
STRUCTURE-DRIVEN GENERATION FROM
SEPARATE SEMANTIC REPRESENTATIONS

Stephan Busemann
Deutsches Forschungszentrum fur Künstliche Intelligenz (DFKI) GmbH

Stuhlsatzenhausweg 3, D-6600 Saarbrücken 11
uucp: busemann@dfki.uni-sb.de

ABSTRACT

A new approach to structure-driven generation
is presented that is based on a separate seman-
tics as input structure. For the first time, a GPSG-
based formalism is complemented with a system of
pattern-action rules that relate the parts of a se-
mantics to appropriate syntactic rules. This way a
front end generator can be adapted to some ap-
plication system (such as a machine translation
system) more easily than would be possible with
many previous generators based on modern gram-
mar formalisms.1

 INTRODUCTION

In the field of unification-based computational
linguistics, current research on tactical natural lan-
guage (NL) generation concentrates on the follo-
wing problem:

• Given a semantic representation (which is of-
ten called logical form (LF)) and a grammar
that includes a lexicon, what are the surface
strings corresponding to the semantic repre-
sentation?

A variety of approaches to solving this problem in
an efficient way has been put forward on the basis
of unification-based grammar formalisms with a
context-free backbone and complex categories (for
some discussion see e.g. [Shieber et al. 1990]). Most
of this work shares a Montagovian view of seman-
tics by assuming that LF be integrated into the
grammar rules, thus assigning to each syntactic ca-
tegory its semantic representation.

Within this integrated-semantics approach the
generation task mainly consists of reconstructing a

1 This work was partially funded by the German Mini-
ter for Research and Technology (BMFT) under contract
ITW 9O02. Most of the research underlying this article was
accomplished within the EUROTRA-D accompanying re-
search project KIT-FAST at the Technical University of Ber-
lin and funded by the BMFT under contract 1013211.

I wish to thank Christa Hauenschild, John Nerbonne, and
Hans Uszkoreit for commenting on earlier versions of this
paper.

given LF, thereby ensuring that the result is com-
plete (all parts of the input structure are recon-
structed) and coherent (no additional structure is
built up). Thus, the surface strings then come out
as a side effect.

This paper describes a different use of seman-
tics for generation. Here the semantics is not part
of the grammar, but rather expressed within a se-
parate semantic representation language (abbrev.:
SRL). This approach, in which the grammar only
covers the syntax part, is called the separate se-
mantics approach. It has a long tradition in AI NL
systems, but was rarely used for unification-based
syntax and semantics. It will be argued that it can
still be useful for interfacing a syntactic generator
to some application system.

The main goal of this paper is to describe a ge-
nerator using a separate semantics and to suggest a
structure-driven strategy that is based on a system
of pattern-action (PA) rules, as they are known
from AI production systems (for an overview see
[Davis/King 1977]). The purpose of these rules is
to explicitly relate the semantic (sub)structures to
possible syntactic counterparts. The mapping pro-
cess is driven by the semantic input structure that
is traversed step by step. At each step FA rules are
applied, which contribute to successively producing
an overall syntactic structure from which the ter-
minal string can easily be produced. This new ap-
proach allows for a carefully directed and nearly
deterministic choice of grammar rules.

KEEPING SEMANTICS SEPARATE
FROM SYNTAX

The integrated-semantics approach is often illu-
strated in a Prolog-like notation using DCG rules.
The infix function symbol '/' is used in each ca-
tegory to separate the syntactic from the semantic
part. Rule (1) introduces complements in an
HPSG-style manner by "removing" the
complement from the VP's subcategorization list
(cf. [Pollard/Sag 1987]). The relation between the
semantics S and the semantics of Compl is
established in the lexical entry for the verb (2).

- 113 -

Recent work on semantic-head-driven generation
[Shieber et al. 1990, Calder et al 1989, Noord 1990,
Russell et al. 1990] provides a very promising step
towards efficient, goal-directed reconstruction of
LF that is espescially suited for lexicon-centered
grammar formalisms such as HPSG or UCG. It was
observed that top-down generation may not
terminate. This is illustrated in (1). If the vp
node is used for top-down expansion, there is
nothing to prevent the subcategorization list from
growing infinitely. If the Comp node is used, the
constituent to be generated must completely be
guessed due to the uninstantiated semantics.
Since the grammar will contain recursive rules
(e.g. for relative clauses), the guessing procedure
will not terminate either. In view of this problem a
bottom-up approach was suggested that is guided
by semantic information in a top-down fashion.

The benefits of integrated semantics are mani-
fold. Elegant analyses of linguistic phenomena are
possible that relate syntactic and semantic pro-
perties to each other (cf. the treatment of e.g.
'raising' and 'equi' constructions in [Pollard/Sag
1987]). LF is defined on purely linguistic grounds
and as such, it is well-suited to the computational
linguist's work.

However, if a generator based on an integrated
semantics is to be used for conveying the results of
some application system into NL, expressions of
the application system's SRL have to be adapted to
LF. Given that the grammar should not be
rewritten, this amounts to an additional step of
processing. This step may turn out to be costly
since the SRL will typically contain application-
dependent information that must be considered.
Take, for instance, a transfer-based machine
translation (MT) system (such as EUROTRA
[Arnold/des Tombe 1986]). The results of the
transfer (say, from German to English) are
encoded in a semantic representation that is given
to the system's generation component to produce
the English target sentence. In a system capable of
translating between a variety of languages,
representations of this kind may themselves be
subject to transfer and will therefore contain infor-
mation relevant for translation.2

2 An exception is the MiMo2 system [Noord et al. 1990].
The price to pay for allowing transfer at the level of LF was
to accept an "extremely poor" view of translation by just
preserving the logical meaning and—as far as possible—the
way in which meaning is built compositionally (quotation
from [Noord et al. 1990]).

The effort of introducing an additional step of
processing can be saved to a large extent by ad-
opting a separate-semantics approach. The SRL of
some application system may directly serve as an
interface to the generator.3 In the case at hand, two
additional components must be introduced into the
generation scenario: the definition of SRL and PA
rules. Instead of mapping SRL onto LF, SRL is di-
rectly related to syntax by virtue of the PA rules.

A STRUCTURE-DRIVEN GENERATOR

The generator to be described in this section
is a module of the Berlin MT system [Hauen-
schild/Busemann 1988], which translates sentences
taken from administrative texts in an EC corpus
from German into English and vice versa.4 The
syntax formalism used is a constructive version of
GPSG [Gazdar et al. 1985] as described in [Buse-
mann/Hauenschild 1988]. The semantic representa-
tion language FAS (Functor-Argument Stuctures)
[Mahr/Umbach 1990] is employed as an interface
between three different processes: it is the target of
GPSG-based analysis, for sentence-semantic trans-
fer, and as the source for GPSG-based generation.

FAS is defined by context-free rule schemata with
complex categories consisting of a main category
(e.g. 'clause' in Figure la), which is associated with
a fixed list of feature specifications.5 The categories
are in canonical order with the functor preceding all
of its arguments. In contrast to syntactic structures
where agreement relations are established by virtue
of feature propagation, FAS categories contain al-
most no redundant information. For instance, num-
ber information is only located at the 'det' category.
The use of semantic relations (encoded by the 'role'
feature), role configurations ('conf') and semantic
features allows us to discriminate between different
readings of words that result in different transla-
tional equivalents. Moreover, part of the thematic
structure of the source language sentence is preser-
ved during transfer and encoded by virtue of the
feature 'them' with the numerical values indicating
which portion should preferrably be presented first,
second, third etc. The definitions of FAS for the
German and English fragments mainly differ with
regard to their terminal symbols.

3This interface does not correspond to the common sepa-
ration between making decisions about what to say and how
to say it (cf. [McKeown/Swartout 1988]). Rather the inter-
face in question must be situated somewhere in the 'how to
say it' component because it presupposes many decisions ab-
out sentence formulation (e.g. regarding pronominalization,
or voice).

4The underlying view of MT is described in [Hauenschild
1988].

5In the present versions there are up to seven features in a
FAS category. For sake of simplicity many details irrelevant
to the present discussion are omitted in the examples.

- 114 -

Figure 1: Sample FAS Expression (a) and Corresponding GPSG Structure (b).

The GPSG formalism used includes the ID/LP
format, feature co-occurrence restrictions (FCRs)
and universal principles of feature instantiation
(FIPs). The ID rules are interpreted by the gene-
rator as providing the basic information for a local
tree. The categories of each generated local tree are
further instantiated by the FIPs and FCRs. Finally,
the branches are ordered by virtue of the LP state-
ments.
Strategies for structure building and feature
instantiation. The task of constructing an admis-
sible GPSG syntactic structure can be divided up
into the following subtasks that can be performed
independently of each other, and each according to
its own processing strategy:

• Structure building (by virtue of PA rules,
which in turn use ID rules)

• Feature instantiaton and ordering of the bran
ches (by virtue of FIPs, FCRs and LP state
ments)

The question arises which strategies are best sui-
ted to efficient generation. For each subtask both
a top-down and a bottom-up strategy have been
investigated. As a result it turned out that struc-
ture building should occur top-down whereas fea-
ture instantiation should be performed in a bottom-
up manner.

Before justifying the result let us have a closer
look at the structure-building algorithm. The over-

all syntactic structure (OSS) is successively con-
strued in a top-down manner. At each level there is
a set of nonterminal leaf nodes available serving
as attachment points for further expansion steps
(initially the empty category is the only attachment
point). An expansion step consists of

1. generating a local tree t by virtue of an ID rule,

2. unifying its mother node with one of the
attachment points,

3. removing the attachment point from the cur
rent set,

4. defining the daughters of t as the new current
set of attachment points.

Since lexical entries terminate a branch of the OSS,
the fourth of the above points is dropped during
expansion of lexical categories: processing continues
with the reduced set of attachment points.

Feature instantiation and the ordering of bran-
ches take place in a bottom-up manner after a lo-
cal tree has no further attachment points associated
with it (i.e. all of its daughters have been expan-
ded). Then processing returns to the next higher
level of the OSS examining the set of attachment
points. Depending on whether or not it is empty,
the next step is either feature instantiation or struc-
ture building. Given this interlinking of the two
subtasks, an OSS is admitted by the grammar if

- 115 -

its top-most local tree has passed feature instantiation.
The effects of feature instantiation with respect to the

German example in Figure lb6 can be better understood with
the help of the S-expansion rules used; cf. (3)-(5).7 Rule (3)
causes topicalization, (4) introduces a perfect auxiliary, and
(5) requires a transitive verb whose object is topicalized.

(3) S X[+top],S[fin]/X[+top]

(4) S V,S[psp)
(5) S / NP[+top, acc] — > NP[norn], V[trans]

The solution will now be justified. First of all, note that the top-
most part of an FAS expression is related to the top-most part
of the GPSG structure, and that the leaves of a FAS expression
usually correspond to GPSG lexicon entries. As a consequence,
the order the FAS expression is traversed determines the order
in which the structure-building sub-task is performed. Why
should then, in the case of FAS, the traversal occur top-down?

The answer is motivated by the distribution of information in
FAS expressions. In order to apply a certain ID rule
deterministically, information from distant portions of the FAS
expression may be needed. For instance, the FAS specification
(them : 1), which is part of one of the daughters of clause
in Figure la, is interpreted as requiring topicaliza-tion of a
syntactic constituent under the condition that a declarative
sentence is being generated. This latter information is,
however, only available at the [illoc [assertion]]8
part of the FAS expression (cf. Figure la).

Two possible methods for collecting this information present
themselves. First, the pattern including (them : 1) could be
required to cover as much of the FAS expression as would be
needed to include illoc. In that case, all the information needed
is present, and the traversal of the FAS expression could occur
bottom-up as well as top-down. Unfortunately the required
size of the pattern is not always known in advance because the
FAS syntax might allow an arbitrary number of recursively
defined local trees to intervene.

The second method — which was eventually adopted —
requires the patterns to cover not more than one local FAS tree.
In order to gather information that is locally missing, an
auxiliary storage is needed. If, for instance, the illocution is
matched, information about whether or not a declarative
sentence is being generated is stored. Later on, (them : 1} is
encountered. Now, the ID rule for to-

6These are not shown for the constituents of NPs. 7Note the different
use of the symbol '/': here it denotes the category-valued feature 'slash'.

8Square brackets are used here to indicate tree structure.

picalization (3) is triggered iff 'declarative' can be
retrieved from the storage.

If the necessary information is not available yet,
one must accept either a delay of a mapping or
backtracking. With a top-down traversal of FAS
expressions, however, such cases are sufficiently re-
stricted to ensure efficiency. Note that a bottom-up
traversal or a mixed strategy could be more efficient
if the distribution of information in the SRL were
different.

The problems observed with top-down genera-
tors using an integrated semantics cannot occur
in the separate-semantics approach. Expansion of
grammar rules can be controlled by the semantic
representation if each rule application is explicitly
triggered. Situations causing an infinite expansion
due to an uninstantiated semantics (as with top-
down expansion using the rule (2)) cannot arise at
all since the separate semantics is fully specified.

Let us now discuss why feature instantiation
should be a bottom-up process. The FIPs apply
to the mother and/or a subset of daughters in a
local tree. In general, the more these categories
are instantiated the less likely the FIPs will have
to choose between alternative instantiations, which
would be a source for backtracking. A top-down
strategy would meet a more completely instan-
tiated mother, but still underspecified daughters.
With a bottom-up strategy, however, only the mo-
ther would be underspecified. For instance, consi-
der the GPSG account of parasitic gaps, which are
handled by the Foot Feature Principle. The 'slash'
feature may occur at more than one daughter and
then require all occurrences of it to unify with the
mother (cf. [Gazdar et al. 1985, p. 162ff]). While
this is easy to handle for a bottom-up process, a top-
down strategy would have to guess at which
daughters to instantiate a slash value.

Pattern-action rules. A PA rule is a production
rule with a pattern for local FAS trees as its
left-hand side and two sets of actions as its
right-hand side. The information-gathering actions
(JGAs) maintain the auxiliary storage. The
structure-building actions (SBAs) generate GPSG
trees. Either one of these sets may be empty.

In order to minimize the power of PA rules, the
inventory of IGAs and SBAs is restricted. There are
only three IGAs for storing information into and
removing from the auxiliary storage. The auxiliary
storage is a two-dimensional array of a fixed size. It
may contain atomic values for a set of features pre-
determined by the PA rule writer as well as a single
GPSG category. There are only five SBAs for diffe-
rent kinds of mapping, three of which are explained
below; cf. [Busemann 1990] for a comprehensive dis-
cussion. Any SBA will remove the stored category

- 1 1 6 -

Figure 2: Two Pattern-Action Rules for NP-Topicalization.

from the storage and unify it with the "mother of
the local tree it is about to generate.

To illustrate this let us return to the topica-
lization example. The responsible PA rules are
shown in Figure 2. The pattern of the first one
matches any local FAS tree whose mother is a
term(them: 1).The IGAs work as follows: If a
specification (sent : decl) can be removed from the
storage, the GPSG feature specification [+top] will
be added to the stored category (by virtue of the
IGA set_gpsg_features). The SBA set is empty.
The second PA rule matches any local FAS tree
whose first daughter is a definite determiner with
plural number followed by zero or more daughters.
Note that both patterns match the same local tree
of the FAS expression in Figure la. There is only
one IGA, which adds the number information to the
stored GPSG category. The single SBA,
call_id, states that a local GPSG tree is
generated by virtue of the ID rule indicated and
added to the OSS. Since the mother of the local tree
(NP) now contains the specification [+top], it can
only unify with the 'slash' value introduced by the
mother of rule (5). Fronting of the NP is achieved
in accordance with the FIPs and LP statements.

Three kinds of PA rules should be distinguished
according to the effects of their SBAs. Figure 2
shows two of them; the first one doesn't create
structure at all while the second one transduces
a (FAS) local tree into a (GPSG) local tree. A
third type of rules generates GPSG structure out of
FAS feature specifications. Figure 1 shows its use
to generate the non-local subtree including the per-
fect auxiliary [s[v[hab],s(psp)]] from
the local FAS tree dominated by
clause(perl:+). Note that this PA rule must
be applied before an attempt is started to attach
the subtree [s/np(acc) [np(nom), v(trans)]]. This
latter subtree is generated by a PA rule whose
pattern matches the same FAS tree as the
previous one. We shall return to this problem in
the following section.

Controlling the mapping procedure. First of
all note that PA rules can communicate with each

other only indirectly, i.e. by modifying the content
of the auxiliary storage or by successfully apply-
ing an SBA, thereby creating a situation in which
another rule becomes applicable (or cannot be ap-
plied anymore). PA rules do not contain any control
knowledge.

A local FAS tree is completely verbalized iff
a maximum number n > 1 of applicable PA rules
are successful. A PA rule is applicable to a
local FAS tree t iff its pattern unifies with t. An
applicable PA rule is successful iff all elements
of IGA can be executed and an SBA—if present—is
successful. An SBA is successful iff a syntactic
subtree can be attached to the OSS as described
above.

Since the set of PA rules is not commutative, the
order of application is crucial in order to ensure that
n is maximal. Due to the restricted power of the PA
rules possible conflicts can be detected and resolved
a priori, A conflict arises if more than one pattern
matches a given FAS tree. All FAS trees matched
by more than one pattern can be identified with
help of the FAS grammar. The respective PA rules
are members of the same conflict set. The elements
of a conflict set can be partially ordered by virtue
of precedence rules operating on pairs of PA rules.

For instance, the conflict regarding the perfect
auxiliary is resolved by making a precedence rule
check the ID rules that would be invoked by the re-
spective SBAs. If the mother of the second one can
be unified with a daughter of the first one and not
vice versa, then the first PA rule must be applied
before the second one. Thus a PA rule with an SBA
invoking ID rule (4) will apply before another one
with an SBA invoking ID rule (5).

Note that, in this example, the number of suc-
cessful PA rules would not be maximal if the order
of application was the other way around since the
SBA invoking ID rule (4) would not succeed any-
more.

The control regime described above guarantees
termination, completeness and coherence in the fol-
lowing way: The traversal of a FAS expression ter-
minates since there is only a finite number of local
trees to be investigated, and for each of them a

-117-

FAS pattern: term (them: 1) FAS pattern:

det (def:+, num:plur)

IGA: [remove_store(sent, decl),
set_gpsg_features(top: +)]

IGA: (set_gpsg_features(plu:+)]

SBA: [call_id(NP --> Det. N1)] SBA: []

finite number of PA rules is applicable. The OSS generated
is complete because all local FAS trees are processed and
for each a maximum number of PA rules is successful. It is
coherent because (1) no PA rule may be applied whose
pattern is not matched by the FAS expression and (2) all
attachment points must be expanded.

CONCLUSION

The adaptation of a GPSG-based generator to an MT
system using FAS as its SRL was described as an instance
of the separate-semantics approach to surface generation.
In this instance, the OSS is most efficiently built top-down
whereas feature instantiation is performed bottom-up.

The mapping based on PA rules has proved to be
efficient in practice. There are only a few cases where
backtracking is required; most often the local FAS tree being
verbalized allows together with the contents of the auxiliary
storage and the current set of attachment points for a
deterministic choice of grammar rules.

The generator has been fully implemented and tested with
middle-sized fragments of English and German. It is part of
the Berlin MT system and runs on both an IBM 4381 under
VM/SP in Waterloo Core Prolog and a PC XT/AT in Arity
Prolog.

Compared to algorithms based on an integrated semantics
the separate-semantics approach pursued here is promising
if the generator has to be adapted to the SRL of some
application system. Adaptation then consists in modifying
the set of PA rules rather than in rewriting the grammar.

REFERENCES

[Arnold/des Tombe 1986] Doug Arnold and Louis des Tombe
(1986), 'Basic Theory and Methodology in Eurotra', in S.
Nirenburg (ed.), Theoretical and Methodological Issues in
Machine Translation, Cambridge: Cambridge University
Press, 114-135.

[Busemann 1990] Stephan Busemann (1990), Gene-rierung
natürlicher Sprache mit Generalisierten Phrasenstruktur-
Grammatiken, Doctoral Dissertation, Universität des
Saarlandes, Saarbrücken. Also available: TU Berlin, Dept. of
Computer Science, KIT Report 87.

[Busemann/Hauenschild 1988]
Stephan Busemann and Christa Hauenschild (1988), 'A
Constructive View of GPSG or How to Make it Work', in
Proc. 12th COLING-88, Budapest, 77-82.

[Calder et al. 1989] Jonathan Calder, Mike Reape, and Henk
Zeevat (1989), 'An Algorithm for Generation in Unification
Categorial Grammar', in Proc. 4th Conf. of the European
Chapter of the ACL, Manchester, 233-240.

[Davis/King 1977] Randall Davis und Jonathan King
(1977), 'An Overview of Production Systems', in E.
W. Elcock and D. Michie (eds.), Machine Intelligence
8, Chichester: Ellis Horwood, 300-332.

[Gazdar et al. 1985] Gerald Gazdar, Ewan Klein, Ge-
offrey Pullum, and Ivan Sag, (1985), Generalized
Phrase Structure Grammar, Oxford: Blackwell.

[Hauenschild 1988] Christa Hauenschild (1988), 'Dis-
course Structure—Some Implications for Machine
Translation', in D. Maxwell, K. Schubert und A.
P. M. Witkam (eds.), New Directions in Machine
Translation, Dordrecht: Foris, 145-156.

[Hauenschild/Busemann 1988] Christa Hauen-
schild and Stephan Busemann (1988), 'A Construc-
tive Version of GPSG for Machine Translation', in E.
Steiner, P. Schmidt, and C. Zelinsky-Wibbelt (eds.),
From Syntax to Semantics—Insights From Machine
Translation, London: Frances Pinter, 216-238.

[Mahr/Umbach 1990] Bernd Mahr and Carla Umbach
(1990), 'Functor-Argument Structures for the Mea-
ning of Natural Language Sentences and Their For-
mal Interpretation', in K.-H. Bläsius, U. Hedstück,
and C.-R. Rollinger (eds.), Sorts and Types in Artifi-
cial Intelligence, Berlin, New York: Springer (Lecture
Notes in Artificial Intelligence 418), 286-304.

[McKeown/Swartout 1988] Kathleen R. McKeown and
William R. Swartout, 'Language Generation and Ex-
planation', in M. Zock and G. Sabah (eds.), Advan-
ces in Natural Language Generation. An Interdisci-
plinary Perspective. Vol. 1, London: Frances Pinter, 1-
52.

[Noord 1990] Gertjan van Noord (1990), 'An Overview
of Head-Driven Bottom-up Generation', in R. Dale,
C. Mellish, and M. Zock (eds.), Current Research in
Natural Language Generation, Academic, 141-165.

[Noord et al. 1990] Gertjan van Noord, Joke Dorre-
paal, Pim van der Eijk, Maria Florenza, and Louis
des Tombe (1990), 'The MiMo2 Research System', in
Proc. 3rd Int. Conf. on Theoretical and Methodolo-
gical Issues in Machine Translation, Austin, Texas.

[Pollard/Sag 1987] Carl J. Pollard and Ivan A. Sag
(1987), Information-Based Syntax and Semantics.
Volume I, Center for the Study of Language and In-
formation, CSLI Lecture Notes 13, Chicago: Univer-
sity of Chicago Press.

[Russell et al. 1990] Graham Russell, Susan Warwick,
and John Carroll (1990), 'Asymmetry in Parsing and
Generating with Unification Grammars: Case Stu-
dies from ELU', in Proc. Conf. of the 28th Annual
Meeting of the ACL, Pittsburgh, 205-211.

[Shieber et al. 1990] Stuart M. Shieber, Gertjan van
Noord, Robert C. Moore, and Fernando C. N. Pereira
(1990), 'A Semantic-Head-Driven Generation Algo-
rithm for Unification-Based Formalisms', in Compu-
tational Linguistics, 16(1), 30-42.

- 118 -

