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Self-Adapting
Structuring and Representation of Space
ANDREAS DENGEL

Author´s abstract
The objective of this report is to propose a syntactic formalism for space
representation. Beside the well known advantages of hierarchical data
structure, the underlying approach has the additional strength of self-
adapting to a spatial structure at hand. The formalism is called puzzletree
because its generation results in a number of blocks which in a certain
order — like a puzzle — reconstruct the original space. The strength of the
approach does not lie only in providing a compact representation of space
(e.g. high compression), but also in attaining an ideal basis for further
knowledge-based modeling and recognition of objects. The approach may be
applied to any higher-dimensioned space (e.g. images, volumes). The report
concentrates on the principles of puzzletrees by explaining the underlying
heuristic for their generation with respect to 2D spaces, i.e. images, but also
schemes their application to volume data. Furthermore, the paper outlines
the use of puzzletrees to facilitate higher-level operations like image seg-
mentation or object recognition. Finally, results are shown and a compari-
son to conventional region quadtrees is done.

CONTENTS:

1 Introduction....................................................................................... 2
2 Starting Point and Background ....................................................... 3
2.1 Overview of Quadtrees....................................................................... 4
2.2 Heuristic Decomposition of Space ................................................... 6
3 Principles of Puzzletrees................................................................... 8
4 General Strategy................................................................................ 9
5 Generation of Puzzletrees ............................................................... 10
5.1 Linear Homogenetity ...................................................................... 10
5.2 Orientation and Position of Decomposition................................. 12
5.3 Start Orientation............................................................................. 13
5.4 Alternation of Cut Orientation ...................................................... 15
6 Representation of Puzzletrees ........................................................ 16
6.1 Object-oriented Representation...................................................... 16
6.2 Puzzletree Encoding ....................................................................... 18
7 Puzzlecode Compression................................................................. 18
8 Extension to 3D Data...................................................................... 21
9 Results and Discussion ................................................................... 22
10 Conclusions ..................................................................................... 25
References..................................................................................................... 26



2

1 INTRODUCTION

Over the last years, much research has been done to develop formalisms for

representing spatial information. In the domain of image processing, most of the

techniques have addressed the problem from either the database view or the

perspective of computer vision. Aspects traditionally associated with databases focus

on efficient methods for image compression and accessing techniques (pixels from an

image, images from a database). Computer vision, in contrast, concentrates on image

analysis, pattern matching, or object recognition problems. All of these aspects are of

vital significance for domains like geographic information systems, computer

graphics, computational geometry, medical imaging, or robotics. For both research

fields, databases and computer vision, it is necessary to generate a representation

derived from raster-digitized images. For compression techniques on the one hand,

the aim is to reach satisfactory high compression factors rather than to represent

human perceptible image structures. Formalisms for spatial knowledge representation

on the other hand, should capture concepts for abstraction, be understood by people,

and be easy modifiable [SX89]. Thereby, the type of operations to be performed on the

data heavily influences the formalism ultimately chosen for a specific task.

In many applications of artificial intelligence, data structures for spatial

representations serve as a basis for numerous operations. Various publications in this

field offer a rich set of proposals for object shape representations, but most of them

are limited to two-dimensional spatial information rather than to 3D description.

Another weakness is the incompatibility to compressed image data and the stipulated

expensiveness of operations on that data. Due to these facts and in order to allow

further significant advances in image compression and analysis, there is a pressing

need to adopt radical new approaches for representing spatial structure.

Typical image data has several contigious regions that correspond to a finite set of

entities (image objects) which are significant for a certain problem space. They are de-

scribed by adjacent nonzero data points having specific locations, several geometric

characteristics, and specific arrangements within the image.

To describe such a spatial structure, we propose an approach which transforms

digitized image data into a hierarchical object-oriented representation called

puzzletree. Following the classification made by [Sa84], puzzletrees may be considered

as region quadtrees [KD76]. They are based on recursive decomposition and thus are

able to describe geometric structures in an image space. Puzzletrees have the property

to consider the spatial structure of a particular image to direct their generation.

Therefore, the homogeneity of image regions serves as a basis to decide where a

decomposition has to take place. For that purpose, we have developed a heuristic for

image space decomposition in puzzletrees allowing for a flexible and compact repre-

sentation.

In this report a description of the fundamentals of puzzletrees, their generation and

representation is given. Section 2 first outlines the starting point and basic intention

of the approach and gives a brief overview of the main characteristics of quadtrees,
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describing their strengths and weaknesses. In addition, alternatives for hierarchical

spatial representation by following heuristics are discussed and examined with

respect to operationality. In Section 3 the puzzletree and its principles are introduced.

In Section 4 the general strategy for puzzletree generation is illustrated and explained,

while Section 5 proposes the entire generation algorithm and underlying heuristic. In

Section 6, the internal object-oriented representation of puzzletrees is presented.

Finally, Section 7 shows some results as well as comparisons to conventional region

quadtree and points out to future work.

2  STARTING POINT & BACKGROUND

Starting point for this approach has been the intention to develop a description

formalism of images allowing for both, image analysis and efficient image storage.

Another aim has been the capability to provide information about a given spatial

structure. In other words, the decomposition should follow the human-like capability

of recognizing dominant structural features in images, i.e. groups of objects, single

objects, or object parts. Most of existing representation techniques may be split into

two classes, depending on the application domains for which they are used.

For compression techniques, the goal is to reach satisfactory high compression fac-

tors rather than to represent perceptual image structures. Generally, spatial

knowledge may either be represented proportional or analogical [BB82]. Proportional

formalisms comprise statements that have Boolean values to express propositions

like “A <is-right-of> B” (e.g. predicate calculus, semantic nets, or programming

languages) [SX89]. Analogical formalisms are such ones that are strongly analogous to

the objects they represent. These are geometric data structures such as hierarchical

ones, or scale models for image space representations and volumetric 3D representa-

tions. In general, they allow to make measurements to derive spatial relations of or

between objects, like extensions, object sizes, distances, etc.

Hierarchical data structures for image representation are based on successive

decomposition of rectangular space into adjacent subrectangles of same height or

width. The subrectangles are recursively divided in the same way. As soon as a

rectangle contains data points that have same color, an appropriate color-label may

be assigned.

In many domains of computer vision it is necessary to split an image space into

smaller parts to allow for partial processing of interesting subsets of data. In this

sense, hierarchical data structures are useful because they represent image data in

cells of spatial grids having different granularity. Thereby, each of the cells is labeled

with the color filling that part of space. Such grids representing space by regions or

volumes up to some grain are also designated as occupancy arrays [McD87].

Hierarchical data structures are easy to implement and provide a compact

representation that allows an authentic image reconstruction. The most studied

hierarchical data structure is the quadtree.
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2.1 Overview of Quadtrees

The term quadtree refers to a set of hierachical data structures which have the

common characteristic of hierarchical decomposition of a problem space. Taking the

characterization of [Sa84], quadtrees may be categorized according to the following

criteria:

• the type of data they represent;

• the principle of decomposition in which they divide a problem space;

• the degree of decomposition (variable or not variable) - also called as resolution.

Currently, quadtrees are used for the representation of point data, regions, curves,

surfaces, and volumes. Thereby, the decomposition of original space may be either in

equal-sized parts (regular decomposition), e.g. polygons, or may be governed by the

input data and therefore results in parts of arbitrary size. The degree of decomposition

is fix or predefined, or is determined according to the properties of the input data. The

main advantages of quadtrees may be summarized as follows (see also [Sa90]):

• conceptual clear and uniform representation of dimensions and size of a space and

its parts;

• straightforward representation of geometric features like position, extension, size 

and spatial relationships (i.e. location, adjacency, arrangements and distance) of 

image space objects and subsets of them;

• easy conversion in and from raster images;

• variable resolution representation;

• provision of a focus on interesting subsets of data.

The class  of quadtrees mostly considered is the so called region quadtree. It is

based on a stepwise and recursive decomposition of an image array of size 2n x 2n

into four quadrants of size 2n-1 x 2n-1 [Sa81a]. If a quadrant not captures image

points which are entirely  black or white, the image is quartered in the same fashion

until this criterion is fulfilled.  Figure 1 shows the example of an image array (a), the

quadrants resulting from quadtree generation (b) and the corresponding quadtree (c).

The quadtree for the example of Figure 1 (c) consists of 53 nodes (40 terminals). The

root node corresponds to the entire input image. The subblocks obtained by subdivi-

sion are represented by respective child nodes. For region quadtree generation, the

image object of Figure 1 (a) has first to be mapped into the minimal square of size 2n

x 2n that embodies the object. Consequently, resulting space is succesively subdivided

into quadrants in order NW, NE, SW, SE, and represented by an aggregation hierarchy.

Each successor of a specific node represents a quadrant obtained by subdivision, and

terminals correspond to those blocks that capture pixels of same color.  Each

terminal node is said to be BLACK or WHITE depending on the color of data points of

which its corresponding block consists. The nonterminals are said to be GRAY.

[SW88a, SW88b] give a thorough survey of variations of these data structures and

moreover focus on advanced applications.
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Concerning to this strategy, a very compact representation of images is provided.

The storage requirements are directly potential to the resolution of the image, and

doubling the resolution doubles the number of blocks whereas the number of pixels is

quadrupled [Sa90]. Furthermore, the corresponding algorithms are easy to implement.

Also measurements  of properties such as area, perimeter, etc. are easy to maintain

[Sa81b; Sa81c; Sa82]. However, the main weakness of this data structure is its lack in

representing spatial structures. This is because spatial properties, i.e. data point

colors, are considered just after a decomposition.

(a)

(c)

(b)

Figure 1: An image array (a),  block decomposition (b) and the corresponding

quadtree (c).

2.2  Heuristic Decomposition of Space

Every day, we spend much of our time treating with spatial problems, such as

designing physical objects, recognize physical objects and geometric relations among

them. To handle such problems, humans generally follow perceptual characteristics of



6

the physics of objects in space, i.e. they consider object structures to guide their

behaviour. For example, having the task to describe an object, dominant structural

features of the object are recognized first. The example in Figure 2 (a) shows a 2D

object that represents obviously nothing that is well known by the reader. However,

several associations come in mind and what ever they are, different possibilities for a

syntactic verbal description exist. If the primitives of the description would be

restricted to the conditions to follow the procedure of a hierarchical decomposition of

the object in homogeneous rectangular regions of same color, several alternatives

exist.

To limit the number of decompositions (number of resulting regions), alternative

heuristics could be used:

[1] Use only vertical decomposition!

[2] Use only horizontal decomposition!

[3] Search first for dominant linear structures!

[4] Search first for rectangular regions having maximal sizes!

[5] Decompose in a binary fashion and alternate strictly!

Applying these heuristics to the object in Figure 2 (a) results in puzzles of

rectangular regions which, combined in a certain order, describe the corresponding

object. The applications are shown in Figure 2 (b) to (f), starting with heuristic [1] in

Figure (b) up to heuristic [5] in Figure (f).

(a)

(d)

(e) (f)

(b)

(c)

Figure 2: 2D object (a) and different representations after applying heuristics [1] to

[5].
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According to the costs (i.e. number of decompositions, number of nodes), the heuris-

tics provide different results. While for heuristics [2] to [5]  only 4 decompositions are

necessary to describe the object by 5 rectangles (i.e. minimal costs), heuristic [1] needs

5 decompositions and 6 rectangles. There also exist various other alternatives to

decompose the object in the example, in especially combinations of the solutions

shown in Figure 2 (d) to (f). But they either do not follow any heuristic, or they need

more costs, producing a higher number of homogeneous regions.

If the object in Figure 2 (a) is shown to a test person to verbally describe it, she or

he is recognizing a set of rectangles which are clustered in a certain order. If

subsequently the task is defined more precisely and the person has to describe the

object by its composing rectangles, she or he follows the strategy to search for

dominant linear structures in combination with their intensity (width). For the

example of Figure 2 (a), tests have shown that most people intuitively would first

select the vertical rectangle in the center of the object, like it is done in Figure 2 (b).

But just after that, mostly they would like to reset their selection because of the

structured object part on the left hand side of this rectangle which complicates a

further decomposition. Moreover, most test persons do not follow any strategy or

heuristic, but rather follow their intuition. If the task is altered and the person has to

decide, which of the alternatives (b) to (f) of Figure 1 mostly reflects her or his verbal

description of the object, 57 % of the persons (12 out of 21) selected alternative (d),

while alternative (e) was selected 6 times and alternative (f) 3 times. Note that none of

the persons has selected neither alternative (b) nor (c).

To somehow transfer behaviour of humans in spatial object structuring to an auto-

mate, heuristics that are proceeding in a similar way have to be defined by means of

operations. Concerning the heuristics described above, strategy [1] and [2] seem easy to

implement, but they are only suboptimal with respect to the describtion of structural

object features. In addition, problems arise when considering a 2D object in the

context of an entire image. Here at first, the objects have to be localized. For that

reason, background data have also to be taken into consideration. Because heuristics

[1] and  [2] only use one orientation for decomposition, they are not expressive enough

to describe objects in entire spaces. Moreover, a spatial consideration may hardly

influence behaviour of a heuristic, producing sometimes exponential increasing of re-

gions. Concerning the heuristics described above, heuristics [3] to [5] may directly be

transfered to an entire image space (see Figure 3).

(d) (e) (f)

Figure 3: Results of applying heuristics [3] to [5] to 2D space describing the object of

Figure 2 (a).
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In all cases, 9 decompositions are necessary to represent this object space by 10

rectangles. These costs also reflect the minimum of the example considered. According

to an automation, all of the heuristics seem to be adequate strategies, but following

humans, heuristic [3] seems to be best. Trying to develop an algorithm, two of the

three heuristics will fail.

For heuristic [4] it is necessary to find a method for determining maximal

rectangular regions in a global image space. But this is a problem that is not tractable

by machine, because it is necessary to establish and compare every combination of

rectangular decomposition. Heuristic [5] also fails, because it is not decidable where to

place a decomposition without having a global image view. Fortunately, heuristic [3]

which is most adequate can be simulated by computer, and moreover, is easy to

implement. This method is called puzzletree generation and will be described in the

rest of this paper.

In the next section, some fundamental properties of puzzletrees are briefly intro-

duced. Thereby, we are primarily concerned with images that only contain black or

white regions to simplify our explanations. In this way, some definitions with respect

to binary images have to be given. The term image refers to an original array of image

points that is obtained by a camera or an optical scanner. Image points are the basic

elements of an image. They often are designated by pixels, having a different value ac-

cording to their color or grey level. If pixels of an image are either black or white,

then the image is said to be binary. Moreover, pixels are of the same color, if their grey

level or color is defined by the same value, i.e., in the case of binary images, they are

entirely black (defined by value “1”) or entirely white (defined by value “0”). The term

block determines a rectangular image region that may describe the entire input image

as well as subsets of it.

3  PRINCIPLES OF PUZZLETREES

The puzzletree is a technique for image space structuring and representation. When

generating puzzle-trees, it is not necessary to consider images of size 2n x 2n, such as

the conventional quadtree approach does. Instead, rectangular images of any size and

shape can serve as input. Based on successive subdivision, an input image is

decomposed in rectangular adjacent blocks of same heigth or same width. Subdivision

can be applied in either vertical or horizontal direction. If a block does not consist of

pixels of the same color, it is subdivided into subblocks until the criterion is fulfilled.

Thus, the resulting block puzzle of an image space represented by a puzzletree consists

of blocks having arbitrary size and extensions rather than squares.

Figure 4 illustrates the principles of puzzletrees. The figure shows the example of

two image objects (a) — a simplified chair and table —, the corresponding block puzzle

resulting from spatial puzzletree consideration (b) and the internal representation of

the corresponding puzzletree (c). The order of numbers designating the terminal nodes

of the trees is determined by a breadth-first generation.
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(c)

x

y y

x x

1 2

3 4 5 6

7 8 9 10 11 12 13

1 2

3

4

5

6

7 8
9 10 11 12 13

(a) (b)

Figure 4: A 2D object (a), its block puzzle representation (b) and the corresponding

puzzletree (c).

The root node of a puzzletree corresponds to the entire input space (image) by

considering the enclosing rectangle of the objects of interest. The subblocks obtained

during subdivision are represented by respective child nodes. Concerning the example

of Figure 4, in a first step, image space is divided in four subblocks by vertical

decomposition. Each of the four child nodes are in order from left to right. In case of a

horizontal subdivision, the order would be from top to bottom. Nonterminal nodes are

denoted as division nodes. A division node is said to be horizontal if it is designated by

a label "y" (decomposes an image space in horizontal direction at y-positions), and

vertical if it is designated by a label "x" (decomposes an image space in vertical

direction at x-positions). All child nodes of a node have either the same height or the

same width depending of the direction label designating their parent node. All termi-

nal nodes of the puzzletree represent those blocks for which all containing pixels are

of same color. In the example, they are either black or white. Note that unlike

quadtrees, the degree of the tree depends on the number of subdividions of a rectangle

in either horizontal or vertical direction.

4  GENERAL STRATEGY

To generate puzzletrees from an image space, several processing steps are necessary.

An image is input into a computer through an optical scanner tracking row by row to

obtain digitized image data. Then, the raster image is tracked row by row and column

by column to determine runs which consist of connected pixels of same colour. The

resulting run-length encoding (RLE) [Ru68] for image rows and columns is the basis for

a heuristic that is used to evaluate linear homogeneity within image space to direct

recursive decomposition of blocks. For all blocks resulting from a decomposition,
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frame-like objects are generated to represent their geometric properties and spatial

relations. As a result, a puzzletree is obtained. It may be interpreted as an aggregation

hierarchy containing blocks as terminals that capture pixels of same color and

higher-level blocks which correspond to division nodes. Figure 5 summarizes the

different processing steps for puzzletree generation.

Cut Position
Determination

Homogeneity
Computation

Run-Length
Encoding

Block Instances
Generation

Digitized
Image Data

Row-Runs Column-Runs

PuzzletreeInput Image

Figure 5: General strategy for puzzletree generation.

5  GENERATION OF PUZZLETREES

During puzzletree generation an image is not decomposed at fixed, predefined

points of the array. Rather, it depends on the spatial structure and position of image

objects which are described by connected nonzero data points. This strategy includes

that the degree of decomposition (i.e. number of resulting subblocks) is neither regular

nor in equal-sized blocks, but rather may be governed by the input data. Therefore,

the spatial image structure is first examined with respect to dominant linear features

of both, objects and background.

5.1 Linear Homogeneity

The structure of an image space is characterized by a certain complexity. This com-

plexity is mainly influenced by number and size of homogeneous image regions

having same color. For a one-dimensional decomposition of space, it is only

necessary to consider linear homogeneity, which depends on the frequency and the

length of pixel sequences in a row or a column having different colors. In Figure 6,

image rows of different degree of linear homogeneity are shown. The figure shows

rows having high (a), medium (b), and low (c) homogeneity degrees.
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(a)

(b)

(c)

Figure 6: Binary image rows having high (a), medium (b), and low homogeneity

degrees.

To validate the complexity of images, rows and columns are entities for which

their degree of linear homogeneity could be measured. Therefore, the following

criteria are considered:

• The degree of linear homogeneity of an image row or column decreases with the 

number of changes in color.

• The degree of linear homogeneity increases with the length of a pixel sequence in a

row or column that are of the same color.

Taking these criteria, the set of pixels in an image row or column define the corre-

sponding degree of linear homogeneity, no matter which color they have. To define

linear homogeneity precisely, the digitized image data is first encoded by run-length

encoding (RLE) [Ru68]. This is done for both, rows as well as columns, whereas rows

are tracked from left to right and columns from top to bottom. The resulting code
consists of a set of pairs (ci, xi). These pairs correspond to pixel sequences within a

row or column, whereby xi denotes the number of pixels following each other by

having the same color ci. Considering the examples in Figure 5, the first row can be

encoded by {(1, 10)}, whereas examples (b) and (c) have respective RLEs of {(0, 3), (1, 5),

(0, 2)} and {(0, 1), (1, 1), (0, 1), (1, 1), (0, 3), (1, 1), (0, 1), (1, 1)}. RLE for rows and columns

of an image space is applied once at the beginning of puzzletree generation. To obtain

a value that expresses the criteria for linear homogeneity, the following definition is

made:

 Definition: Linear Homogeneity

Assume, the length of an image row or column is given by L. Furthermore, the corre-
sponding  RLE is described by the set of pairs {(c1, x1), (c2, x2), ... , (cn, xn)}, whereby 1

≤ n ≤ L. In the case of binary images, ci ∈ {0, 1}, whereas “0” corresponds to color

white and “1” to color black. All values of xi are defined by 1 ≤ xi ≤ L. Then the degree

of linear homogeneity H of a row or column is defined by the quotient of the sum of
the squared xi  and the square of the length of the row or column L

                                                      
H =

n

∑
i=1

xi
2

L
2

           

,                     1/L ≤ H ≤ 1 .                              ( 1)
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The following example illustrates the maximal and minimal degree Hmax and Hmin  of

linear homogeneity for a row having a length L of 10. The corresponding RLEs are {(1,

10)} and {(1, 1), (0, 1), (1, 1), (0, 1),(1, 1), (0, 1),(1, 1), (0, 1),(1, 1), (0, 1)}.

Example:

H = H       = 1max

H = H       =             = min

10

∑
i = 1

1
2

10
2

1

10

Applying Formula (1) to the examples of  Figure 6, degrees of linear homogeneity of
Ha = 1, Hb = 0,38 and Hc = 0,16 can be calculated.

5.2 Orientation and Position of Decomposition

In Figure 7, the image space of Figure 4 (including object and background data) and

corresponding RLEs of rows and columns are shown.

{(1, 6)}
{(0, 2), (1, 1), (0, 3)}
{(0, 2), (1, 1), (0, 3)}
{(0, 2), (1, 4)}
{(0, 6)}
{(0, 2), (1, 1), (0, 3)}
{(0, 2), (1, 4)}
{(0, 2), (1, 1), (0, 3)}
{(0, 2), (1, 1), (0, 3)}
{(0, 2), (1, 4)}
{(0, 2), (1, 1), (0, 3)}

RLE - columns (1 .. 11)

Image Space

{(1, 1), (0, 10)}
{(1, 1), (0, 10)}
{(1, 4), (0, 1), (1, 6)}
{(1, 1}, {0, 2), (1, 1}, {0, 2), (1, 1}, {0, 2), (1, 1}, {0, 1)}
{(1, 1}, {0, 2), (1, 1}, {0, 2), (1, 1}, {0, 2), (1, 1}, {0, 1)}
{(1, 1}, {0, 2), (1, 1}, {0, 2), (1, 1}, {0, 2), (1, 1}, {0, 1)}

RLE - rows (1 .. 6)

Figure 7: A binary image and corresponding runs for rows and columns after RLE.

Calculating the degrees of linear homogeneity by Formula (1), homogeneity vectors

RH  (for rows) and CH   (for columns) can be determined that capture the respective

values.

RH   = (0.83, 0.83, 0.44, 0.14, 0.14, 0.14);

CH   = (1, 0,39, 0,39, 0,56, 1, 0,39, 0,56, 0,39, 0,39, 0,56, 0,39);

This vectors are used to determine the orientation and position for a decomposition.

Linear homogeneity may also be interpreted as a measurement about how often and

in what distances a row or column has to be decomposed to obtain sequences of pixels
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having the same color. To obtain an almost minimal number of decompositions, rows

or columns having a high degree of linear homogeneity should be selected. Ideal are

those rows and columns having the maximal linear homogeneity of “1”, because no

further decomposition is necessary.

In the example the homogeneity vector CH   captures two maxima of linear

homogeneity having a value of 1. Thus, the algorithm prefers a vertical subdivision of

the original image block. Note that both, object data as well as background data are

taken into account. In the case of the example, three positions of decompositions are

determined after columns 1, 4 and 5.

5.3 Start Orientation

In many cases, the  problem of determining the start orientation (i.e. vertical or

horizontal) of a first decomposition is not trivial because both, RH   and CH  could have

same maxima. In Figure 8, an example of a raster image is shown. The example

describes two adjacent image columns and one row having maximal degree of linear

homogeneity. For the rest of the image, no further description is made.

Figure 8: Example of an image having the characteristic to show maximal degree of

linear homogeneity along horizontal and vertical dimensions.

Taking the above described heuristic for puzzletree generation, there exist several

alternatives to decide about the orientation of a first image decomposition. For

making a descision, there exist several possibilities:

• Length of a row  or a column.

• Number of rows or columns having maximal degree of linear homogeneity.

• Number of adjacent maxima.

• Number of pixels of directly resulting terminal blocks.

Here, either the length of rows and columns (A) or the size of a block (B) are

considered as criterion. Respecting the example, the result is either horizontal

(criterion A) or vertical(criterion B).

Tests have shown that a satisfying decision can not be made without examining the

global image structure. According the achieve optimal compression of an image, i.e

minimal number of puzzletree nodes, it is necessary to consider the color of all pixels

— and this seems to be an unsolvable problem. Figure 9 illustrates this fact for an

example in which adjacent pixels influence the results obtained by puzzletree
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generation. Here, the four bottom-most pixels in column 5 — Figure 9 (a) — and the 5

left-most pixels in row 3 — Figure 9 (b) — are set to black. Depending on the choice of

the first cut orientation, puzzletrees having different numbers of nodes are obtained.

In Figure 9 (a) the better choice has been first to horizontally decompose, while in

Figure 9 (b) the better alternative has been a vertical decomposition.

1
2 3 4

5 6 7 7
1

2
3

4
5

68

1
2 3 4

5 6 7
1

2

3

4

5
6

(b)

(a)

7

8

Figure 9: Influence of adjacent pixel colors to the results obtained by of puzzletree

generation.

To resolve this conflict much more information is necessary. The part of image

that is relevant for determining a first cut orientation can be given by a set of pixels

which are adjacent to the rows and columns under consideration or furthermore can

be hidden anywhere in the image. Figure 10 illustrates such an example on which a

final descision  about the first cut orientation can be made very late during puzzletree

generation.
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If it would become possible to examine and furthermore validate a global image

space, it is a short step to obtain optimal compression (i.e. minimal number of

blocks). However, an image space is two-dimensional and linear homogeneity is one-

dimensional and therefore expresses only linear features that can be used for a local

decision for the actual subdivision step.

(b)(a)

Figure 10: Influence of pixel colors to the results obtained by of puzzletree

generation.

Due to this fact, several alternatives exist that may be used to prefer either vertical

or horizontal subdivision. In the puzzletree approach, the first criterion is the number

of adjacent rows or columns in which the maximum occurs. If there are single rows or

columns showing same maximum, the length of them is considered. In the case
vectors RH and CH capture the same number of adjacent maxima having moreover the

same degree of linear homogeneity, the length of rows and columns is taken as a

second criterion. Nevertheless, if the first orientation for a decomposition is chosen,

subsequent orientations follow by a strictly alternation.

Applying these criteria in stepwise and recursive manner to a certain image space,

heuristic [3] like shown in Section 2, can be fully transferred to a computer. In Figure

4, the result is shown of applying this strategy to an image.

5.4 Alternation of Cut Orientation

If images have a higher complexity, the intermediate results of the respective

puzzletree needs few minor corrections to fulfil the criterion of a strictly alternation

in cut orientation. This criterion is desirable for subsequent processing of the data

structure, because it simplifies the operations to be initiated. The example in Figure

11 illustrates the correction. It is rather a minor than a fundamental problem and is

easy to solve; the respective nodes are deleted and their successors are added to the

successors of their predecessor (ref. Figure 11, step (2)).

Considering the final result of image space decomposition, a puzzletree can also be

interpreted as a rule of how to combine a large number of blocks of different size, ex-

tensions and color to reproduce a 2D object. This property may be of significant

importance in object recognition problems and is different from conventional region

quadtrees.



16

(1) y

y

y

y

y

x x x

y y y

(2)

(4)

Figure 11: Providing a strictly alternation of cut orientation in puzzletrees.

6  REPRESENTATION  OF PUZZLETREES

For an internal representation of puzzletrees, at least two possibilities come to

mind. The first and most obvious encoding is a frame or record-like representation of

the puzzletree nodes that are referenced by pointers. An alternative possibility for

encoding is given by a special notation called puzzlecode [De91b].

6.1 Object-Oriented Representation

For our work in image analysis, we need an internal representation of a puzzletree

that should be easy to generate, easy to modify and easy to understand. Since the

philosophy of object-oriented programming and data models address our requirements,

we use frame-like objects to represent nodes of a puzzletree and to relate them.

Thus, every image block, whether it is a division node or a terminal, is represented

by a frame-like object. In general, an application domain may be handled in terms of

such objects (see also [DM91]). Each object is an instance of the particular type which

defines the object´s structure. The structure of an object is a description that is

specified by declarative as well as procedural parts. Declarative parts are properties

and relationships, while procedural parts are methods that can be applied in any

processing state.

In our domain, an object-oriented spatial representation of an image consists of an

aggregation of image blocks having different grain. With the type block certain methods

(i.e. comp-area, comp-perimeter, etc.) are associated as well as a specific template of

properties (i.e. x-origin, y-origin, height, etc.) and relations (i.e., part-of, has-parts,

etc.). Figure 12 shows the structure of the type block.
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x-origin
y-origin
height
width
color
division
area
perimeter

part-of
has-parts
has-neighbors

comp-area
comp-perimeter
search-neighbors

set-color
comp-homogeneity

set-cuts

type  block

properties

relations

methods

Figure 12: Structure of type block.

Every instance of the type block is an object that matches the template defined for

a block having specific values instantiated for each property and relationship. Figure

13 illustrates an example for object-oriented image representation. Properties of block

instances are illustrated explicitly, while relations are shown by links between type

and instances as well as between blocks and subblocks (part-of- and has-parts).

Neighborhood-relations are not explicitly shown.

1

2

3

x-origin

y-origin
height

width
color
division

area

perimeter

type  block

x-origin = 3

y-origin = 0
height = 3

width = 2
color = NIL
division = y

area = 6

perimeter = 10

x-origin = 0
y-origin = 0

height = 3

width = 3
color = 0

division = NIL

area = 9
perimeter = 12

x-origin = 3
y-origin = 1

height = 2

width = 2
color = 1

division = NIL

area = 4
perimeter = 8

x-origin = 3

y-origin = 0

height = 1
width = 2
color = 0

division = NIL
area = 2

perimeter = 6

x-origin = 0

y-origin = 0

height = 3
width = 5

color = NIL

division = x
area = 15

perimeter = 16

in

in

in

in
in

p p

p p

(a) (b)

in - type/instance 
relationship 

p- part/subpart 
relationship 

1

2 3

Figure 13: Example of an image (a) and corresponding hierarchy of block instances

(b).

In such object-oriented aggregation hierarchies the value for a particular property

can be stated explicitly, or obtained implicitly by evaluating the corresponding methods,

or obtained by inheritance. For instance, the area of a block is implicitly determined by
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a function multiplying its dimensions. Another example is the value of the width for the

subblocks obtained by horizontal decomposition of a block that can be directly

inherited from this block. Using such methods to derive higher-level information is a

primary task in computer vision.

6.2 Puzzletree Encoding

An alternative possibility for encoding is given by a special notation called

puzzlecode (also used in a similar way in another approach [DB89]). While the record or

frame representation of puzzletrees is a basic medium for subsequent knowledge-based

operations on image space (e.g., neighbor finding, connected component labeling, object

detection) [De91a], the puzzlecode is a direct description of the image having primarily

the intention of compression. But, it also allows a discussion of geometric concepts in

terms of coded images themselves, similarily proposed for quadcodes [LL87].

The puzzlecode is a restricted notation based on lists and primitive symbols, descri-

bing subdivision and characteristics of an image space. This is done by nested sublists

consisting of three kinds of designators. These are:

• letters "x", "y" denoting orientations for a subdivision,

• position labels,

• values which indicate the color of a block.

The position labels are represented by fractions. The numerator indicates the row or

column of pixels within a block at which a decomposition has to take place, whereas the

denominator indicates the length of a row or column. For better distinction, color

values are quoted.

Using these primitives, the puzzletree in Figure 4 (c) can be expressed by:

(x  1/11  4/11  5/11 ´1
(y   3/6  4/6 ´0

´1
(x  2/3  ´0  ´1))

´0)
(y   2/6  3/6 ´0

´1
(x  1/6  2/6  4/6  5/6 ´0   ´1  ´0  ´1  ´0)))

The above example of puzzlecode can be read as follows: First, the input image is sub-

divided in vertically direction at positions 1/11, 4/11 and 5/11. The first of the resulting

blocks contains pixels that are entirely black. The second of the resulting blocks is

further divided in horizontal direction in three subblocks at position 3/6 and 4/6, etc.

7 PUZZLECODE COMPRESSION

In several cases, if the structure of a given image space is very complex, a non-

optimal subdivision of a block can be initiated. Applying the puzzletree generation

heuristic to  the example shown in Figure 14 (a), an appropriate puzzletree (b) is
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generated. The respecting vertical decompositions at positions 1/5 and 2/5  provide two

subblocks which both are further subdivided at position 1/3 into subblocks of same

color — see Figure 14 (b), shaded area.
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x

(b)

(d)

Figure 14: Example of an image (a) and corresponding hierarchy of block instances

(b).

Assume these blocks are designated as b1 and b2, then they may be represented by

the following puzzlecode:

b1 = (y  1/3  ´1  ´0)

b2 = (y  1/3  2/3  ´1  ´0  ´1)

The fact that both blocks b1 and b2 have same parts with respect to cut position and

color can be used to reduce the number of nodes needed for puzzletree representation.

Therefore, the first cut position 1/5 of the image in Figure 14 (a) can be deleted and the

blocks b1 and b2 are combined to a single block. This combination of blocks is called

compression.

Definition: Puzzlecode compression

Assume, o, ø designate orientations for a possible decomposition; o, ø ∈ {x, y} and o ≠
ø. In addition blocks b1 and b2 are described by the puzzlecodes

b1 = (o  p1,1  p1,2  ...  p1,n   c1,1  c1,2  ...  c1,n   c1,n+1 )

b2 = (o  p2,1  p2,2  ...  p2,m  c2,1  c2,2  ...  c2,m  c2,m+1 )

whereby pi,j  denotes the cut position and ci,j  the color of resulting blocks. Assume

also, boundaries of block b1 are defined by p1,0  and p1,n+1 and those of b2 by p2,0 and

p2,m+1 . Furthermore, b1 and b2 are decomposed at position p0.

Then, the puzzlecode compression of blocks b1 and b2
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b3 = b2  ± b1 = (o  p3,1  p3,2  ...  p3,l  c3,1  c3,2  ...  c3,l  c3,l+1)

is defined by:

c3,k ={ c1,i i f c 1,i = c2,j

(ø p
0

c1,i c 2,j ) else
(2)

p
3,k

={ p
2,j

i f p
1,j

> p
2,j

p
1,j

else
(3)

for c1,i-1  < c2,j ≤ c1,i  or c2,j-1 < c1,i  ≤ c2,j and k = i + j - ∑
i, j

(c 1,i = c2,j ).

Note, that resulting c3,k  may represent both, block colors or further decomposition

in subblocks. Taking the same assumption as for the definition, the following

algorithm for puzzlecode compression may be given:

Algorithm: compression:

(1) i := 1; j := 1; k := 1;

(2) while not (i ≥ n and j ≥ m) do begin
(3) if (c1,j  = c2,j  ) then c3,k  := c1,i

(4) else c3,k  := (ø  p0  c1,i   c2,j  )

(5) if (i ≤ n) and (j ≤ m) then
(6) case (p1,i  < p2,j ) or (j = m+1): p3,k  :=  p1,i  ;  i := i+1 ;

(7) (p1,i  > p2,j ) or (i = n+1): p3,k   :=  p2,j  ;  j := j+1

(8) else: p3,k   :=  p1,i  ;  i := i+1 ;  j := j+1 ;

(9) k := k+1 ;

(10) end;

Applying puzzletree compression to b1 and b2 of the example in Figure 13, the com-

pressed notation b1 ± b2 = (y 1/3  2/3 ´1 ´0  (x ´0 ´1)) is obtained. This compression

results in reducing the number of nodes needed for the puzzletree representation of the

image. The result of this compression is shown in Figure 14 (c-d).

With respect to this example, the effectiveness of puzzletree compression does not

become obvious. But there may be examples for which corresponding rows and/or

columns are much longer than in the example of Figure 14. In praxis, such examples

exist very often. The following example illustrates such a case.

Example: Two adjacent blocks b1 and b2 before and after compression.

b1: 72 3 4 5 61 8

b2: 9 1110 12 13

b1 ± b2: 1 3 4 5 6
7

8

9
2

10

After compression, the number of terminals is reduced from 13 to 10. As a

side effect, the number of nonterminals increases by 2 nodes (can be recog-

nized at these positions of the example, where horizontal cuts are added).
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The effective saving of nodes can be calculated by taking the difference between

direct matches (corresponds to the number of saved terminals) and direct mismatches

(corresponds to the number of new nonterminals). Direct matches belong to blocks

which describe same intervals with same color along one and the same orientation.

like  block 4 of b1 and block 10 in b2 or block 5 in b1 and  block 11 in b2 in the above

example. Direct mismatches describe blocks which have different colors along one

orientation and the boundaries of one block are within the boundaries of the other,

like block 2 of b1 and  block 9 in b2 in the example.

8  EXTENSION TO 3D DATA

While octrees [Hu78, JT80] are the equivalent of quadtrees in 3D space representa-

tion, the puzzletree approach may also be extended to describe volume data. Similar to

puzzletrees, objects may be described by blocks (in the sense of 3D-blocks) rather than

by cubes. This is done by successive decomposition of 3D space in block elements of

same color but of arbitrary size, extensions, and volumes. Without delving in details,

the extension of puzzletrees to 3D data is straightforward. Figure 15 shows the

example of a chair (a), its blockpuzzle (b) as well as the generated 3D puzzletree.

(a) y

xz

(c)

xy

1

2 3 4

5 6 7 8 9 10

(b)

z

y y

Figure 15: 3D-blockpuzzle (b) and puzzletree (c) of an chair-object (a).

As illustrated, orientations for a decomposition are extended to x, y and z axes.

Note that the node No.1 describes the seating of the chair, node No. 3 its back, and

nodes No. 5, 7, 8, and 10 represent the legs.
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While 2D puzzletrees describe rules of how to combine blocks to a 2D puzzle, 3D

puzzletrees are equivalent rules to define the creation of 3D objects, or spaces by

blocks. This property is important for object location and recognition, because such

descriptions can be used as reference patterns of how objects are structured, and there-

fore, may serve as a basis to classify objects at hand. Thereby, it is not important to

ensure a detailed description of an object (i.e., in the case of rounded or circular parts

of an object), but rather to be able to represent objects by rules that offer descriptions

of different degrees of abstraction. Considering the example in Figure 15, that means,

there may be cylindrical legs of the chair, but for the puzzletree representation, this

fact only leads to a deeper tree having additional descriptions in the subtrees at nodes

No. 5, 7, 8, and 10.

9  RESULTS AND DISCUSSION

Several comparisons of the puzzletree approach to conventional region quadtrees

can be made. While a decomposition in quadtree generation hardly is influenced by

the position of a grid over an image, puzzletrees, by contrast, are established

independent of this fact, because of an adaption to the spatial structures at hand.

Nevertheless, some comparisons to "classical" region quadtrees can be made.

In the puzzletree approach, an image space is only decomposed into one direction

obtaining rectangular blocks of same height or length, whereas a quadtree subdivides

an image into four disjoint congruent square blocks. A respective tree structure

expressing quadtree properties and moreover strictly alternating between x and y axes

is the bintree [Kn80, Sa84]. But here, a space is always subdivided into two parts of

equal size. In contrast to region quadtrees, the blocks obtained during puzzletree

generation have no regular sizes and extensions, nor positions but depend on the

complexity of the input image, like the degree of subdivision. Thus, size and shape of a

puzzletree are extremely sensitive to the structure of an input image. However, puz-

zletrees are very flexible because of their consideration of spatial structures and

therefore, provide a very compact representation of space. In addition, the complexity

of parts of the puzzletree, i.e., subtrees of it, allows a derivation of the spatial

structure in different image parts.

Another comparison is possible by considering the number of nodes (terminal

nodes) and the generation time. Like quadtrees, the worst case for a puzzletree of a

given depth is given when the image array corresponds to a chessboard pattern. In

this case the number of nodes that are needed is equivalent to the quadtree approach.

In all other cases, the puzzletree provides results having a lower number of nodes

(terminal nodes) than obtained by quadtrees. For comparison, we have implemented

both approaches in Common-Lisp on a Mac II fx, being equipped with 8 MBytes main

memory. Concerning cpu time, puzzletree generation needs about 0.8 to 4 times of the

time that is needed for quadtree generation. Considering a set of 50 images, having

different size and structure, the averaged factor is about 2.6. Concerning the number of

nodes which are needed for conventional binary image representation, puzzletrees

need about 4 to 40 times less nodes than quadtrees need.
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In Figure 16, examples (a-c) of binary images are shown. The rectangles in the

examples describe the space that is considered for puzzletree and quadtree generation.

The examples are: an image of a single word (a), a text image (b), an image of a fifty

austrian schilling bill (c), and an image of a globe (d).

(a)

(c)

(b)

(d)

Figure 16: Examples of image spaces.

Note, that for a respective quadtree generation, the arrays have to be extended to

the minimal square of size 2n x 2n that embodies the selected image space.

The subsequent table captures the results obtained by puzzletree as well as by

quadtree generation. The differences in generation time are mainly caused by

calculating the homogeneity criterion. Note also the large differences in number of

nodes (leaf nodes) needed for image space representation. This is important for

efficiency of all subsequent operations on the data structure.

nodes leaf nodes gen. time
(cpu-sec.)

  expl image size QT P T QT P T QT P T

(a) 42 x 96 6420 221 4816 151 4.83 5.43
(b) 126 x 116 8340 2055 6256 1373 5.40 14.45
(c) 94 x128 10252 4199 7690 2929 9.47 28.15
(d) 140 x 147 29372 2129 21290 1396 25.57 35.92

Table 1: Comparison of quadtree (QT) and puzzletree (PT) approach.
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In Figure 17 a binary image of text scanned by a resolution of 200 dpi is shown. In

the upper right part, of the image, a rectangular region is described for being input for

both, puzzletree generation as well as quadtree generation. In Figure 18 the resulting

decomposition of the image block is illustrated, i.e. puzzletree decomposition on the

left hand and quadtree decomposition on the right.

Figure 17: Binary image of a text showing a block being input for puzzletree and

quadtree generation.

Figure 18: Puzzletree decomposition and quadtree decomposition of the image block

shown in Figure 10.



25

The original image block size is 63 x 49 dots, while for quadtree generation, it is

expanded to 64 x 64 dots. Generation time for puzzletree generation is 3.5 seconds and

for quadtree generation 1.45 seconds. Considering the number of nodes, the puzzletree

approach needs 332 nodes (225 leaves), while quadtree generation needs 1260 nodes (946

leaves) .

We are currently implementing a procedure for determining neighborship relations

as well as connected components. In addition, we examine the approach with respect to

recognition tasks in document images, i.e. text and graphics.

10 CONCLUSIONS

The algorithm presented in this report provides a method for efficient physically

structuring of space. The procedure may be used to generate object-oriented represen-

tation of space [De91b] or for its puzzletree encoding [De91a]. It may be applied either

for representing images or volumes, or any n-dimensional space.

Advantages of the approach are its sensitivity to a spatial structure at hand and its

capability of self-adaptation. For this reason, a very compact aggregation of space is

attained which allows for an effective application of subsequent operations (neighbor

finding, connected component labeling, segmentation, etc.). However, for a broader ap-

plication of the puzzletree in object recognition tasks, some additional work is neces-

sary.  Primarily, the approach is also very useful for object recognition tasks, but for a

general application, the puzzle representation is not immediately usable because it does

not have properties like rotation invariance.

Puzzletrees of space are generated in a way that the first subdivision may be arbitra-

rily set to be horizontal or vertical. Consequently, horizontal and vertical subdivision

alternate strictly. Thus, space can be represented by dividing it into nested blocks by a

certain order, position, and orientation of decomposition and by coloring terminals.

The final result of a decomposition is an almost minimal set [De91a] of blocks that

divide a given space into homogeneous regions, i.e in the case of images into blocks oc-

cupied by pixels of same color. In contrast to quadtrees, the blocks have no standard

sizes, extensions, or locations. Additional advantages of puzzletrees are the saving of

storage over an array representation (compression factor is much better than the one of

quadtrees) and the provision of a global data structure in contrast to polygon represen-

tation.

Because our work is primarily concerned with recognition and classification tasks,

puzzletrees are mainly considered as specifications for object structure descriptions. To

this end, we concentrate on experiments that utilize and apply puzzletree descrip-tions

for the creation of decision tree classifiers (similar to the approach proposed by [DB89]).
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