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Abstract

This paper describes an approach towards generating refer-
ring expressions that identify and distinguish spatial entities
in large-scale space, e.g. in an office environment, for au-
tonomous mobile robots. In such a scenario the dialogue con-
text typically goes beyond the perceptual fields of the inter-
locutors. One of the challenges therefore lies in determining
an appropriate contrast set. Another important issue is to have
adequate models of both the large-scale spatial environment
and the user’s knowledge.

Introduction
In earlier work, we have presented a conversational au-
tonomous mobile robot (Zender et al., 2007), emphasizing
situated dialogue for teaching the robot about its environ-
ment. Besides understanding human-like concepts the robot
must be able to express itself in a way that is understandable
by humans. It is therefore crucial that the robot can produce
expressions that successfully refer to entities in its environ-
ment.

Previous approaches to the generation of referring expres-
sions (GRE) in the general domain of conversational agents
have mainly focused on small-scale scenes or closed-context
applications, (Kelleher and Kruijff, 2006), (Funakoshi et al.,
2004), (Horacek, 1997), (Dale and Reiter, 1995). Although
there are well-established methods for generation referring
expressions from both explicit and implicit scene models,
only limited research has focused on how to determine what
part of a scene constitutes the current context. This is of spe-
cial importance when conducting a situated dialogue about
large-scale space, where large-scale space is defined as “a
space which cannot be perceived at once” (Kuipers, 1977).
For the dialogue this means that most potential referents and
distractors are not in the visual fields of the interlocutors, but
still they will want to talk about them.

In this paper, we present an approach to adapt the in-
cremental algorithm (Dale and Reiter, 1995) to a scenario
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where a conversational robot has to refer to spatial enti-
ties in large-scale space. We will show how our approach
of Conceptual Spatial Mapping (Zender and Kruijff, 2007)
both provides a suitable knowledge base for the algorithm
and serves as a basis for determining the context set.

Background
The task of generating referring expressions can be para-
phrased as finding a description for an entity in the world
(the intended referent) that refers to the intended referent
and only the intended referent. This implies that the descrip-
tion must be chosen in a way that prevents it from referring
to another entity in the current context set. All entities in
the context set except the intended referent form the con-
trast set. The referring expression must thus distinguish the
intended referent from the members of the contrast set. A
referring expression is a noun phrase (NP) of any degree
of complexity. In order to provide enough information to
uniquely identify the intended referent, further attributes of
the referent need to be expressed, for instance with adjec-
tives or prepositional phrases, which in turn might contain a
referring expression NP.

The incremental algorithm of (Dale and Reiter, 1995)
constitutes an approach to the GRE problem, which they
rephrase in terms of the Gricean Maxims. Inherently, any re-
ferring expression should fulfill the Maxim of Quality in that
it should not contain any false statements. The algorithm
also ensures that only properties of the referent that have
some discriminatory power are realized (Maxim of Rele-
vance). Moreover, they try to fulfill the Maxims of Man-
ner and Quantity in that the produced expressions are short
and do not contain redundant information. The incremen-
tal algorithm provides a solution to the GRE problem with a
reasonable run-time complexity. They support the fact that
this is achieved by not attempting to find an optimal refer-
ring expression by findings in psycholinguistics.

Since we are going to present our approach in terms of
the incremental GRE algorithm (cf. Algorithms 1, 2, 3), it
is important to briefly explain its relevant principles. The
algorithm needs a knowledge base that describes the proper-



ties of the domain entities through attributes and values. A
special attribute is an entity’s type. The algorithm is initial-
ized with the intended referent, a contrast set and a list of
preferred attributes. The algorithm then iterates through the
list of attributes in the order of preference. If a property that
holds for the intended referent is false for at least one mem-
ber of the contrast set, the property is added to the generated
expression and the respective members of the contrast set
are removed from it. When the algorithm has successfully
eliminated all the original members from the contrast set, the
algorithm terminates and returns the expression generated so
far. If the contrast set is still non-empty after iterating over
the last property in the list, the algorithm fails.

In order to determine appropriate discriminating proper-
ties, the algorithm requires a set of interface functions that
provide further information, namely the taxonomical spe-
cialization of a given attribute, the basic level category of
an entity’s attribute, a model of the user’s knowledge, and
finally an ordered list of preferred attributes.

Algorithm 1 The Basic Incremental Algorithm for GRE
Require: r = intended referent; C = contrast set; P = preferred-

attributes-list
Initialize: DESC = {}
for each Ai ∈ P do

V = f indBestValue(r,Ai,basicLevelValue(r,Ai))
if RulesOut(〈Ai,V 〉) 6= nil then

DESC = DESC∪{〈Ai,V 〉}
end if
if C = {} then

if 〈type,X〉 ∈ DESC for some X then
return DESC

else
return DESC∪{〈type,basicLevelValue(r, type)〉}

end if
end if

end for
return failure

Algorithm 2 findBestValue(r,A,initial-value)
if userKnows(r,〈, initial− value〉) then

val = initial-value
else

val = null
end if
if (more-speci f ic-value = moreSpeci f icValue(r,A,val)) 6= nil∧
(new-value = f indBestValue(A,more-speci f ic-value)) 6= nil∧
(|rulesOut(〈A,new-value〉)| > |rulesOut(〈A,val〉)|) then

val = new-value
end if
return val

Algorithm 3 rulesOut(〈A, V〉)
if V = null then

return nil
else

return {x : x ∈C∧userKnows(x,〈A,V 〉) = f alse}
end if

Our approach
A robotic office assistant that is supposed to interact with its
users through spoken language will have to refer to things
and places in their environment. It needs to do so in a way
that is intuitively understandable by humans. There are con-
ceivably many ways in which a robot might to refer to things
in the world and most of them will fail to achieve their com-
municative goal. Consider the following set of examples:

1. “the location at position (X = 5.56,Y =−3.92,θ = 0.45)”

2. “the mug to left of the plate to the right of the mug (...)”

3. “Peter’s office no. 200 at the end of the corridor on the
third floor of the Acme Corp. building 3 in the Acme
Corp. building complex, 47 Evergreen Terrace, Calisota,
Planet Earth, (...)”

4. “the area”

These referring expressions are valid descriptions of their
respective referents. Still they fail to achieve their commu-
nicative goal, which is to specify the right amount of infor-
mation that the hearer needs to uniquely identify the refer-
ent. First of all, robots are good at measuring exact dis-
tances, humans are not. So the robot should employ qual-
itative descriptions that make use of the same concepts as
a human-produced utterance would. Second, specifying a
referent with respect to another referent that is only identifi-
able relative to the first one leads to infinite recursion instead
of the communicative goal. Finally, the robot might have a
vast knowledge about facts and entities in the world, but it
should not always try to uniquely separate the referent from
all entities in the world. At the same time, it is necessary to
provide enough information to distinguish the intended ref-
erent from those entities in the world that potentially distract
the hearer. The following expressions might serve as more
appropriate variants of the previous examples:

1. “the kitchen around the corner”

2. “the mug on the table in the laboratory”

3. “Peter’s office”

4. “the large hall on the first floor”

The fact that they might (or might not! ) be successful
referring expressions points to the importance of knowing
what the given context in a situation is. This is especially
the case for a mobile robot that operates and interacts in
large-scale space. It is thus an important basis to endow the
robot with a spatial representation that resembles the way
humans conceive of their environment. But it is not enough;
the robot must also be able to determine which entities in
the world might act as potential distractors with respect to
the hearer’s knowledge.
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Figure 1: A subset of our office environment commonsense ontology, including relevant relations (dotted arrows) and basic
level categories (thick lines).

In the following sections we will describe how the onto-
logical representation of spatio-conceptual knowledge in our
robot architecture serves as a natural knowledge base for the
incremental GRE algorithm. Furthermore, we will propose
a method for a proper construction of the contrast set for
large-scale space.

The knowledge base
Our robotic system is endowed with a multi-layered spa-
tial representation, ranging from a low-level metric map, via
a topological abstraction layer, to an ontology-based con-
ceptual map. We refer the reader to our previous publica-
tions for a more detailed account on the spatial representa-
tion (Zender and Kruijff, 2007; Zender et al., 2007). Here,
we will focus on describing the relevant mechanisms for the
GRE task in large-scale space.

The conceptual map layer consists of a Description-
Logics based OWL-DL reasoner. It contains innate concep-
tual commonsense knowledge about an indoor office envi-
ronment (Figure 1), i.e. types of spatial areas, objects and
persons, and the relations that can hold between them. While
the robot is exploring its environment, it populated its ontol-
ogy with acquired and inferred instance knowledge.

The instances in the ontology are the entities of the world
model. The conceptual hierarchy provides the taxonomical
type information of the instances that the GRE algorithm re-
quires. Furthermore, a number of concepts such as Office,
Kitchen, Corridor, Table, etc. are marked as basic
level categories, cf. (Brown, 1958) and (Rosch, 1978). The
relations between instances are the attributes that the algo-
rithm can use to further specify a referent. Note that the use
of relations leads to a recursive call of the GRE algorithm
with its well-known implications. An extension of the algo-
rithm with heuristics to exclude reference to an already men-
tioned entity and to keep the recursion depth minimal can be
used to cope with this issue. Currently, our approach sup-

ports the following properties (in the order of preference):

Type We represent an entity’s type as the (asserted and in-
ferred) concepts of the corresponding instance. Through on-
tological reasoning, we can retrieve an instance’s most spe-
cific concept, its basic level category, and all the instances
of a concept. Further, taxonomy traversal functions (e.g.
getSuperConcepts,getSubConcepts) can provide additional
type information if necessary.

Topological inclusion If the current context spans topo-
logical units at different hierarchical levels (cf. Fig-
ure 2) it is important to specify the intended refer-
ent with respect to the topological unit that contains
the referent, e.g. when referring to “the kitchen on the
3rd floor”, or “the table in the lab”. The concep-
tual map represents topological position with the fol-
lowing relations: hasObject(Area,Object), and
containsArea(Level,Area).

Ownership Areas in an environment are often referred
to by identifying their owners, e.g. “Bob’s office”. In our
ontology instances of Area can be related to a Person
instance via the isOwnedBy(Area,Person) relation.
The name of the person is represented by relating the
Person instance with an instance of PersonName via
hasName(Person,PersonName).

Topological connectivity Information about neighboring
areas can be a good cue for identifying spatial entities, e.g.
“the room next to the lab”. Our system represents adjacency
of topological areas in the topological layer of the robot’s
multi-layered map, where the information can be accessed.

Name As names are usually (locally) unique, e.g. “the Oc-
cam meeting room”, or “office 120”, they are definitely a
highly discriminating attribute for the GRE task. However,
names don’t seem to be a preferred category for referring to
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Figure 2: A topology of places, rooms and floors. Stars de-
pict navigation nodes that denote free and reachable space
for our robotic system. The set of navigation nodes is parti-
tioned into distinct spatial areas, such as e.g. rooms. Areas
in turn can belong to a floors, which are on the next level of
abstraction. Using topology traversal, we construct an ap-
propriate context set for the GRE task.

rooms as they seldom contain any more useful information
than a generic NP + PP referring expression, e.g. “the meet-
ing room on the first floor next to the large hall”, that might
bear additional useful information. Moreover, remember-
ing the inherently artificial name for an entity might involve
a higher cognitive load than processing the information en-
coded in a more generic referential description. For other
scenarios though, such as an information desk agent at a
hospital, or any other institution in which rooms are usually
named by numbering them in logical order, the name feature
can conceivably be placed in a higher-ranking position in the
preference list. Names for areas are represented through the
hasName(Area,AreaName) relation in our ontology.

Landmarks The conceptual map contains spatial areas in
the environment as well as objects found there. The infor-
mation about which objects are found there can be used to
further specify a spatial entity. Currently, our model only
provides the information which areas contain which objects
(hasObject(Area,Object)). The GRE algorithm can
thus form expressions like “the room with the mailboxes”.
Since most of these objects will only be perceivable once the
person is at the location of the intended referent, we assume
that this attribute should only be used with a low preference.
It is noteworthy that our DL-reasoner is able to categorize
spatial areas on the basis of the objects that are found there
(Zender and Kruijff, 2007). The knowledge about which ob-
jects are found where is thus reflected already in the type in-
formation, which is always used in the process of generating
a referring expression.

Determining the appropriate context set
In order to successfully identify a referent it is important to
determine a correct and appropriate contrast set. If the con-
trast set is chosen too small, the hearer might find it difficult
to uniquely identify the intended referent with respect to his

or her knowledge. If, on the other hand, a too large contrast
set is assumed, the generated referring expression might vi-
olate Grice’s Maxims, here the Maxim of Quality, in that it
contains too much unnecessary information.

We claim that the contrast set for generating referring
expressions to entities in large-scale space can be deter-
mined on the basis of a topological representation. Assum-
ing a (potentially recursively defined) topological hierarchy
of places, the contrast set should include all sibling nodes of
those topological units that are visited when following the
search path between the current position and the intended
referent (topology traversal). For instance, if the intended
referent is an object located in the same room as the user and
the robot, only local landmarks should be considered. Like-
wise, if the robot is to produce a referring expression to a
room on a different floor, all entities on that floor and on the
current floor will form the contrast set. Using topological
inclusion as the most preferred attribute will then essentially
function as a pruning of the hierarchically ordered context
set. If the intended referent is within an area of the same
topological hierarchy, however, this feature will not be used
at all because it has no discriminatory power.

In our implementation, the lowest topological level is the
navigation graph. The set of navigation nodes is then parti-
tioned into topological areas that correspond to basic spatial
units, such as rooms and corridors. Our ontology addition-
ally contains a representation for dividing areas into storeys
to which they belong, cf. Figure 2. The topological unit that
is considered the current position need not necessarily be the
robot’s and/or the hearer’s physical location. We claim that
our approach will also yield plausible results when used in
an incremental dialogue to generate route descriptions. In
that case, the most recent dialogue referent is assumed as
the initial position.

Representing the user’s knowledge
In the incremental algorithm the userKnows function is used
to ensure that the algorithm does not include descriptions
that the hearer does not understand and also to prevent the
algorithm from ruling out members of the contrast set that
are no potential distractors with respect tot he user’s knowl-
edge. In our scenario, it is infeasible to fully specify the
knowledge of all possible interlocutors. We therefore opt
for a priori assuming an omniscient user. Using a dialogue
model, we can explicitly mark information as not known by
the user when, e.g. answering questions.

Moreover, the representation of the user’s knowledge
playS important role for example in the route description
generation task. There, the UserKnows function should ini-
tially return false for any knowledge pertaining to referents
that have not yet been introduced. The task of generating a
route description is then redefined in terms of successively
introducing new discourse referents that can then be used for
the GRE task.



Natural language processing
In our system, we use a communication system for situated
spoken dialogue between the robot and a user. Our imple-
mentation of the GRE algorithm collects information from
the ontology that it will then represent as a Hybrid Logics
Dependency Semantics (HLDS) logical form (Baldridge and
Kruijff, 2002). This HLDS logical form is the processed by
the OpenCCG realizer, which generates a natural language
expression (Baldridge and Kruijff, 2003). The following list
shows how information from the ontology is translated to
HLDS. The logical form generated by the type attribute is
the root node; logical forms representing other attributes are
dependent structures of a root node.

• HLDS logical form for type:
@{X :entity}(〈TYPE〉

& 〈Delimitation〉unique
& 〈Number〉singular)

• HLDS logical form for topological inclusion (of areas):
〈Location〉(on

& 〈Anchor〉(location & floor
& 〈Delimitation〉unique
& 〈Number〉singular
& 〈Property〉(q− position & 〈ORD〉)))

• HLDS logical form for topological inclusion (of objects):
〈Location〉(in

& 〈Anchor〉(〈REFERRING EXPRESSION〉))

• HLDS logical form for topological connectivity:
〈Location〉(next to

& 〈Anchor〉(〈REFERRING EXPRESSION〉))

• HLDS logical form for ownership:
〈GenOwner〉(person & 〈NAME〉)

• HLDS logical form for name:
〈Identi f ier〉(loc−name & 〈LOCATION NAME〉)

• HLDS logical form for a number as name:
〈Identi f ier〉(number & 〈LOCATION NUMBER〉)

• HLDS logical form for landmark :
〈Accompaniment〉(〈REFERRING EXPRESSION〉))

Examples
Let us consider the example scenario depicted in Figure 3.
For visualization purposes we have annotated a map sketch
with the instance knowledge that is represented in the con-
ceptual map. The knowledge base consists of a number of
areas that are anchored in the topological map layer. The
robot knows that the rooms in its environment are numbered
(<X>), and that two of the meeting rooms additionally have
names (‘‘Occam’’ and ‘‘Goedel’’). Additionally,
the robot has learned the types of the areas through situated
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Figure 3: An example office environment knowledge base.
The ontology contains several instances of areas (indicated
by the areaX tag) on two floors, objects (o1 is an instance
of Faxmachine, o2 and o4 are instances of Couch, and
o3 is a Coffemaker), and persons (Bill and Bob).

dialogue with its user (Kruijff et al., 2007). It knows about
the presence of four objects, and, finally, the robot knows
two persons, and in which offices they work.

The following examples are the results of applying the
algorithm under varying circumstances. The initial posi-
tion and the intended referent are denoted by i =areai and
r =arear, respectively.

(1) i =area3; r =area1;
Since initial position and target location are on the
same floor, the expression “the hall” is produced.
@{area1:e−location}(hall

& 〈Delimitation〉unique
& 〈Number〉singular)

(2) i =area3; r =area20;
Since initial position and target location are on dif-
ferent floors, the expression “the hall on the second
floor” is produced.
@{area20:e−location}(hall

& 〈Delimitation〉unique
& 〈Number〉singular) & 〈Location〉(on

& 〈Anchor〉(location & floor
& 〈Delimitation〉unique
& 〈Number〉singular
& 〈Property〉(q− position & 2)))

The system is able to successfully generate a referring ex-
pression (Ex. 3) for the coffee maker (o3), but not for any of
the couches (o2 and o4) because the knowledge base does
not contain any information that can properly distinguish be-
tween the two.

(3) i =area3; r =o3;
The position of the intended referent is anchored in
the navigation graph topology. The context set thus
spans two topological layers (the navigation graph
and the area layer). Hence the algorithm includes
the location information when generating the re-
ferring expression “the coffee maker in the kitchen”.

Ex. 3 shows a weakness of the proposed algorithm. The
basic level category Kitchen for area10 is inferred on



the basis of the presence of a Coffeemaker instance.
However, when generating the referring expression for the
“coffee maker” this is not taken into account. It remains an
issue of further research to what extent this influences the
acceptability of such a referring expression.

Another observation can be made when generating a re-
ferring expression for area4with different initial positions.
However, if a recalculated contrast set is provided as input
for the recursive call to generate an embedded referring ex-
pression, we can avoid redundant attributes. Here again, we
make use of our principle to determine the context on the
basis of the topological hierarchy. We simple assume the po-
sition of the most recent referent as the initial position when
determining the contrast set. The result of this modification
leads to the result in Ex. 6

(4) i =area1; r =area4;
This configuration yields “the corridor next to the
secretariat”.

(5) i =area20; r =area4;
The unmodified algorithm yields “the corridor on
the first floor next to the secretariat on the first floor”.

(6) i =area20; r =area4;
After the modification the algorithm produces “the
corridor on the first floor next to the secretariat”.

Conclusions
In this paper we have presented an approach to applying the
incremental algorithm for GRE to the domain of large-scale
space, with an emphasis on its application in a mobile robot
office assistant scenario. We have shown how our method of
conceptual spatial mapping provides a knowledge base for
the GRE algorithm. We have argued further that the con-
struction of the context and contrast sets using our method
for topology traversal is an important step towards gener-
ating appropriate referring expressions in large-scale space.
More importantly, the same method can be used in scenar-
ios where the robot has to provide a verbal route description
from a given start position to a target location. The repre-
sentation of the user’s knowledge is another important pa-
rameter for the route description task where new discourse
referents have to be introduced sequentially in order to allow
for the generation of appropriate referring expressions.

Future work
In our current approach, the list of preferred attributes is
static. Other approaches, e.g. (Kelleher and Kruijff, 2006),
have shown that a dynamic ordering of attributes based on
their (relative) salience yields better results. It remains an
issue of future work to explore the effect and measurabil-
ity of different kinds of salience (e.g. visual and discourse
salience) in the context of GRE for large-scale space. A first
approach could be to work with different preference lists for
different types of referents (e.g. objects vs. areas).

The aforementioned approach of (Kelleher and Kruijff,
2006) provides an excellent opportunity for integrating qual-
itative spatial reasoning for small-scale space with the more
allocentric conceptual spatial reasoning method of the ap-
proach presented in this paper. Using the method of topol-
ogy traversal, the robot could conceivably produce referring
expressions that incorporate entities and properties at differ-
ent levels of abstraction, thus leading to a “zooming-in-and-
out” behavior, like e.g. “the ball to the left of the box on
the table in the kitchen on the third floor”. Since both ap-
proaches are compatible in that they build upon on the same
basic incremental GRE algorithm, we claim that the capa-
bilities of our robot to refer to entities in the world can be
significantly improved by combining these approaches.
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