The content portions include alternative word hypotheses
inclusive particular assessment measures.

For completing our document analysis, a text analysis procedure is performed which
generates links between content portions and logical objects and is described in the next
chapter.

RR-92-02 39

9 TEXT ANALYSIS OF ADDRESSES

Hitherto, text recognition provides a set of candidates for each word. They are
associated with respective content portions. As shown above, these content portions are
linked to basic layout objects but not yet to any logical objects in the specific structure.
For some of the logical objects, such as recipient or date, their syntactic structure as well
as their potentially captured text is relatively fix. Thus, the specification of syntactic
knowledge and of sets of typical words, such as keywords, identifiers, and names, allow
their structural refinement into specific logical objects, such as name and place, etc., but
also the disambiguation given by alternative readings in the content portions. As a
consequence, it is possible to relate content portions of the word level to specific logical
objects, such as the recipient’s first name or last name. Therefore, it is possible to ask for
the verified recipient and to accordingly transmit the document via electronic means.

In this chapter, we show how this task is performed by exemplarily analyzing the log-
ical object recipient. With some modifications, the same approach is also working for
other well-structured parts like date, salutation or senders address.

The syntactic conventions of a recipients address is relatively strong, conditioned by
historical reasons and existing postal standards. By such means, the sequential order of
the recipients name, his home street and his home town can be taken as mandatory.
Additionally, we can assume a set of well-known designating words, e.g. the customers of
a company, zip codes, towns, and street names. Furthermore, there are some “keywords”
occurring in the title, and some degrees (academic titles) as part of a recipients name.

An adequate way to represent syntactic conventions of an address is using production
rules. Thus, we can relate the logical object recipient to the left hand side of a production
rule Recipient which is composed of the Addressee and the Direction, i.e. the
specification in which town and street a letter has to be delivered. To say it in terms of
language theory, a recipient address can be seen as a syntactic category, especially the
start symbol in context free grammars or - just another name - the top category. It
consists of various constituents, in our example addressee and direction. Some of these
but not all of the constituents, are identical to objects in the generic logical structure.

For utilizing familiar words that could appear as instances for the several con-
stituents of a recipient, respective collections of words are associated to corresponding
logical objects in the generic structure. For example, all last names of the company’s
employees are attached to the lexical knowledge slot of the generic logical object last
name. A next step, attributes are incorporated that allow for checking the consistency
among derived addresses, e.g. the agreement between a town's name and the cor-
responding zip code.

This approach can be mapped to the paradigm of attribute grammars. The historical
roots of such formalisms that can be found in Chomsky's theories led to the
establishment of a multitude of grammar formalisms especially in the last decade.
Introducing such formalisms (e.g.,[Kaplan & Bresnan 82], [Pereira & Warren 80]) would
doubtless be beyond the scope of this report. Therefore, we undertake a more pragmatic
proceeding in explaining the current state of the implementation by means of an
example.

40 RR-92-02

Text Analysis of Addresses

9.1 Encoding the structure of addresses

. For illustration, we now take a look at a small sample grammar, noted in an EBNF-
like syntax, an extended version of the Backus-Naur form (see Figure 26). Alternatives
are separated by vertical bars ("1"), optionals are enclosed in brackets ('[", "1"), optional-
repeatable elements in parenthesis ("{" and "}"); terminal symbols are double quoted.

Recipient := Addressee Direction .
Addressee := NatAddressee [Company] |

Company [["z.Hd."]| NatAddressee] .
NatAddressee := Title PersonName .
PersonName := { Degree } { FirstName } LastName .
Title := "Frau" | "Hermn" | "Familie" | ...
Direction := (Street | "Postfach" BoxNumber) Place .
Street := StreetName NumberinStreet .
NumberInStreet := Number .
Place := [StateSign "-"] ZipCode PlaceName [PostalDistrict] .
ZipCode := Number .

Figure 26: A small, incomplete grammar for a recipient address.

This notation has to be read as follows. A recipient is constituted as a mandatory se-
quence of Addressee and Direction. For formulating the Addressee, there are two possi-

bilities divided by a vertical bar. The first starts with NatAddressee, optionally followed
by the specification Company, the second starts with the Company, optionally followed

by the NatAddressee which may optionally be preceeded by the string “z.Hd.” (means
“c/0”). Analogous, the other rules have to be read.

That way, only combinatorial restrictions are formulated. Up to now, no semantic
check, e.g. concerning the agreement between zip code and town's name, is incorporated
because the grammar gives no possibility to do so.

Guided by the expectation yielded from logical labeling, the recipient is syntactically
analyzed employing the grammar associated with the corresponding generic logical ob-
ject. Thus, the top category, namely Recipient serves as the start symbol for parsing.
While constructing the tree in a top down manner, the expansion of the tree branches is
pruned by accessing additional collections of words. In particular, when a terminal, such
as FirstName or LastName, corresponding to a generic logical object is derived the
associated collections of words are accessed and the rule fires or not. For example, the
ambiguity in the rule for Addressee which branches to NatAddressee and Company is
easily solved because the branch for NatAddressee terminates in a handful of well-
known keywords like “Frau” (“Mrs.”), “Postfach” (“P.O. Box”) etc.

9.2 Verification of Names

The distinction between syntactical categories is not the only source for making
restrictions in an address part. Additionally, various semantical constraints exist that
restrict the possibilities in a recipient object. For example, the dual relation between zip
code and town name, the attachment of streets to towns and of towns to countries as well
as the knowledge that certain persons or companies are suited at specific locations can
be incorporated in both, the grammar and the lexicon. To do so, we introduce unique

RR-92-02 41

Text Analysis of Addresses

identification tags (ID's) for several real world objects like persons and places. The
agreement of these ID's is tested within the unification component of our parsing system.

As we actually use D-PATR ([Karttunen 86]) for testing our grammar the following
examples use a notation similar to that of this system. D-PATR is a development
environment for context-free grammars using (equality-) unification for categorial
attributes. For a given grammar, D-PATR generates a chart parser using a left-corner
strategy, in this case initiated by the top category Recipient. This conforms to the
expectation-driven analysis which is intended.

In order to explain the central idea, in Figure 27 a transcription of parts of the first
three rules in Figure 26 is given. In the formalism of D-PATR no alternative or optional
constituents are allowed. Therefore, a set of (alternative) rules in D-PATR correspond to
one comprising rule in EBNF. Additionally, the following rules are enhanced by
attribute agreement pairs where the equality of certain slots is required for two
constituents respectively at the right hand side.

Recipient --> Addressee Direction
(Addressee PlacelD) = (Direction PlacelD)
(Recipient PersonID) = (Addressee PersonID)
(Recipient PlaceID) = (Addressee PlacelD)
Addressee --> NatAddressee
(Addressee PersonID) = (NatAddressee PersonID)
(Addressee PlacelD) = (NatAddressee PlacelD)
NatAddressee --> Title PersonName
(Title Sex) = (PersonName Sex)
(NatAddressee PersonlID) = (PersonName PersonID)
(NatAddressee PlacelD) = (PersonName PlacelD)
(NatAddressee Sex) = (PersonName Sex)

Figure 27: Extended grammar with attributes for unification.

Just the first agreement pair of rule one deserves its name, it really is used for
checking agreement of features. Here, the agreement of the attribute PlacelD is compared
to the Addressee and the Direction constituent. Analogous, the first agreement pair in
the third rule checks the sex of the person to be the same in Title and PersonName. Thus,
it is guaranteed that a female name is preceded by the title “Frau” (“Mrs.”). The two latter
equations of rule one in Figure 27 are used only for inheritance, i.e. they guarantee that a
composite constituent has references to its subordinator’s attributes. For example, the
two latter agreement pairs in the rule for Recipient are only for inheritance: the
attributes PersonID and PlacelD from the constituent Addressee are passed on to the
superordinating constituent.

But where do these attribute values come from? Giving the above grammar excerpt to a
parser, only comparison or inheritance of these values is possible. The source for them is
the lexical knowledge slots that serve the parser with terminal attribute values for each
lexical entry, i.e. each word. In Figure 28 some lexical entries are given that will serve us
to parse a small example address in the next subsection.

To exploit the power of the available knowledge, it is necessary to attach all
information concerning addresses to the lexical database. This means, all ID's of
persons and places and the additional information, like sex in the grammar above, has
to be incorporated into the lexicon. Therefore, the above lexicon has ID's for persons
(PID), streets (SID), p.o. baxes (BID), towns (TID), and countries (CID).

42 RR-92-02

Text Analysis of Addresses

Lexical Entries:

Title --> "Herrn" + Mas-Temp

FirstName --> "Andreas" + ARD-ID

LastName --> "Dengel" + ARD-ID

PlaceName --> "Kaiserslautern" + KL-ID

Lexical Templates:

Mas-Temp --> (Sex) = mas

ARD-ID --> (PersonID) = PID#4711 + Mas-Temp + DFKI-ID

DFKI-ID --> (PlaceID StreetID) = SID#0815
(PlaceID POBoxID) = BID#2080 + KL-ID

KL-ID --> (PlaceID TownlID) = TID#6750 +D-ID

D-ID --> (PlaceID CountryID) = CID#0049

Figure 28: Lexicon containing lexical entries and lexical templates.

For means of abbreviation, the lexicon is enhanced with templates which are
expanded during loading the lexical entries. They are easy recognized in the above
example lexicon because their occurrence is preceded by a plus sign (a “+” followed by the
template name). While loading such a lexicon various attribute-value pairs may be
generated. Figure 29 shows the entry concerning the word “Andreas” from Figure 28 after
template expansion.

FirstName --> "Andreas"
(FirstName PersonID) = PID#4711
(FirstName Sex) = mas
(FirstName PlacelD StreetID) = SID#0815
(FirstName PlacelD POBoxID) = BID#2080
(FirstName PlacelD TownlID) = TID#6750
(FirstName PlacelD CountryID) = CID#0049

Figure 29: Lexical entry for “Andreas” after expansion.

9.3 A short example

In the following we illustrate how the recognition of an address is performed.
Initially, in a preprocessing step a textual segmentation is performed. The output of an
example address that serves as input for the subsequent syntactical pars is shown in
Figure 30. The result of the textual segmentation must not be confused with that of layout
segmentation since they may, but not must, be different, for example, the three word

segments “D”, “-” and “6750" are recognized as one layout object word by layout
segmentation. But, this is not a main problem and therefore is neglected.

"Herrn"

"Al'],dreas” "Rﬂ ll." IIDengelll
"DFKIII "GmbH"

"Postfach" "2080"

"D" "-" "6750" "Kaiserslautern"

Figure 30: Input address for the parser.

For this case, the lexicon contains all of the input words. Thus, a full recognition of
all ID's becomes possible. The result of the parse is shown in Figure 31 as a set of
attribute-value pairs that is inherited up to the top category constituent. The integer
number in the head of each list denotes the constituents of the parse, where the digit O

RR-92-02 43

Text Analysis of Addresses

stands for the top-level constituent Recipient itself and 1 and 2 are its sub-constituents.
Abbreviations in brackets <> are pointers to “shared” attributes. For instance, in the
feature set of constituent 1 (Addressee) pointer <0 PlaceID> means that its PlacelD is
physically the same as that of constituent O.

(0 (cat Recipient) (PlacelD (TownID TID#6750)
(CountryID CID#0049)
(StreetID SID#0815))

(POBoxID BID#2080))
(PersonID PID#4711))
(1 (cat Adressee) (PlaceID <O PlacelID>)
(PersonID <0 PersonlID>))
(2 (cat Direction) (PlaceID <O PlacelD))

Figure 31: Feature sets as result of a parse.

The name lexicon is not assumed to be complete. Therefore, we define default
categories for unknown words. For the address part these are all name categories, like
names for persons, streets, towns etc. On the other side, keywords are assumed to be
known by the dictionary. In that way, an unknown address can be recognized only by the
keywords and numbers it contains, but, as it is impossible, it cannot be identified.

9.4 Results and Discussion

After text recognition, the content portions of our document structure were filled and
linked to layout objects of class word. Right now, we are able to link single content
portions to the logical objects, too. In review to Figure 31 which shows the parsing results
we achieved such a linkage can be done as follows.

The top category of the grammar, i.e. Recipient, belongs in our case to the logical
object recipient. For refining the specific logical structure for a recipient, we step through
the parse tree, and in the case of a successful verification, appropriate specific logical
objects are generated. Note, instantiating basic logical objects of the generic structure,
not necessarily implies that preterminal nodes of the parse tree are reached. At each
basic logical object, we can assign the corresponding parsing subtree by linking the
concerned content portions to that logical object.

For example, remember the name part of the grammar in Figure 26. The rule for
PersonName was

PersonName = {Degree } { FirstName } LastName .

Applied to the example in Figure 30, we obtain the simplified parse tree in Figure 32,
where all attributes are omitted and recursive node paths are pulled at top. The latter
occurs below the node FirstName, which actually has a recursive structure.

PersonName

Degree FirstName LastName

I
I |

"] Andreas R. Dengel

Figure 32: Parsing subtree for constituent PersonName.

44 RR-92-02

Text Analysis of Addresses

Now, we can link the terminal nodes of the parse tree to the corresponding logical
object. Thereby, it happens that more than one content portion is connected to one basic
logical object, in our example this occurs for the node first name.

In doing so, we get the completed logical structure shown in Figure 33 where all
content portions leading to a successful parsing result are related to the corresponding
logical objects. Within one content portion all of these word hypotheses are rejected
which do not lead to this successful parse (cf. hypotheses of last name).

Content
Portions

Andreas (0, ([Kaiserslautern (0,9)} [6750 (0,9)

Figure 33: Part of the document structure after partial text analysis.

By using the text analysis component the way shown here, only an analysis after the
text recognition phase is possible. Additionally, the knowledge used herein could also
serve in building an integrated text recognition and text analysis component. The text
recognition phase often generates a lot of word hypotheses that are rejected during text
analysis because they do not lead to a complete parse. This hypotheses generation
overhead could be prevented by a more co-operative parser that gives more feedback to
other analysis components. For illustration consider the following situation.

In case the recipient of the letter is known by the system, it is possible to make very
concrete predictions. For example, the (correct) identification of the recipient's name is
sufficient to determine the following direction in the address block. The same holds for
the inverse direction: after identifying the direction specification in the address, it is
possible to list a set of candidates for the persons that can be reached at this place, e.g. the
employees of a company.

To enable such predictions, a more flexible parser strategy is required and additional
heuristics guiding the parser have to be found out.

RR-92-02 45

Text Analysis of Addresses

The application of the presented technique to the well structured parts of a letter can
be done analogous. Thus, date, salutation and sender can be analyzed with an
appropriate grammar. For more complex parts of a letter, such as subject and entire
letter body, it is much more difficult to find such a grammar. In fact, no powerful
(descriptive) grammar for natural language is known by now. Only for the logical object
subject, a simplified noun phrase grammar seems to handle this problem.

Our future activities will include both the integration of flexible parsing strategies
and the application of this technique to other logical objects than the recipient.

46 RR-92-02

10 RELATED WORK

[Tang et al 91] gives a good survey of document analysis and document understanding
in general. In his review, Tang tries to define the structure of documents systematically
and theoretically using an algebra for documents and entropy functions. Similar to our
approach, his document layout model is also based on the international standard ODA
[ISO8613]. By document analysis, however, the author means the extraction of geometric
structures from a document image (Smearing, Projection Profile Cuts, Run Length
Encoding, etc.) which corresponds to layout extraction in ITODA. Moreover, Tang
characterizes document understanding as the mapping of geometric structures into
logical structures of a document using tree transformation algorithms (form definition
language, see also [Fujisawa & Nakano 90] below). This is slight distinct from our
comprehension of document analysis. In contrast, we use geometrical (statistical) rules
for logical labeling being a first step of understanding a document’s contents; further
steps of text recognition and partial text analysis follow.

The FRESCO System — proposed by [Bayer 91] — is based on a own document
representation formalism and uses a frame-like inheritance network considering layout
as well as logical aspects. Each object can comprise two types of knowledge: domain-
specific and domain-independent portions. While the second one is valid for all types of
structured documents the first one describes spatial dependencies between different
objects. For analysis process, different problem solving methods can be integrated using
a rule-based control mechanism.

A similar approach has been realized by [Kreich et al 91]. In this approach, the
analysis process is divided into image capturing, segmentation, text recognition, and
labeling. In opposite to TTODA, labeling is based on textual information and therefore,
strongly depends on the recognition results. The overall result is also ODA-oriented, i. e.,
consists of a specific layout and logical structure where content portions of type text
relates them.

Belaid [Belaid et al 90] has proposed a blackboard-based system that uses an ODA-like
description of documents as model for analysis. The particular knowledge portions are
not imbedded in the model layer. Instead, it is attached to the three processing phases
document segmentation, structure analysis, and text recognition. Thus, the document
model is only used for representation of the analysis results while in IODA it directs the
analysis process. The global analysis process is performed by several specialists that are
activated by choosing the best hypothesis.

[Yashiro et al 89] and [Fujisawa & Nakano 90] propose a method for document
structure extraction based on the ODA standard. Similar to ITODA. generic layout
knowledge is used to transform document images into a hypertext representation. The
generic layout knowledge is described in terms of rules in a special language called FDL
(form definition language). As applications, images of technical papers are analyzed, and
bibliographic items such as title and author can be extracted for subsequent filing.

Another approach focussing on technical papers is described in [Nagy 90] and
[Viswanathan 90]. Using a special formalism, called x-y-tree, a respective image is
recursively segmented with multiple alternating horizontal and vertical cuts according
to publication-specific layout information. The resulting rectangular blocks are labeled
in terms of functional components such as author, title, and abstract. The intention of

RR-92-02 47

Related Work

this approach should allow library access to interactively select portions of a page image
defined as functional components and give them as input to OCR.

Also related work can be found in particular application domains such as forms
processing, address block location and cheque recognition. [Casey & Ferguson 90]
describes a system called IFP (Intelligent Forms Processing) which accepts conventional
forms for transforming them into a symbolical electronic representation in order to
create corresponding records in a database. IFP allows the definition of different classes
of forms using a special forms editor. Processing forms in IFP includes a classification
of forms, adjustment of skew, the extraction of simple layout structures (segmentation),
character recognition by decision trees, elimination of touched or broken characters,
and a restricted lexical analysis. A sophisticated understanding of text, however, is not
necessafy in forms processing.

ABLS (address block location subsystem) is a rule-based system integrating different
knowledge sources for the recognition of postal addresses [Srihari et al 87]. Here, phases
of analysis comprise gray-scale and color thresholding, bottom-up segmentation to
determine connected components, skew detection, discrimination of handwriting and
machine-printing, and icon (rectangles in the image) detection. Additionally, a control
mechanism is responsible for coordinating all these analysis modules and the exchange
of corresponding results via a blackboard. Note that in ABLS spatial relationships
between physical (layout) objects are explicitly expressed as rules.

48 RR-92-02

11 CONCLUSIONS

Due to the large amount of information and the multitude of different kinds of printed
material, paper-computer interfaces have to be developed allowing a transformation of
printed information into an electronic representation.

To support and to simplify the processing and exchange of electronic documents, we
concentrate on the international standard representation ODA for office documents.
This standard provides mechanisms to describe a type of document, such as business
letter, physically in terms of hierarchically nested layout objects as well as semantically
in terms of logical objects.

For a better integration of paper documents into an electronic environment it is not
sufficient to transform printed data to electronic medium, i.e. to use traditional systems
only recognizing isolated characters, but rather provide information in a multitude of
various aspects, such as of structure, layout styles, type of document, or the message
conveyed.

For these reasons, modern systems for document analysis must consider various
knowledge sources rather than improving classification techniques for isolated image
patterns. Analogous to human reading techniques, such systems have to take account of
structural knowledge (layout and logical structure), geometrical knowledge (reading
order), syntactical knowledge (grammars), the type of document, character and word
shapes, and much more.

As a first result of our research, this report presents the model-based document analy-
sis system TTODA for transforming printed business letters into an ODA conforming
electronic representation. [IODA has been implemented for the analysis of single-sided
business letters in German; it runs on Sun SPARCstation under UNIX. All implemen-
tations including the dictionary are done in Common Lisp, except the scanner i