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1. INTRODUCTION

In this report a method for encoding LP constraints is presented that lends itself for a an

easy integration into ALEP grammars since it does not require any changes to the formalism and

to the implementation of the current ALEP development platform.  

The ALEP system is the result of an effort to provide the European NLP community with a

flexible state-of-art development platform that fulfills at least two important functions.  Firstly,

it is meant to save new projects the immense investments of funds and time involved in

developing yet another such system before the actual NL research work can begin. Secondly, if

taken up by a sufficient number of projects, it can be seen as a step towards the reusability of

grammatical resources.

The basic design philosophy of the ALEP system is based on the assumption that some

useful compromise can be offered between the expressive power demanded by the grammar

writer and existing methods for efficient syntactic processing on the basis of unification

grammars.  The compromise rests on encouraging experiences made in exploiting the effiency of

Prolog term unification for syntactic processing on the one hand and methods for transforming

unification grammars into Prolog DCGs on the other.

In order to ensure flexibility and extendability a three level architecture has been designed.

Level 1 is the efficient low-level Prolog grammar. Level 2 is an enriched typed feature-unification

grammar that can be compiled into a level 1 format. For future extensions, a third level is

foreseen that may contain additional constraint types that cannot be translated into level 1

grammars and therefore require external constraint solvers.

For expressing many cases of word order generalizations, the existing level 2 formalism

already permits the formulation of standard ID/LP grammars. In these grammars, unordered

phrase structure rules, so-called ID rules may be written whose right-hand sides are linearised by



LP rules. These grammars are compiled into fully ordered level 1 grammars by spelling out all

the linearisations of right-hand sides permitted by the LP component into separate rules. Thus

the domain of LP rules are restricted to sibling nodes.

For treating word order phenomena in many languages–among them some Germanic and all

Slavic languages–this method does not suffice. Since in these languages the complements of the

verb and any number of adjuncts can be interspersed and since, moreover, the order of these

sequences of complements and adjuncts still have to be ordered by LP rules, the domain of LP

rules needs to be extended beyond the right-hand sides of individual rules. We will summarize

the most relevant arguments for such an extension in this report.

While the application of word order constraints is useful for parsing as a basis for the

selection of readings of ambiguous sentences, their real importance is in the field of language

generation, for example in the context of machine translation. In general, a generation component

is faced with the problem of choosing among several different linearisations of a sentence. LP

rules provide a way to choose among alternative linearisations. Our encoding of LP-constraints

is fully declarative and independent of the order ot processing so that is can be used for both

parsing and generation. The apparent asymmetry that sentences with certain orderings should be

accepted by a parser, but not generated, is explained by the fact that there are LP rules which

refer to the discourse functions topic and focus. In parsing, it is not known in advance which

discourse function will be filled by a particular constituent, so that different orderings can be

accepted. In generation, a discourse planning component will assgin discourse functions to

concepts that must be generated, and the LP rules constrain the linear order on the basis of this

information.

Our approach for providing the user community of ALEP with the means for writing

grammars in an extended ID/LP format conforms with the ALEP design philosophy. We were

able to provide an encoding for extended ID/LP grammars within level 2.  The approach is based

on auxiliary features for the flow of LP information through the tree that the grammar writer will

not have to specify.  In this report the method is described in detail and discussed with some

illustrative examples.  In the upcoming final delivery a sample implementation in ALEP will be

provided.

In this report we will also indicate–but neither fully specify nor implement–a possible future

level 3 extension. The approach builds on the observation that LP constraints with extended

domains can be expressed and implemented as finite-state automata, that limit the number of

linearizations. This method could be utilized at a later time when hooks for external constraint

solvers will be provided.  It might become relevant if grammars with extensive LP components

involving the topic-focus structure and complex LP constraints would blow up the number of

resulting level 1 rules beyond the limits needed for efficient processing.



2. MOTIVATION

This section presents the linguistic and practical motivation for redefining the ordering

domains to which LP-statements apply.  LP statements in GPSG (Gazdar et al. 1985) constrain

the possibility of linearizing immediate dominance (ID) rules. By taking the right-hand sides of

ID rules as their domain, they allow only the ordering of sibling constituents. Consequently,

grammars must be designed in such a way that all constituents which are to be ordered by LP

constraints must be dominated by one node in the tree, so that "flat" phrase structures result, as

illustrated in figure 1.  

Vmax

V0

sollte
should

Vmax

NP[nom]
der Kurier
the courier

ADV
nachher

later

NP[dat]
einem Spion

a spy

NP[acc]
den Brief
the letter

V0

zustecken
slip

The courier was later supposed to slip a spy the letter.

Figure 1

Uszkoreit (1986) argues that such flat structures are not well suited for the description of

languages such as German and Dutch. The main reason1 is so-called complex fronting, i.e., the

fronting of a non-finite verb together with some of its complements and adjuncts as it is shown

in (1).  Since it is a well established fact that only one constituent can be fronted, the flat

structure can account for the German examples in (1), but not for the ones in (2).

(1) sollte der Kurier nachher einem Spion den Brief zustecken

zustecken sollte der Kurier nachher einem Spion den Brief

den Brief sollte der Kurier nachher einem Spion zustecken

einem Spion sollte der Kurier nachher den Brief zustecken

nachher sollte der Kurier einem Spion den Brief zustecken

der Kurier sollte nachher einem Spion den Brief zustecken

(2) den Brief zustecken sollte der Kurier nachher einem Spion

einem Spion den Brief zustecken sollte der Kurier nachher

                                                

1Further reasons are discussed in Uszkoreit (1991b).



nachher einem Spion den Brief zustecken sollte der Kurier

In the hierarchical tree structure in figure 2, the boxed constituents can be fronted, accounting

for the examples in (1) and (2).
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Figure 2

But with this tree structure, LP constraints can no longer be enforced over siblings. Rather, LP

constraints must be applied to head domains, defined in section 3.1.2.

It must also be noted that hierarchichal, binary branching structures can arise for processing,

even when it seems that the linguistic problems can be worked around by assuming flat

structures. This situation occurs when the Kleene-star notatation is used in rules to provide for

0 or more repetitions of a constituent. When this notation is translated to ALEP rules, new non-

terminal symbols are introduced in order to handle the repetition. This notation is used, for

example in the following phrase structure rule to allow adjuncts (indicated by the nonterminal

A) to be interspersed with complements.

S -> A* NP[subj] A* NP[obj] A*

However, it is necessary to enforce ordering constraints among the adjuncts, according to the

thematic role that they fill. In German and many other languages, an adjunct associated with the

source role is ordered before the goal, as in sentence (3), where the source von Berlin  must come

before the goal nach München.

(3) ...hat das Direktorium gestern von Berlin einen Boten nach München geschickt.



          has the directorate yesterday from Berlin a messenger to Munich sent.

Ordering constraints are important in parsing ambiguous sentences, where the constraints can

help to make a choice between different readings, and even more important in generation (e.g. in

a machine-translation context) where it is important to choose the right linearization in order to

facilitate understanding of the generated utterance. For example in sentence like (4) where the

ordering constraints are violated, the phrase von Berlin  would naturally be interpreted as an

adjunct of Boten and not of the verb geschickt.

(4) ... hat das Direktorium gestern nach München einen Boten von Berlin geschickt.

           has the directorate yesterday to Munich a messenger from Berlin sent.

3. WORD ORDER IN GRAMMATICAL DESCRIPTIONS OF NATURAL

LANGUAGES

Given the working assumption that word order reguarities must be stated in a grammatical

description and do not follow automatically from the processing model (as in the theory of early

immediate constituents (Hawkins 1992)), any grammatical description of word order2

regularities must fix three parameters:

1. The domain in which the word order constraint should hold, and

2. The language for stating ordering constraints,

3. The criteria for ordering constituents.

We will discuss these three aspects in this section.

3.1. WORD ORDER DOMAINS

3.1.1. Local Trees

Older theories of grammar like GPSG take sibling nodes in a phrase structure tree as the

ordering domain. This forces linguistic analyses in which all elements to which ordering

                                                

2More precisely, one should speak of "constituent order," but we will continue to use the

term "word order" which is established usage in theoretical and descriptive linguistics.



principles apply are siblings. As we have shown in the preceding section, flat structures are not

adequate to handle German ordering and fronting phenomena.

Initial trees constitute the ordering domain in ID/LP TAGS (Joshi 1987). However, it is also

often necessary to state ordering constraints on constituents that are not together in one initial

tree, for example on adjuncts that are added by the adjunction operation.

3.1.2. Head Domains

In order to handle the data discussed in section 2, we introduce head domains as the new

domain for linear order.  A head domain is defined as follows:

A head domain consists of the lexical head of a phrase, and its complements and

adjuncts.

LP constraints must be respected within a head domain. Two alternative methods for

handling LP constraints in head domains are presented in section 4.

3.1.3. Recursively Defined Domains

Reape (1989,1990) proposes a different strategy for treating partially free word order.  His

approach also permits the application of LP constraints across local trees.  This is achieved by

separating word order variation from the problem of building a semantically motivated phrase

structure.  Permutation across constituents can be described by merging the fringes (terminal

yields) of the constituents using the operation of sequence union.  All orderings imposed on the

two merged fringes by LP constraints are preserved in the merged fringe.

Reape treats clause union and scrambling as permutation that does not affect constituent

structure.  Although we are intrigued by the elegance and descriptive power of Reape's

approach, we keep our bets with our more conservative proposal. The main problem we see

with Reape's strategy is the additional burden for the LP component of the grammar.  For every

single constituent that is scrambled out of some clause into a higher clause, the two clauses need

to be sequence-unioned.  A new type of LP constraints that refer to the position of the

constituents in the phrase or dependency structure is employed for ensuring that the two

clauses are not completely interleaved.

3.1.4. Conclusion on Word Order Domains

Local trees as the ordering domain can be adequate if flat structures are used in linguistic

analyses. However, for a language like German, we have shown in section 2 that hierarchical



structures are to be preferred in linguistic analyses. The method we propose for handling word

order constraints in head domains can also be applied to local trees (cf. section 4.1.3).

In current LFG (Kaplan & Zaenen 1988), functional precedence rules apply to functional

domains. The approach rests on a mapping from f-structure to c-structure in the projection

architecture of LFG, and cannot be readily transferred to a "lean" formalism such as ALEP.

The word order domains of Reape provide very elegant analyses, but are not usable with a

system like ALEP which uses concatenation as the only operation for combining strings.

Adequate parsing methods for grammars using word order domains and sequence union are not

well-established, but an area of current reseach, cf. (Reape 1991, van Noord 93, Bouma and van

Noord 93).

In this report, we concentrate on head domains because they allow adequate linguistic

analyses, and are usable with grammatical formalisms which use only concatenation as an

operation for combining constituents.

3.2. The LANGUAGE FOR STATING ORDERING CONSTRAINTS

3.2.1. LP-Rules

An LP-rule is an ordered pair <A,B> of category descriptions, such that whenever a node a

subsumed by A and a node b subsumed by B occur within the domain of an LP-rule (in the case

of GPSG a local tree, in our case a head domain), a precedes b.

An LP rule <A,B> is conventionally written as A < B. It follows from the definition that  B

can never precede A in an LP domain. In the next section, we will show how this property is

exploited in our encoding of LP constraints.

Any set of LP constraints can be translated to a regular language systematically, as will be

shown in section 4.2.

3.2.2. Regular Languages

Regular languages are more expressive than LP rules. For example, the regular language

A*B*A* cannot be expressed as an LP rule because in the ordering domain described by this

language A can both precede and follow B.

3.2.3. Conclusion on Language for Ordering Constraints

We will provide solution for the more restricted form, LP-rules, and for the more general

regular languages.



3.3. ORDERING CRITERIA

The following is a list of ordering criteria that have been proposed in the linguistic literature

and used in computational grammars. Word order constraints make reference to

- major grammatical category (noun, verb etc.)

- case (nominative, accusative etc.)

- discourse function (topic/focus)

- grammatical relations (head, subject, object or relative obliqueness, government)

- thematic relations (agent, patient, source, goal etc.)

- pronominal vs. non-pronominal forms

- phonological heavyness

and others.

It is beyond the scope of this report to consider the adequacy of these different criteria.

However, it is important to note that all of these criteria (with the exception of phonological

heavyness, which is a fuzzy concept), refer to the values of features which can have only a finite

(and small) set of values. Both of the implementations we propose in this report depend on the

fact that the relevant word order criteria are a small and finite set, which can be represented by

either a set of binary-valued features or in the terminal vocabulary of a regular language.

4. COMPUTATIONAL TREATMENT OF LP CONSTRAINTS

In this section, we give implementations of LP constraints in head domains by two methods:

1. The first method (section 4.1) works by keeping track of the LP-relevant features that an

head domain contains and of left and right context restrictions of constituents. This method is

applicable for LP rules. Our presentation of the method in this report is largely based on the

paper by Engelkamp et al. (1992), in which the method was first described. We show how the

method is applicable in the ALEP formalism.

2. The second method (section 4.2) is a novel approach which makes use of finite-state

automata, and is usable for both LP rules and regular languages. This method has not yet been

described elsewhere.

4.1. ENCODING BY OF LP-CONSTRAINTS BY LEFT AND RIGHT CONTEXT

RESTRICTIONS

From a formal point of view, we want to encode LP constraints in such a way that

• violation of an LP constraint results in unification failure, and



• LP constraints, which operate on head domains, can be enforced in local trees by checking

sibling nodes.

The last condition can be ensured if every node in a projection carries information about

which constituents are contained in its head domain.

An LP constraint A < B implies that it can never be the case that B precedes A. We make

use of this fact by the following additions to the grammar:

• Every category A carries the information that B must not occur to its left.

• Every category B carries the information A must not occur to its right.

This duplication of encoding is necessary because only the complements/adjuncts check

whether the projection with which they are combined contains something that is incompatible

with the LP constraints. A projection contains only information about which constituents are

contained in its head domain, but no restrictions on its left and right context3.

In the following example, we assume the LP-rules A<B and B<C. The lexical head of the tree

is X0, and the projections are X, and Xmax.  The complements are A, B and C. Each projection

contains information about the constituents contained in it, and each complement contains

information about what must not occur to its left and right. A complement is only combined

with a projection if the projection does not contain any category that the complement prohibits

on its right or left, depending on which side the projection is added.

Xmax

A, B, C

A
left: ¬B

X
B, C

B
left: ¬ C
right: ¬A

X
C

C
right: ¬B

X0

 

Figure 3

Having now roughly sketched our approach, we will turn to the questions of how a violation

of LP constraints results in unification failure, how the information associated with the

                                                

3Alternatively, the projections of the head could as well accumulate the ordering restrictions

while the arguments and adjuncts only carry information about their own LP-relevant features.

The choice between the alternatives has no linguistic implications since it only affects the

grammar compiled for processing and not the one written by the linguist.



projections is built up, and what to do if LP constraints operate on feature structures rather

than on atomic categories.

4.1.1. Violation of LP-constraints as unification failure

As a conceptual starting point, we take a number of LP constraints. For the expository

purposes of this paper, we oversimplifiy and assume just the following four LP constraints:

nom < dat (nominative case precedes

dative case)

nom < acc (nominative case precedes accusative case)

dat < acc (dative case precedes accusative case)

pro < nonpro (pronominal NPs precede

non-pronominal NPs)

Figure 4

Note that nom, dat, acc, pro and nonpro are not syntactic categories, but rather values of

syntactic features. A constituent, for example the pronoun ihn (him) may be both pronominal

and in the accusative case. For each of the above values, we introduce an extra boolean feature,

as illustrated in figure 5.

NOM bool
DAT bool
ACC bool
PRO bool
NON-PRO bool

Figure 5

Arguments encode in their feature structures what must not occur to their left and right

sides. The dative NP einem Spion (a spy), for example, must not have any accusative

constituent to its left, and no nominative or pronominal constituent to its right, as encoded in

the following feature structure. The feature structures that constrain the left and right contexts

of arguments only use '-' as a value for the LP-relevant features.

LEFT ACC -
RIGHT NOM -

PRO -

Figure 6: Feature Structure for einem Spion

Lexical heads, and projections of the head contain a feature LP-STORE, which carries

information about the LP-relevant information occuring within their head domain (figure 7).



LP-STORE 

NOM -
DAT -
ACC -
PRO -
NON-PRO -

Figure 7: empty LP-STORE

In our example, where the verbal lexical head is not affected by any LP constraints, the LP-

STORE contains the information that no LP-relevant features are present.

For a projection like einen Brief zusteckt (a letter[acc] slips), we get the following LP-

STORE.

LP-STORE 

NOM -
DAT -
ACC +
PRO -
NON-PRO +

Figure 8: LP-STORE of einen Brief zusteckt

The NP einem Spion (figure 6) can be combined with the projection einen Brief zusteckt

(figure 8) to form the projection einem Spion einen Brief zusteckt (a spy[dat] a letter[acc] slips)

because the RIGHT feature of einem Spion and the LP-STORE of einen Brief zusteckt do not

contain incompatible information, i.e., they can be unified. This is how violations of LP

constraints are checked by unification. The projection einem Spion einen Brief zusteckt has the

following LP-STORE.

LP-STORE 

NOM -
DAT +
ACC +
PRO -
NON-PRO +

Figure 9: LP-STORE of einem Spion einen Brief zusteckt

The constituent ihn zusteckt (figure 10) could not be combined with the non-pronominal NP

einem Spion (figure 6).

LP-STORE 

NOM -
DAT -
ACC +
PRO +
NON-PRO -

Figure 10: LP-STORE of ihn zusteckt

In this case, the value of the RIGHT feature of the argument einem Spion is not unifiable

with the LP-STORE of the head projection ihn zusteckt because the feature PRO has two

different atoms (+ and -) as its value. This is an example of a violation of an LP constraint

leading to unification failure.



In the next section, we show how LP-STOREs are manipulated.

4.1.2. Manipulation of the LP-STORE

Since information about constituents is added to the LP-STORE, it would be tempting to

add this information by unification, and to leave the initial LP-STORE unspecified for all

features.  This is not possible because violation of LP constraints is also checked by unification.

In the process of this unification, values for features are added that may lead to unwanted

unification failure when information about a constituent is added higher up in the tree.

Instead, the relation between the LP-STORE of a projection and the LP-STORE of its

mother node is encoded in the argument that is added to the projection. In this way, the

argument "changes" the LP-STORE by "adding information about itself". Arguments there-fore

have the additional features LP-IN and LP-OUT. When an argument is combined with a

projection, the projection's LP-STORE is unified with the argument's LP-IN, and the argument's

LP-OUT is the mother node's LP-STORE. The relation between LP-IN and LP-OUT is

specified in the feature structure of the argument, as illustrated in figure 11 for the accusative

pronoun ihn, which is responsible for changing figure 7 into figure 10. No matter what the value

for the features ACC and PRO may be in the projection that the argument combines with, it is

'+' for both features in the mother node. All other features are left unchanged4.

LP-IN 

NOM 1

DAT 2
ACC [ ]
PRO [ ]
NON-PRO 3

LP-OUT 

NOM 1

DAT 2
ACC +
PRO +
NON-PRO 3

Figure 11

Note that only a '+' is added as value for LP-relevant features in LP-OUT, never a '-'. In this

way, only positive information is accumulated, while negative information is "removed".

Positive information is never "removed".

Even though an argument or adjunct constituent may have an LP-STORE, resulting from LP

constraints that are relevant within the constituent, it is ignored when the constituent becomes

argument or adjunct to some head. Our encoding ensures that LP constraints apply to all head

domains in a given sentence, but not across head domains.

                                                

4Coreference variables are indicated by boxed numbers. [ ] is the feature structure that

contains no information (TOP) and can be unified with any other feature structure.



It still remains to be explained how complex phrases that become arguments receive their LP-

IN, LP-OUT, RIGHT and LEFT features. These are specified in the lexical entry of the head of

the phrase, but they are ignored until the maximal projection of the head becomes argument or

adjunct to some other head. They must, however, be passed on unchanged from the lexical head

to its maximal projection. When the maximal projection becomes an argument/adjunct, they are

used to check LP constrains and "change" the LP-STORE of the head's projection.  

Our method also allows for the description of head-initial and head-final constructions. In

German, for example, we find prepositions (e.g. für), postpositions (e.g. halber) and some

words that can be both pre- and postpostions (e.g. wegen).

The LP-rules would state that a postposition follows everything else, and that a preposition

precedes everything else.

[PRE +] < [ ]

[ ] < [POST +]

Figure 12

The information about whether something is a preposition or a postposition is encoded in

the lexical entry of the preposition or postposition. In the following figure, the LP-STORE of

the lexical head contains also positive values.

LP-STORE POST +
PRE  -

Figure 13: part of the lexical entry of a postposition

LP-STORE POST -
PRE  +

Figure 14: part of the lexical entry of a preposition

A word that can be both a preposition and a postposition is given a disjunction of the two

lexical entries:

LP-STORE 

POST -
PRE  +
POST +
PRE  -

Figure 15

All complements and adjuncts encode the fact that there must be no preposition to their

right, and no postposition to their left.

RIGHT PRE -
LEFT POST -

Figure 16

The manipulation of the LP-STORE by the features LP-IN and LP-OUT works as usual.



The above example illustrates that our method of encoding LP constraints works not only for

verbal domains, but for any projection of a lexical head. The order of quantifiers and adjectives in

a noun phrase can be described by LP constraints.

4.1.3. Application to local trees

It should be noted that the encoding of LP-constraints with right (or left) context restrictions

is also applicable to local trees. In this case, there is no need for the feature LP-store associated

with intermediate projections in a head-domain. Instead, the LP-in feature of a constituent can be

immediately unified with the LP-out feature with the constituent to its right, and the right

context restriction of a constituent can be matched against the LP-out value of the constituent to

its right.

X -> A B C

A right = A lp-in = A lp-out

B right = B lp-in = C lp-out

Or more generally for local trees with n daughters, generated by a rule of the form
X -> R1 ... Rn, one needs equations for each i = 1 ... n-1.

Ri  right = R i  lp-in = R i+1  lp-out

4.1.4. Integration into HPSG

In this section, our encoding of LP constraints is incorporated into  HPSG (Pollard & Sag

1987). We deviate from the standard HPSG grammar in the following respects:

• The features mentioned above for the encoding of LP-constraints are added.

• Only binary branching grammar rules are used.

• Two new principles for handling LP-constraints are added to the grammar.

Further we shall assume a set-valued SUBCAT feature as introduced by Pollard (1990) for

the description of German.  Using sets instead of lists as the values of SUBCAT ensures that

the order of the complements is only constrained by LP-statements.

In the following figure, the attributes needed for the handling of LP-constraints are assigned

their place in the HPSG feature system.



SYNSEM | LOC 

HEAD 
LP-IN  
LP-OUT  
LEFT  
RIGHT  

LP-STORE  

Figure 17

The paths SYNSEM|LOC|HEAD|{LP-IN,LP-OUT,RIGHT,LEFT} contain information

that is relevant when the constituents becomes an argument/adjunct. They are HEAD features

so that they can be specified in the lexical head of the constituent and are percolated via the

Head Feature Principle to the maximal projection. The path SYNSEM|LOC|LP-STORE

contains information about LP-relevant features contained in the projection dominated by the

node described by the feature structure. LP-STORE can obviously not be a head feature because

it is "changed" when an argument or adjunct is added to the projection.

In figures 18 and 19, the principles that enforce LP-constraints are given5. Depending on

whether the head is to the right or to the left of the comple-ment/adjunct, two versions of the

principle are dis-tinguished. This distinction is necessary because linear order is crucial. Note

that neither the HEAD features of the head are used in checking LP constraints, nor the LP-

STORE of the complement or adjunct.

PHON append( 3, 4 )

... LP-STORE 2

PHON 3

... LP-STORE 1

 
Head

PHON 4

... 
HEAD 

LEFT 1

LP-IN 1

LP-OUT 2

LP-STORE [ ]

Complement/Adjunct

Figure 18: Left-Head LP-Principle

                                                

5The dots (...) abbreviate the path SYNSEM|LOCAL



PHON append( 3, 4 )

... LP-STORE 2

PHON 3

... 
HEAD 

RIGHT 1

LP-IN 1

LP-OUT 2

LP-STORE [ ]

Complement/Adjunct

 
PHON 4

... LP-STORE 1

Head

Figure 19: Right-Head LP-Principle

In the following examples, we make use of the parametrized type notation used in the

grammar formalism STUF (Dörre 1991). A parametrized type has one or more parameters

instantiated with feature structures. The name of the type (with its parameters) is given to the

left of the := sign, the feature structure to the right.

In the following we define the parametrized types nom(X,Y), dat(X,Y), pro(X,Y), and non-

pro(X,Y), where X is the incoming LP-STORE and Y is the outgoing LP-STORE.

nom  

NOM [ ]
DAT 1

ACC 2

PRO 3

NON-PRO 4

, 

NOM +
DAT 1

ACC 2

PRO 3

NON-PRO 4

  :=

SYNSEM|LOC HEAD 
CASE nom

LEFT  DAT -
ACC -

Figure 20

dat  

NOM 1
DAT [ ]
ACC 2

PRO 3

NON-PRO 4

, 

NOM 1
DAT +
ACC 2

PRO 3

NON-PRO 4

  :=

SYNSEM|LOC HEAD 
CASE dat
LEFT | ACC -
RIGHT | NOM -

Figure 21



pro  

NOM 1

DAT 2

ACC  3
PRO [ ]

NON-PRO 4

, 

NOM 1

DAT  2
ACC 3
PRO +
NON-PRO 4

  :=

SYNSEM|LOC HEAD LEFT  | NON-PRO -

Figure 22

non-pro 

NOM 1

DAT 2

ACC  3

PRO 4
NON-PRO [ ]

, 

NOM 1

DAT  2
ACC 3

PRO 4
NON-PRO +

  :=

SYNSEM|LOC HEAD RIGHT  | PRO -

Figure 23

The above type definitions can be used in the definition of lexical entries. Since the word

ihm, whose lexical entry6 is given in figure 24, is both dative case and pronominal, it must

contain both types. While the restrictions on the left and right context invoked by dat/2 and

pro/2 can be unified7, matters are not that simple for the LP-IN and LP-OUT features. Since

their purpose is to "change" rather than to "add" information, simple unification is not possible.

Instead, LP-IN of ihm becomes the in-coming LP-STORE of dat/2, the outgoing LP-STORE of

dat/2 becomes the incoming LP-STORE of pro/2, and the outgoing LP-STORE of pro/2

becomes LP-OUT of ihm, such that the effect of both changes is accumulated.

ihm :=

SYNSEM|LOC HEAD 
LP-IN 1

LP-OUT 3
 ∧

dat(1 , 2 ) ∧  pro( 2 , 3 )

Figure 24: lexical entry for ihm

After expansion of the types, the following feature structure results. Exactly the same

feature structure had been resulted if dat/2 and pro/2 would have been exchanged in the above

lexical entry (pro( 1, 2 ) ∧  dat( 2, 3 ) ), because the effect of both is to instantiate a '+' in LP-OUT.

                                                

6Only the information which is relevant for the processing of LP constraints is included in

this lexical entry.
7dat/2 means the type dat with two parameters.



SYNSEM|LOC HEAD 

LP-IN 

NOM 1
DAT  [ ]

ACC  2
PRO [ ]

NON-PRO 3

LP-OUT 

NOM 1
DAT  +
ACC  2
PRO +
NON-PRO 3

LEFT ACC -
NON-PRO -

RIGHT NOM -
CASE dat

Figure 25: expanded lexical entry for ihm

The next figure shows the lexical entry for a non-pronominal NP, with a disjunction of three

cases.
Peter :=

SYNSEM|LOC HEAD 
LP-IN 1

LP-OUT 3
 ∧

nom( 1, 2 ) ∨  dat( 1, 2 ) ∨  acc( 1, 2 )  ∧  non-pro( 2, 3 )

Figure 26

4.1.5. Application to ALEP

In this section, we illustrate that the technique outlined above is applicable to the ALEP1

formalism by providing example declarations, rules and lexical entries.

In the next delivery, the use of these techniques in an ALEP grammar for a larger fragment of

German will be described.

Type and Feature Declarations:

In addition to the type definitions employed in a grammatical description, the type

lp_store  is needed which introduces a set of binary-valued features used to encode the set of

features that can appear on the left- and right-hand sides of LP rules.
type(lp_store:{

         nom => atom({1,0}),

         dat => atom({1,0}),

         acc => atom({1,0}),

         pro => atom({1,0}),

         non_pro => atom({1,0})}



         'An lp_store has the features nom, dat, acc, pro, non_pro').

The features for handling LP constraints (lp_in, lp_out, left, right ) must be added to

the type of the feature value which is percolated in head domains. In our example, this is the

type hd,  which is used for head features.
type(hd:{

        lp_in => type({lp_store:{}}),

        lp_out => type({lp_store:{}}),

        left => type({lp_store:{}}),

        right => type({lp_store:{}}),

        cat => type({syncat:{}})}

        'The type hd has the features lp_in, lp_out, left, right

         for handling LP constraints and the feature cat for the

         usual head features').

Rules:

The rules of the grammar must be extended with the necessary features and coreferences for

handling LP constraints. Instead of giving all the necessary rules, we provide here two rule

schemata that can be used together with binary branching rules. In order to re-use these rule

schemata in other rules, we define them as macros.



% Mother -> Head Complement/Adjunct

macro(left_head_rule,

sign:{ lp_store => LP_STORE }

<

[ sign:{ head => hd:{ lp_store => HEAD_LP_STORE }

       }

  sign:{ head => hd:{ lp_in => HEAD_LP_STORE,

                     lp_out => LP_STORE,

                     left => HEAD_LP_STORE }

       }

]

).

% Mother -> Complement/Adjunct Head

macro(right_head_rule,

sign:{ lp_store => LP_STORE }

<

[ sign:{ head => hd:{ lp_in => HEAD_LP_STORE,

                     lp_out => LP_STORE,

                     right => HEAD_LP_STORE }

       }

  sign:{ head => hd:{ lp_store => HEAD_LP_STORE }

       }

]

).

These macros can then be used in concrete grammar rules. The first macro "left_head_rule"

can be part of the specification of any rule where the left daughter is the head and the right

daughter a complement or adjunct. The second macro "right_head_rule" can be part of the

specification of rules where the head is the right constituent.8

Lexical entries:

The following lexical entry for the dative pronoun ihm contains the specifcations of the

features lp_in  and lp_out  which are responsible for "adding" the elements "dative" and

"pronominal" to the LP-store, and the left and right context restrictions.

ihm ~

                                                

8From BNF given in the ALEP1 documentation, it is not clear that a macro for rules can be

called in the definition of a rule.



sign:{ synsem => synsem_type:{local => local_type:{

       head => hd:{lp_in => lp_store:{ nom => NOM,

                                       dat => _,

                                       acc => ACC,

                                       pro => _,

                                       non_pro => NONPRO

                                      },

                   lp_out => lp_store:{ nom => NOM,

                                       dat => 1,

                                       acc => ACC,

                                       pro => 1,

                                       non_pro => NONPRO

                                      },

                   left   => lp_store:{ acc => 0,

                                       non_pro => 0

                                     },

                   right  => lp_store:{ nom => 0

                                      }

                  }

        }}}

By making use of the macros provided by the ALEP1 formalism, this lexical entry can be

made more compact, similar to figures 21, 22, and 24.

An ALEP grammar for a fragment of German with LP rules will be part of the next

deliverable, along with an investigation of the possiblities to compile a set of LP constraints to

the encoding provided here.

4.1.6. Conclusion on encoding by sets

We have presented a formal method for the treatment of LP constraints, which requires no

addition to standard feature unification formalisms.  It should be emphasized that our encoding

only affects the compiled grammar used for the processing.  The linguist does not lose any of

the descriptive means nor the conceptual clarity that an ID/LP formalism offers. Yet he gains an

adequate computational interpretation of LP constraints.

Because of the declarative specification of LP constraints, this encoding is neutral with

respect to processing direction (parsing-generation). It does not depend on specific strategies

(top-down vs. bottom-up) although, as usual, some combinations are more efficient than others.

This is an advantage over the formalization of unification ID/LP grammars in Seiffert (1991) and

the approach by Erbach (1991). Seiffert's approach, in which LP constraints operate over

siblings, requires an addition to the parsing algorithm, by which LP constraints are checked



during processing to detect violations as early as possible, and again after processing, in case

LP-relevant infor-mation has been added later by unification. Erbach's approach can handle LP

constraints in head domains by building up a list of constituents over which the LP constraints

are enforced, but also requires an addition to the parsing algorithm for checking LP constraints

during as well as after processing.

Our encoding of LP constraints does not require any particular format of the grammar, such

as left- or right-branching structures. Therefore it can be incorporated into a variety of linguistic

analyses. There is no need to work out the formal semantics of LP constraints because feature

unification formalisms already have a well-defined formal semantics.

It must be noted that the use of LP-rules requires an underlying grammatical description

which allows free ordering of constituents, which is constrained by the LP-rules. Such free

constituent order cannot be achieved with fixed subcat lists and a grammatical formalism which

uses concatenation as the only operation for combining constituents, and has no procedural

attachment for operations on the subcat list (e.g. deletion of an element of the list which is not

the first one). Various options for encoding subcategorization in such a way that any element

can be accessed are discussed in section 5 of Deliverable B of the project LRE-61-061 "The

Reusability of Grammatical Resources" [Erbach et al. 1994].

4.2. LINEAR PRECEDENCE CONSTRAINTS AS FINITE-STATE AUTOMATA

The Basic Idea

The use of regular expressions for the encoding of linear precedence statements historically

precedes the introduction of binary LP rules in the so-called ID/LP format (Kay 1985). However

the utilization of the full power of regular expressions exceeds the use of binary LP rules in

expressivity. Although the weak generative capacity of the CF grammar is neither influenced by

binary LP rules nor by LP rules written as free-form regular expressions, the latter allow for the

derivation of PS representations that the former cannot produce.

Assume, e.g., the following regular expression to be used in the LP component of an ID/LP

grammar:  A B A* B*. The hypothetical rule may be proposed to enforce the so-called

Wackernagel position. If there are any rules in the grammar that place more than one A or more

than B in the domain of locality for the LP rules–traditionally the domain of sibling nodes–the

application of the LP rule will result in a linearization that could not be enforced with binary LP

rules. Binary LP rules could either order all As before all Bs, order all Bs before all As, or permit

all permutations of As and Bs.



Unconstrained regular expressions are still used for the encoding of LP statements in

implementations of LFG. However, binary LP rules have neither been introduced nor

implemented as regular expressions or their corresponding FSAs although the correspondence

has been noted (ref).  

For our proposed encoding of LP constraints as finite-state machines, we exploit the fact

that LP constraints can be written as very simple regular expressions, thus they denote regular

languages.  The LP constraint A<B stands for the simple regular expression B *  A *
 which is

equivalent to (Σ* B Σ* A Σ*).  Any sequence of category symbols not containing category B

may be followed by any sequence of category symbols not containing A in the domain of the

constraint.  

The equivalence between the LP constraint and the regular expression B *  A *
 is obvious.  If

the string does neither contain A nor B then it matches either one of the two subexpressions B *

and  A * .  If there are As or Bs in the string, one of the following four cases applies:  … A … ,  

… B … ,  … A … B … , … B … A …. The first three cases match the regular expression, only

for the last one no match can be found.

... A ...
(Σ-B)* (Σ-A)*

... B ...
(Σ-B)* (Σ-A)*

... A ... B ...
(Σ-B)* (Σ-A)*

... B ... A ...

(Σ-B)* (Σ-A)*

A simple automaton for the regular expression is given below:

0
B A

B
1

Figure 27

The automata encoding single LP constraints may be combined by intersection.  The

automaton corresponding to A<B, for instance, may be intersected with the one corresponding

to B<C:



0
C B

C
1

Figure 28

The minimized result of the intersection is the following FSA:

       

(B+C)

B

C C

(A+C)

(A+B)

0 1

2

Figure 29

For implementation purposes, we might as well have decided to run the two LP automata in

parallel. We will return to the question of intersected vs. parallel automata later. For the time

being we will assume the intersection approach.

We call the finite state machine that encodes all LP constraints of a grammar by intersecting

them a LP-FSA.

The LP-FSA is an instance of a deterministic finite state machine.  Thus it is defined as a

5-tuple (Q,Σ, δ, qo, F) where Q is the set of states, Σ is the input alphabet, δ: Q × Σ→Q  is the

transition function, qo is the initial state, and F is the set of final states. For the LP-FSA, Σ is

the union of VT and VN, for an HPSG Σ  would have to be ext(restr(SIGN)), where restr is some

quotient yielding a finite LP-relevant portion of SIGN along the lines of the restrictor approach to

Earley-parsing with a unification grammar (Shieber 1985), i.e., all LP-relevant portions of all

feature terms that are in the extension of the sort SIGN.  

The LP-FSA is a filter for each sequence of signs in a word order domain.  If the domain is a

sequence of sibling daughters, the automaton could be used to test the compliance with the LP

constraints during left-to-right parsing. Each state in the automaton stands for a set of categories

that must not occur in the remaining portion of the input string. In the worst case the number of

states is equal to the cardinality of the powerset of LP-relevant categories, i.e., categories that



occur in binary LP rules. However, if categories occur more than once in LP rules, the number

can be smaller as in our little example (29).

The automata encoding turns the exponential time problem of normal ID/LP parsing9

(depending on the size of the grammar) that was noted by Barton (1985) into an exponential

space problem.  The LP-FSA can also be applied to word order domains whose elements are not

sibling in the phrase structure such as the head-domains proposed in section X. We will next

show how processing with such LP-FSAs can easily be integrated into normal bottom-up

syntactic processing.  

For the time being, we will assume that we work with a language that is strictly head-initial,

i.e., a language in which the head always precedes its complements and adjuncts. Later we will

discuss straightforward extensions to languages with other head positions (head-final and head-

medial) and to top-down parsing and generation.  

In the case of a head-initial language, we only have to take care of the order in which the

syntactic arguments and adjuncts of each head occur.

We assume binary branching structures in which any nonterminal node combines a head with

an argument or adjunct. Each node in the tree carries a state symbol. We will call this symbol the

lp-state of the node. In processing we will only look at the state symbols of the mother and head

nodes.

A binary subtree (M (H A)) will only be accepted if δ(lp-state(H), A) = lp-state(M).  Thus

the syntactic argument or adjunct serves as the input symbol that triggers the transition from the

lp-state of the head to the lp-state of the mother. The lexical head starts out with the initial state

of the LP-FSA.

An Example

Assume a language with the two LP constraints A<B and B<C so that we can use the

automaton given in figure 29. Let V be a lexical head category and D some argument or adjunct

category not mentioned in any LP constraint. We further assume binary a rule schema V → V X

or four individual ID rules that combine V with A, B,C, D. If we now parse the two sequences:

V A D C, V B C D B, we get the following two parse trees:

                                                

9An algorithm was first provided by Shieber (1984) as an extension of the Earley algorithm.



 V (2)

V (0)

V (0)

V (0) A

D

C

  

Figure 30

 V ( )

V (2)

V (2)

V (1)

V (0) B

C

D

B

Figure 31

The numbers in parentheses indicate the lp-state.  Since there is no lp-state for the top-most

node in figure 31, the ungrammtical derivation is blocked.

Several entensions need to be added in order to cover the whole range of word order

phenomena accross natural languages. The addition of LP constraints for head-final rule systems

is rather easy. Since the mirror image of a regular language is also a regular language, there is no

problem to formulate the corresponding automata.  Even the extension to languages with head-

medial construction does not pose a real obstacle, for it is possible to formulate an automaton

that parses a regular input from a fixed position within the input string just like a FSA variant of

island parsing.

An Encoding of the LP-FSA in HPSG

At first glance linguists might view the FSA approach to the encoding of LP constraints as a

mere computational hack that has a very indirect connection to the rest of the actual grammar.

In this subsection we will show that an LP-FSA might also be encoded in the type system of a

principle-based grammar.  We do not argue for such an encoding in the context af ALEP.

Although it would in principle be possible to compile grammars with such automata into level 1

ALEP grammars, the inherent nondeterminism might bring processing to a grinding halt.  It



would be quite crazy to design a finite-state encoding for LP constraints and then implement the

automaton as a highly disjunctive unification grammar.

The following encoding serves the sole purpose to show that the LP-FSA can be viewed as

an integral part of the grammatical type system.  This is of theoretical relevance, since one of the

most-cited reasons for employing typed unification grammars is the clean uniform model-

theoretic semantics of the underlying formalism.

We can transform the FSA into an expression in the typed constraint language of some

unification grammar such as HPSG.  Thus the Linearizing Principle(s) can be encoded the same

way any other HPSG principle is encoded.   

For the sake of simplicity we will start again with a unidirectional branching.

We will demonstrate this encoding first for a unidirectional LP-FSA without weighted LP

Principles.  

We start by defining a new feature lp-state that we will place under DTRS for simplicity

(fn).

For each member of δ, ((qi, α),qj), where qi and qj are states and α  is feature term of type

sign, we construct a feature term τ of the type phrasal-sign, which takes the form.    

DTRS :  

H-DTR : DTRS : LP-STATE : qi
A-DTR : α
LP-STATE : qj

Figure 32

For simplicity, we have decided to place the feature LP-STATE under DTRS. Thus we

consider the lp-wellformedness of the subtree to be a property of the phrase structure

component of the sign. Although this decision allows a more compact encoding, nothing actually

hinges on it.  If this term is unified with a full-blown phrasal sign states that the LP-STATE of the

constituent is a successor state of the LP-STATE of its head that can be reached by consuming the

input symbol α.  Thus the LP-STATE of the sign is computed from the LP-STATE of its head and

the sign of its argument or adjunct by the LP-FSA.

Every phrasal sign must be licensed by one of the terms τ corresponding to the transitions in

the LP-FSA.  Therefore, the lp-terms form a disjunctive constraint.   Following HPSG practice,

the LP-Principle may then be written as:

Linearization Principle:



DTRS :  headed-structure    ⇒   τ1 ∨  τ2 ∨  ... ∨  τn

Figure 33

Following xxx and also our own practice, the disjunctive constraint in the consequent of the

principle can be made part of the definition for the type phrasal-sign.

Depending on the aesthetic needs of the grammarian and on the computational use of the

principle, the disjunctive constraint may be compacted in several ways by utilizing the

equivalences of the underlying feature logic.  

The following example shows the encoding of the automaton in figure 29 as a disjunctive

feature term.  For the sake of easy readability we have used curly braces as circumfix operators

for indicating disjunctions.  

  

DTRS :

H–DTR : LP–STATE : 0

A–DTR : ¬ B
C

LP–STATE : 0

A–DTR : B
LP–STATE : 1

A–DTR : C
LP–STATE: 2

H–DTR : LP–STATE : 1

A–DTR : ¬ A
C

LP–STATE : 1

A–DTR : C
LP–STATE : 2

H–DTR : LP–STATE : 2

A–DTR : ¬ A
B

LP–STATE : 2

Figure 34
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