
TDLExtraLight User�s Guide
�

Hans�Ulrich Krieger� Ulrich Sch�afer
fkrieger� schaeferg�dfki�uni�sb�de

German Research Center for Arti�cial Intelligence �DFKI	
Stuhlsatzenhausweg

D����� Saarbr�ucken � Germany

Abstract

This paper serves as a user�s guide to the �rst version of the type description language TDL

used for the speci�cation of linguistic knowledge in the DISCO project of the DFKI�

�We would like to thank John Nerbonne and Klaus Netter for their helpful comments on an earlier version of this
documentation� This work was supported by a research grant �ITW ���� �� from the German Bundesministerium
f�ur Forschung und Technologie to the DFKI DISCO project�

�

� CONTENTS

Contents

� Introduction �

� About TDLExtraLight �

� Starting TDLExtraLight �

� Syntax and semantics of TDLExtraLight �

��� Type de�nitions �
����� Conjunctive type de�nitions without inheritance � � � � � � � � � � � � � � � �
����� Atoms �
����� Type speci�cation and inheritance �
����� Multiple inheritance � 	
����
 Coreferences � 	
����� Negated coreferences �
����� Simple Disjunctions �
����	 Distributed disjunctions ��
����� Negation ��
������ Lists ��
������ Functional constraints ��
������ Template calls ��
������ Type de�nition options ��

��� Template de�nitions ��
��� Instance de�nitions ��
��� Comments ��

� Useful functions� switches and variables ��

�� Creating and changing domains ��

�� The reader �

�� Global switches and variables �

�� Hiding attributes at de�nition time ��

�
 Collecting parsed identi�ers ��

�� Getting information about de�ned types ��

�� Getting information about de�ned templates �	

�	 Getting information about de�ned instances �	

�� Deleting instances ��

��� Printing type prototypes and instances ��

����� Printing to the interactive screen ��

����� Printing to Fegramed ��

����� Printing pretty with TDL�LATEX ��

����� Hiding the type �eld while printing �

� Editing and Loading TDL �les ��

	 Displaying the TDL type hierarchy ��

 Top level abbreviations ��

� Sample session �	

�� TDLExtraLight syntax ��

���� Type de�nitions ��
���� Instance de�nitions ��
���� Template de�nitions ��

�

� Introduction

Over the last few years uni�cation�based grammar formalisms have become the predominant
paradigm in natural language processing and computational linguistics�� The main idea of rep�
resenting as much linguistic knowledge as possible via a unique data type called feature struc�
tures allows the integration of di�erent description levels starting with phonology and ending in
pragmatics�� In this case integration means

�� to represent process and interpret all linguistic knowledge in one formalism and

�� to have access to the di�erent description levels and to be able to construct these descriptions
in parallel �as syntax and semantics is constructed simultaneously in Montague�s framework�
cf� �Montague ����

Here a feature structure directly serves as an interface between the di�erent description stages
which can be accessed by a parser or a generator at the same time� In this context uni�cation is
concerned with two di�erent tasks� �i� to combine information �uni�cation is a structure�building
operation� and �ii� to reject inconsistent knowledge �uni�cation determines the satis�ability of a
given structure��

While the �rst approaches rely on annotated phrase structure rules �for instance GPSG and PATR�
II as well as their successors CLE and ELU �Russell et al� ���� modern formalisms try to specify
grammatical knowledge as well as lexicon entries merely through feature structures� In order to
achieve this goal one must enrich the expressive power of the �rst uni�cation�based formalisms
with disjunctive descriptions� In general we can distinguish between disjunctions over atoms and
disjunctions over complex feature structures� Atomic disjunctions are available in nearly every
system� However they are too weak to represent linguistic ambiguities adequately motivating
the introduction of those ambiguities at higher processing levels� The feature constraint solver
UDiNe �Backofen � Weyers ��� of TDLExtraLight allows the use of complex disjunctions and
moreover gives a grammarian the opportunity to formulate distributive disjunctions which are an
e�cient way to synchronize covarying elements in di�erent attributes through the use of unique
disjunction names�D�orre � Eisele 	�� Backofen et al� ���� In addition this technique obviates
the need for expanding to disjunctive normal form but adds no expressive power to a feature
formalism assuming that it allows for disjunctions�
Later other operations came into play viz� �classical� negation or implication� Full negation
however can be seen as an input macro facility because it can be expressed through the use of
disjunctions negated coreferences and negated atoms with the help of existential quanti�cation
as shown in �Smolka 		�� UDiNe is currently the only implemented system allowing for general
negation� Note that an implication can be easy expressed using negation �although this might not
be an e�cient way to implement it�� � � � � ��� ��
Other proposals consider the integration of functional and relational dependencies into the for�
malismwhich makes them Turing�complete in general�� However the most important extension to
formalisms consists of the incorporation of types for instance in modern systems like TFS �Zajac
��� CUF �D�orre � Eisele ��� or TDL �Krieger � Sch�afer ���� Types are ordered hierarchically �via

�	Shieber
�� and 	Uszkoreit

� give an excellent introduction to the eld of unication�based grammar theories�
	Pereira
�� makes the connection explicit between unication�based grammar formalisms and logic programming�
	Knight
�� presents an overview to the di�erent elds in computer science which make use of the notion of
unication�

�Almost every theory�formalism use a di�erent notion when refering to feature structures� f�structures in LFG
	Bresnan
��� feature bundles or feature matrices in GPSG 	Gazdar et al�
��� categories in GPSG� CUG 	Uszkoreit

�� Karttunen
��� and CLE 	Alshawi ���� functional structures in FUG 	Kay
��� terms in DCG 	Pereira � Warren

��� attribute�value matrices in HPSG 	Pollard � Sag
�� or dags in PATR�II 	Shieber et al�
���

�For instance� Carpenter�s ALE system 	Carpenter ��� gives a user the opportunity to dene denite relations
�see 	H�ohfeld � Smolka

��� but the underlying constraint system of ALE is evenmore restricted than the attribute�
value logic employed in TDLExtraLight � Denite clauses of ALE can be composed using disjunction� negation� and
Prolog cut� However� allowing the user to write Prolog�style relations� e�g�� A��t�Kaci�s LOGIN 	A��t�Kaci � Nasr

�a�� gives ALE a �avor more like a general logic programming language than a restricted grammar formalism�

� � ABOUT TDLEXTRALIGHT

subsumption� as it is known from object�oriented programming languages� This leads to multiple
inheritance in the description of linguistic entities �see �Daelemans et al� ��� for a comprehensive
introduction�� Finally recursive types are necessary to describe recursion over phrase structure
which is inherent in all grammar formalisms relying on a context�free backbone�� Other proposals
consider the integration of additional data types for instance sets �cf� �Rounds 		� or �Pollard �
Moshier �����
Pollard and Sag�s Head�Driven Phrase Structure Grammar is currently the most promising gram�
matical theory which includes all the extensions given above �see �Sag � Pollard 	�� Pollard �
Sag 	�� Pollard 	�� Pollard � Sag ����� HPSG has been developed further since its �rst for�
mulation �Pollard � Sag 	�� has been applied successfully to the description of tough linguistic
phenomena is interesting from a mathematical viewpoint and is axiomatized to a great extent�
HPSG integrates insights from di�erent theories like LFG GPSG and GB but also employs
theoretical aspects emerging from situation semantics and DRT� In addition HPSG covers many
ideas from other relating disciplines like computer science computational logic and arti�cial in�
telligence especially knowledge representation� HPSG is the ideal representative of the family of
uni�cation�based grammar theories which can be characterized roughly by the keywords mono�
tonicity� declarativeness and reversibility �
Martin Kay was the �rst person who laid out a generalized linguistic framework called uni�cation�
based grammars by introducing the notions of extension� uni�cation and generalization into
computational linguistics�� Kays Functional Grammar �Kay ��� represents the �rst formalism
in the uni�cation paradigm and is the predecessor of strictly lexicalized approaches like FUG
HPSG or UCG �Moens et al� 	��� Pereira and Shieber were the �rst to give a mathematical
reconstruction of PATR�II in terms of a denotational semantics �Pereira � Shieber 	��� The work
of Karttunen led to major extensions of PATR�II concerning disjunction atomic negation and the
use of cyclic structures �Karttunen 	��� Kasper and Rounds� seminal work �Kasper � Rounds 	��
Rounds � Kasper 	�� is important in many respects� they clari�ed the connection between feature
structures and �nite automata gave a logical characterization of the notion of disjunction and
presented for the �rst time complexity results ��Kasper � Rounds ��� is a good summary of
their work�� Mark Johnson enriched the descriptive apparatus with classical negation and showed
that the feature calculus is a decidable subset of �rst�order predicate logic �Johnson 		�� Finally
Gert Smolka�s work gave a fresh impetus to the whole �eld� his approach is distinguished from
others in that he presents a sorted set�theoretical semantics for feature structures �Smolka 		�� In
addition Smolka gave solutions to problems concerning the complexity and decidability of feature
structure descriptions� Further results can be found in �Smolka 	��� Paul King�s work aims
to reconstruct a special grammar theory viz� HPSG in mathematical terms �King 	�� whereas
Backofen and Smolka�s treatment is the most general and complete one bridging the gap between
logic programming and uni�cation�based grammar formalisms �Backofen � Smolka ���� There
exist only a few other proposals to feature structures nowadays which do not use standard �rst
order logic directly for instance Reape�s approach using a polymodal logic �Reape ����

� About TDLExtraLight

TDLExtraLight is a uni�cation�based grammar development environment to support HPSG�like
grammars with multiple inheritance� TDL is an acronym for Type Description Language whereas
the su�x ExtraLight should indicate that it is a roughly implemented system with only a few
sophisticated features� Work on TDLExtraLight has started at the end of ��		 and is embedded
in the DISCO project of the DFKI� The main motivation behind TDLExtraLight was to make a
reliable and robust system fast available to the people in the DISCO project� a type system simply

�Moving from context�free phrase structure rules to ID rule schemata is motivated by the following two facts�
�i� there was�is a strong tendency in linguistics to incorporate all kinds of knowledge into feature structures� and
�ii� ID schemata are descriptively more adequate than traditional CF rules through the use of underspecication�

�On closer inspection� Kay�s proposal was not the rst one working with complex features� There have been
other approaches in related elds� for instance in linguistics �e�g�� 	Harman ���� or compiler construction �e�g��
	Knuth �
��� although they made no use of the notion of unication�

belongs to the main ingredients of a modern NLP core machinery� Moreover a type system can lay
the foundations for a grammar development environment because types serve as abbreviations for
lexicon entries categories and principles as is familiar from HPSG �cf� chapter 	 in �Pollard � Sag
	��� and this is exactly the main business TDLExtraLight is currently concerned with� The DISCO
grammar consists of �
� type speci�cations written in TDL and is the largest HPSG grammar for
German �Netter ���� Input given to TDL is parsed by a Zebu�generated parser �Laubsch ��� to
allow for a more intuitive input syntax and to abstract from uninteresting details imposed by the
uni�er and the underlying Lisp system�
The core machinery of DISCO consists of TDLExtraLight and the feature constraint solver UDiNe
�Backofen � Weyers ���� UDiNe is a powerful untyped uni�cation machinery which allows the use
of distributed disjunctions general negation and functional dependencies� The modules commu�
nicate through an interface and this communication mirrors exactly the way an abstract typed
uni�cation algorithm works� two typed feature structures can only be uni�ed if the according
types are de�nitely compatible� This is accomplished by the uni�er in that UDiNe handles over
two type expressions to TDL which gives back a simpli�ed conjunction of the types�

TDLExtraLight permits type de�nitions with multiple inheritance and the inheritance of functional
dependencies� In addition TDL allows a grammarian to de�ne and use parameterized templates
�macros�� Moreover there exists a special instance de�nition facility to ease the writing of lexicon
entries which di�er from normal types in that they are not entered into the type hierarchy��

However there are small drawbacks when working with TDLExtraLight �

First of all every type will be fully expanded at de�nition time in order to determine the consistency
of a feature structure description� Later on a user is enforced to work with this feature structure
but cannot stick to the old smaller one� In addition when using a �complex� type symbol as a part
in a description we have to make sure that this type is already de�ned i�e� we are not allowed
to refer to an unknown type� As a consequence of this mechanism TDL rejects recursive type
de�nitions or to be more precisely testing the satis�ability of a recursive type leads to an in�nite
expansion �recursion can only be expressed in the context�free backbone� see below�� Second
TDLExtraLight does not support disjunctive or even negated type speci�cations although they
can be written on the feature constraint level��

TDLExtraLight comes along with a number of useful tools�

� a type grapher to visualize the underlying type hierarchy �the grapher and also an inspector
is supported by the Lisp system�

� a sophisticated interactive feature editor allowing a user to depict and to edit typed feature
structure �Kiefer � Fettig ���

� a TDL�LATEX package transforming typed feature structures into LATEX code

� a number of software switches which in�uence the behaviour of the whole system

Grammars and lexicons written in TDL can be tested by using the chart parser of the DISCO
system� The parser is a bidirectional bottom�up chart parser providing a user with parametrized
parsing strategies as well as giving him control over the processing of individual rules �cf� �Kiefer
��� for a general description of the parser module and �Netter ��� for other levels of processing in
the DISCO system��

�Strictly speaking� lexicon entries can be seen as the leaves in the type hierarchy which do not admit further
subtypes �see also 	Pollard � Sag
��� p� ��
�� Note that this dichotomy is the analogue to the distinction between
classes and instances in object�oriented programming languages�

�The disadvantages of TDLExtraLight mentioned above are no longer present in its successor TDL which will be
available in spring ���� The new system is completely redesigned and reimplemented� includes advanced features� is
fully incremental and has better performance� although its expressive power increases massively� Moreover� the new
TDL makes a parametrized expansion mechanism available to the user �this is needed by a parser or a generator
to work e�ciently� and support a special form of non�monotonic inheritance �see 	Krieger � Sch�afer ��� for a full
system overview��

� � SYNTAX AND SEMANTICS OF TDLEXTRALIGHT

� Starting TDLExtraLight

�� Start Common Lisp�

�� �load�system �tdl�el�� loads the necessary parts of TDLExtraLight such as the uni�er
�UDiNe� type de�nition reader feature editor �Fegramed� type hierarchy management
and the TDL�LATEX interface� The portable system de�nition facility Defsystem is de�
scribed in �Kantrowitz ����

�� After loading the Lisp code the following prompt appears on the screen�

Welcome to DISCO�s Type Definition Language TDL�el�

USER���� 	

�� To start the TDLExtraLight reader and create a domain for grammar types and symbols
the user should type
�DEFINE�DOMAIN �DISCO� �or abbreviated �def �disco�
Any other keyword symbol or string may be chosen instead of DISCO except TDL and the
usual Common Lisp package names like COMMON�LISP or USER� The name TDL is preserved
for internal functions and variables� It is possible to de�ne several domains and to change
between them by using function IN�DOMAIN �see Section
����

� Now it is possible to de�ne types or templates interactively or to load grammar �le�s� by
simply using the Lisp primitive LOAD� Examples�
DISCO�
�� � my	first	type �� case nom� num ���

DISCO���� �LOAD �grammar�� �or abbreviated �ld �grammar��

�� DISCO���� �EXIT� �or abbreviated �ex�
exits Lisp and TDLExtraLight �
The Emacs command C�x C�c kills the Lisp and Emacs process�

� Syntax and semantics of TDLExtraLight

TDLExtraLight can be given a set�theoretical semantics along the lines of �Smolka 		� Smolka
	��� It is easy to translate TDLExtraLight statements into denotation�preserving expressions of
Smolka�s feature logic thus viewing TDLExtraLight only as syntactic sugar for a restricted subset
of PL��
The BNF �Backus�Naur Form� of the TDLExtraLight syntax is given in section ��� The syntax is
case insensitive� Newline characters spaces or comments �section ���� can be inserted anywhere
between the syntax tokens �symbols braces parentheses etc���
All TDLExtraLight de�nitions must start with a question mark ��� or exclamation mark ��� and
end with a period ���� It is important not to forget these delimiters since otherwise the Lisp reader
will try to evaluate an expression as Lisp code� It is possible to mix Lisp code and TDL de�nitions
in a �le� Some examples are shown in section ��

��� Type de�nitions

The general syntax of a TDLExtraLight type de�nition is

� htype�namei �� htype�defi �hoptionsi��

htype�namei is a symbol the name of the type to be de�ned� htype�defi is described in the next
sections� It is either a conjunctive feature description �sections ����� and ������ or a template call
�section �������� hoptionsi will be described in section �������

��� Type de�nitions �

��� Conjunctive type de�nitions without inheritance

All type de�nitions in TDLExtraLight are conjunctive on the top level i�e� a conjunction of
attribute�value pairs� Type de�nitions using inheritance are described in sections ����� and ������
In order to de�ne a feature structure type person�number�type with attributes PERSON and NUMBER
the TDLExtraLight syntax is

� person�number�type �� PERSON� NUMBER��

The de�nition results in the structure�
�person�number�typePERSON � �

NUMBER � �

�
�

If no value is speci�ed for an attribute the empty feature structure with the top type of the
type hierarchy will be assumed� Attribute values can be atoms conjunctive feature structures
disjunctions distributed disjunctions coreferences lists functional constraints template calls or
negated values� The syntax is described in the next sections �BNF on page ����

��� Atoms

In TDLExtraLight an atom can be either a number a string or a symbol� Atoms can be used as
values of attributes or as disjunction elements�
Example� The TDLExtraLight type de�nition

� pl���phon �� NUMBER plural�

PHON ��en��

PERSON ���

results in the structure �
���
pl���phon

NUMBER plural

PHON ��en�

PERSON �

�
���

An example for atoms as disjunctive elements is shown in section ������

��� Type speci�cation and inheritance

All conjunctive feature structures can be given a type speci�cation� Type speci�cation at the
top level of a type de�nition de�nes inheritance from a supertype� The feature de�nition of the
speci�ed type will be uni�ed with the feature term to which it is attached�
The inheritance relation represents the de�nitional dependencies of types� Together with multiple
inheritance �described in the next section� the inheritance relation can be seen as a directed
acyclic graph �DAG��
An example for type speci�cation inside a feature structure de�nition�

� agr�plural�type �� AGR person�number�type�NUMBER plural���

This de�nition results in the structure
�
���
agr�plural�type

AGR

�
�person�number�typePERSON � �

NUMBER plural

�
�

�
���

Now an example for type inheritance at the top level�

	 � SYNTAX AND SEMANTICS OF TDLEXTRALIGHT

� pl�type �� person�number�type�NUMBER plural��

This de�nition results in the structure

�
�pl �typePERSON � �

NUMBER plural

�
�

This feature structure is called the global prototype of pl�type� a fully expanded feature
structure of a de�ned type which has inherited all information from its supertype�s� is called a
global prototype� A feature structure consisting only of the local information given by the
type de�nition is called a local prototype� So the local prototype of pl�type is

�
pl�type

NUMBER plural

�

Section
��� explains how the di�erent prototypes of a de�ned type can be displayed�
As mentioned above type speci�cation is optional� If no type is speci�ed the top type �var� of
the type hierarchy will be assumed�

��� Multiple inheritance

On the top level of a feature type de�nition multiple inheritance is possible while inside feature
structures only a single type is allowed which might inherit in its de�nition from multiple types�
As an example for multiple inheritance suppose number�type person�type and gender�type are
de�ned as follows�

� number�type �� NUMBER��

� person�type �� PERSON��

� gender�type �� GENDER��

Then the TDLExtraLight type de�nition

� mas�
�type �� �number�type�

person�type�

gender�type��GENDER mas�

PERSON
��

would result in the following structure�

�
���
mas���type

GENDER mas

PERSON

NUMBER � �

�
���

��� Coreferences

Coreferences indicate information sharing between feature structures� In TDLExtraLight coref�
erence symbols are written before the value of an attribute or instead of an attribute value� A
coreference symbol consists of the hash sign ��� followed by either a number �positive integer� or
a symbol� However in the internal representation and in the printed output of feature structure
the coreference symbols will be normalized to an integer number� Example�

� share�pn �� SYN �pn person�number�type � ��

SEM �pn ��

��� Type de�nitions �

results in the following structure��
������

share�pn

SYN �

�
�person�number�typePERSON � �

NUMBER � �

�
�

SEM �

�
������

��� Negated coreferences

Negated coreferences specify that two attributes must not share the same value i�e� they may
have the same value but these values must not be linked to each other by coreferences�
The Syntax of negated coreferences is

���a�� a�� � � � an�

where a�� a�� � � �an are coreference symbols i�e� numbers or symbols without the hash sign�
Negated coreferences are not allowed at the top level of a type de�nition�
Example� The TDLExtraLight de�nition

� give �� RELN give� GIVER �����
�� GIVEN ��� GIVEE �
��

would result in the following structure��
������

give

RELN give

GIVER �� � � � �� �

GIVEN �

GIVEE �

�
������

��	 Simple Disjunctions

Disjunctive alternatives are enclosed in braces ��� � ��� and separated by commata� Disjunction
elements can be atoms conjunctive feature descriptions simple disjunctions distributed disjunc�
tions lists template calls or negated values� In simple disjunctions the alternatives must not
contain coreferences to values outside the alternative itself �see �Backofen � Weyers ��� for the
reasons��
Distributed disjunctions allow for a restricted way to use coreferences to outside disjunction alter�
natives �section ����	�� Another restriction in TDLExtraLight is that disjunctions are not allowed
at the top level of a type de�nition�
Example for disjunctions in a type de�nition�

� person���or�
 �� SYN � person�number�type�PERSON ���

person�number�type�PERSON
� � ��

The resulting feature structure is�
����������

person�	�or��

SYN

	

�

�

�
�person�number�typePERSON �

NUMBER � �

�
�

�
�person�number�typePERSON

NUMBER � �

�
�

�

�

�
����������

Another more local speci�cation of the same disjunction would be

�� � SYNTAX AND SEMANTICS OF TDLEXTRALIGHT

� person���or�
 �� SYN person�number�type�PERSON � � �
 � � ��

The resulting feature structure is
�
������

person�	�or��

SYN

�
���
person�number�type

PERSON

�
�

�

NUMBER � �

�
���

�
������

��
 Distributed disjunctions

A very useful feature of TDLExtraLight de�ned in the underlying uni�cation system UDiNe are
distributed disjunctions� Distributed disjunctions are a special kind of disjunctions which allow
to restrict the speci�cation of disjunctions a�ecting more than one attribute to a local domain
thus avoiding the necessity of constructing a disjunctive normal form in many cases� Consider the
following example� �

��������������

season�trigger

SEASON ��

	

�

�

�spring�

�summer�

�fall�

�winter�

�

�

NUMBER ��

	

�

�

�

�

�

�

�

�
��������������

This structure has been generated by the following TDLExtraLight expression�

� season�trigger �� SEASON ����spring�� �summer�� �fall�� �winter���

NUMBER ��� � �
 � � � � ���

When a structure of type season�trigger will be uni�ed with the structure SEASON ��summer�

�fall��� then the value of attribute NUMBERwill become �
��� i�e� the value of attribute SEASON
triggers the value of attribute NUMBER and vice versa�
The syntax of an alternative list in distributed disjunctions is

�i�ai� � � � � � ain�

where i is an integer number the disjunction index for each group of distributed disjunctions ���
in the example�� More than two alternative lists per index are allowed� All distributed disjunctions
with the same index must have the same number �n� of alternatives� The disjunction index is local
in every type de�nition and is normalized to a unique index when uni�cation of feature structures
takes place�
In general if alternative aij �� � j � n� does not fail it selects the corresponding alternative bij
cij � � � in all other distributed disjunctions with the same disjunction index i�
As in the case of simple disjunctions disjunction alternatives must not contain coreferences to
values outside the alternative itself� But for distributed disjunctions there is an exception to
this restriction� disjunction alternatives may contain coreferences to values in another distributed
disjunction if both disjunctions have the same disjunction index and the alternative containing
the coreference has the same position in the disjunction alternative list�
An example for such a distributed disjunctions with coreferences is�

� dis
 ��a ��� � � �� � �
 ��

b ��� c ��� x�d �� g�m ���� x�d �
 g�m ������

��� Type de�nitions ��

�
�������������������

dis�

A ��

	

�

�

� �

�

�
g

M �

�

�

�
g

M �

�

�

�

B ��

	

�

�

�
C �

�
�
x

D �

�
�
x

D �

�

�

�

�
�������������������

��� Negation

The � sign indicates negation� Example�

� not�mas�type �� GENDER �mas��

The resulting feature structure is �
not�mas�type

GENDER � mas

�

���� Lists

In TDLExtraLight lists are represented as �rst�rest structures with distinguished attributes �FIRST
and �REST where the atomic value �end indicates the empty list� The input of lists can be
abbreviated by using the � � � � � syntax�

� list�it �� LIST � first�element� second� �last ��

LAST �last�

AN�EMPTY�LIST �� ��

The resulting feature structure is
�
�����������������

list�it

LIST

�
����������

list

�FIRST first�element

�REST

�
������

list

�FIRST second

�REST

�
�list�FIRST �

�REST �end

�
�

�
������

�
����������

LAST �

AN�EMPTY�LIST �end

�
�����������������

���� Functional constraints

Functional constraints de�ne the value of an attribute on the basis of a function which has to be
de�ned and computed outside the TDL system�
The syntax of functional constraints is

�� � SYNTAX AND SEMANTICS OF TDLEXTRALIGHT

�hfunction namei �hfunction parametersi�

String concatenation is a nice example for the use of functional constraints�

� add�prefix �� WORD �word�

PREFIX �prefix�

WHOLE �CONCATENATE �STRING� �prefix� �word���

where CONCATENATE is the generic Lisp function for concatenation of sequences� The usual repre�
sentation for functional constraints is�

�
���
add�pre�x

WORD �

PREFIX �

WHOLE �

�
���

Functional Constraints�

� � concatenate�string� � � � �

The evaluation of functional constraints will be residuated until all parameters are instanti�
ated �A��t�Kaci � Nasr 	�b� Smolka ���� Evaluation can be enforced by using the function
EVAL�CONSTRAINTS of the UNIFY package� Further details are described in �Backofen � Weyers
����

���� Template calls

Templates are pure textual macros which allow to specify �parts of� type or instance de�nitions by
means of some shorthand� The de�nition of templates will be explained in section ���� Template
call simply means syntactic replacement of a template name by its de�nition and possibly given
parameters�
The syntax of template call is

�htemplate namei �htemplate parameter pairsi�

where a htemplate parameter pairi is a pair consisting of a parameter name �starting with the �

character� and a value� All occurrences of the parameter name will be replaced by the value given
in the template call or by the default value given in the template de�nition� See section ��� for
further details and examples�

���� Type de�nition options

For external use TDL allows a number of optional speci�cations which give information which is
basically irrelevant for the grammar� If the optional keywords are not speci�ed default values will
be assumed by the TDL control system� hoptionsi for type de�nitions are the optional keywords
�author �doc �date and �status� When speci�ed a value must follow the corresponding
keyword�
The values of �author �doc and �date must be strings� The default value of �author is de�ned
in the global variable �AUTHOR�� The default value of �doc is de�ned in the global variable
�DEFAULT�DOCUMENTATION� �see section
�� The default value of �date is a string containing the
current time and date�
The �status information is necessary if the grammar should be processed by the DISCO parser�
It distinguishes between di�erent categories of types and type instances e�g� lexical entries rules
or root nodes� If the �status keyword is given �valid values� see rule statuskey in the BNF syntax

��� Template de�nitions ��

on page ��� the status value of the type will become the speci�ed one� If no status option is
given the status will be inherited from the supertype �or be �unknown if the supertype is the top
type of the type hierarchy��
In order to access the �author �doc �date and �status values of type functions with the
corresponding names �status etc�� can be used� See section
�� for details and examples�

��� Template de�nitions

Templates in TDLExtraLight are what parametrized macros are in programming languages� syn�
tactic replacement of a template name by its de�nition and �possibly� replacement of given pa�
rameters in the de�nition� In addition the speci�cation of default values for template parameters
is possible in the template de�nition� Templates are very useful for writing grammars that are
modular� they can also keep de�nitions independent �as far as possible� from speci�c grammar
theories�
The general syntax of a TDLExtraLight template de�nition is

� htemplate�namei ��htemplate parameter pairsi�� �� htemplate�bodyi �hoptionsi��

where a htemplate parameter pairi is a pair consisting of a parameter name �starting with the �

character� and a default value� All occurrences of the parameter name will be replaced by the value
given in the template call or by the default value given in the template de�nition� htemplate�bodyi
can be a complex description as in type de�nitions�
Example� The template de�nition

� a�template ��inherit �var�� �attrib PHON� �value� ��

�inherit��attrib �� �value�

COPY ����

makes it possible to generate the following types using template calls�

� top�level�call �� �a�template�

is a top�level template call which will result in the feature structure�

�
�top�level�callPHON �

COPY �

�
�

while

� inside�call �� top�attrib �a�template ��value �hello��

�attrib MY�PHON���

is a template call inside a feature type de�nition which will result in the feature structure�

�
�inside�call
TOP�ATTRIB

�
MY�PHON �hello�

COPY �hello�

�
�
�

hoptionsi in template de�nitions are the optional keywords �author �date and �doc� When
speci�ed a keyword must be followed by a string� The default value for the �author string is
de�ned in the global variable �AUTHOR�� The default value for the �doc string is de�ned in the
global variable �DEFAULT�DOCUMENTATION� �see section
�� The default value for �date is a string
containing the current time and date�
Section
�� describes the functions DESCRIBE�TEMPLATE and RETURN�ALL�TEMPLATE�NAMES which
print information about template de�nitions�

�� � USEFUL FUNCTIONS	 SWITCHES AND VARIABLES

��� Instance de�nitions

An instance of a TDL type is a copy of the global prototype of the speci�ed type plus �possi�
bly� additional instance�speci�c information� For instance each lexical entry will typically be an
instance of a more general type e�g� intransitive�verb�type with additional speci�c graphemic and
semantic information� In addition an instance can also be de�ned by a template call�
Instances will not be inserted into the TDL type hierarchy� In general instances are objects which
will be used by the parser� It is possible to create several instances of the same type with di�erent
or the same instance�speci�c information�
The general syntax of a TDLExtraLight instance de�nition is

� htype�namei �hinstance�bodyi� �hoptionsi��
or
� htemplate�calli �hoptionsi��

�hinstance�bodyi� can be a complex description as in type de�nitions� hoptionsi in instance de��
nitions are the optional keywords �author �doc �date �name and �status� When speci�ed a
value must follow the corresponding keyword�
If �name is speci�ed its value must be a symbol which will become the name of the de�ned
instance� If �name is not speci�ed the instance name will be �computed� from the symbol htype�
namei and a number which always guarantees to create a fresh and unique instance name and
allows to distinguish between di�erent instances of the same type� If the same name is given more
than once for an instance of the same type the old entries will not be destroyed and the parser
is responsible for the access to all instances� Functions PTI FTI and LTI always take the last
instance de�ned with the speci�ed name�
If the �status keyword is given �valid values� see rule statuskey in the BNF syntax on page ���
the status value of the instance will become the speci�ed one� If no status option is given the
status will be inherited from htype�namei�
The values of �author �doc and �date must be strings� The default value of �author is de�ned
in the global variable �AUTHOR�� The default value of �doc is de�ned in the global variable
�DEFAULT�DOCUMENTATION� �see section
�� The default of �date is the current time and date�

��� Comments

	 after an arbitrary token or at the beginning of a line inserts a comment which will be ignored
by the TDL reader until end of line� It is also possible to use the Common Lisp block comment
delimiters ��� and ���� A comment associated with a speci�c type template or instance de�nition
should be given in the �doc string at the end of the de�nition�

� Useful functions� switches and variables

The following functions and global variables are de�ned in the package TDL and are made public
to all user�de�ned domains �implemented by Common Lisp packages� via use�package� This is
done automatically in the function DEFINE�DOMAIN�

��� Creating and changing domains

Domains are sets of type instance and template de�nitions� It is possible to de�ne several domains
and to have de�nitions with the same names in di�erent domains� Domains roughly correspond
to packages in Common Lisp �in fact they are implemented using the package system��

� function �DEFINE�DOMAIN domain�name ��hide�attributes attribute�list �
��export�symbols symbol�list �
��errorp fTjNILg��

��� The reader �

de�nes a new domain domain�name �a symbol or a string� and turns the TDL reader on�
The global variable �DOMAIN� is set to domain�name� Options� attribute�list is the list of
attributes to be hidden �see section
��� symbol�list is a list of symbols to be exported from
the domain package� If errorp is T a rede�nition of a domain will cause an error otherwise
�NIL� a rede�nition of a domain will give a warning� default is NIL� Example�
DISCO���� �DEFINE�DOMAIN �DISCO �hide�attributes ��SEM��

��DOMAIN �DISCO�

�DISCO

� function �IN�DOMAIN domain�name ��errorp fTjNILg��
changes the current domain to domain�name �a symbol or a string� and turns on the TDL
reader� The global variable �DOMAIN� is set to domain�name� If errorp �optional� is T using
an unde�ned domain name will cause an error� If errorp is NIL �default� a warning will be
given and the current domain will not be changed� Example�
DISCO
���� �IN�DOMAIN �DISCO�

��DOMAIN �DISCO�

�DISCO

� global variable �DOMAIN�
�DOMAIN� contains the name of the current domain �a string�� The value of �DOMAIN� should
only be changed by DEFINE�DOMAIN or IN�DOMAIN but not directly by the user� Example�
DISCO� �� �DOMAIN�

�DISCO�

��� The reader

The reader of TDLExtraLight uses the two macro characters � and � in order to detect the
beginning of a type template or instance de�nition� Before loading complex Lisp code the reader
should be switched o� temporarily� This can be done by using function ROFF� Example�
DISCO�!�� �ROFF� �or alternatively �roff�
Some errors cause the reader to be switched o� automatically� After this or after loading a Lisp
�le the reader can be switched on by function RON� Example�
DISCO�"�� �RON� �or alternatively �ron�
The functions DEFINE�DOMAIN and IN�DOMAIN include an implicit �RON��

��� Global switches and variables

The following global Lisp variables can be set by the user� Switches are set to T for ON or NIL
for OFF�

� global variable �WARN�IF�TYPE�DOES�NOT�EXIST� default value
 T

This variable controls whether a warning will be given if a type de�nition contains the name
of an unde�ned type in its body� Example�
DISCO��#�� �SETQ �WARN�IF�TYPE�DOES�NOT�EXIST� NIL�

NIL

� global variable �WARN�IF�REDEFINE�TYPE� default value
 T

This variable controls whether a warning will be signaled if a type already exists and is about
to be rede�ned� Example�
DISCO����� �SETQ �WARN�IF�REDEFINE�TYPE� NIL�

NIL

� global variable �AUTHOR� default value
 ��

This variable should contain the name of the grammar author or lexicon writer� It will
be used as default value for the optional keyword �author in type template and instance
de�nitions� Example�

�� � USEFUL FUNCTIONS	 SWITCHES AND VARIABLES

DISCO��
�� �SETQ �AUTHOR� �Donald Duck��

�Donald Duck�

� global variable �DEFAULT�DOCUMENTATION� default value
 ��

This parameter speci�es the default documentation string for type template and instance
de�nitions� Example�
DISCO����� �SETQ �DEFAULT�DOCUMENTATION� �Version
� ��

�Version
� �

� global variable �VERBOSE�TYPE�DEFINITION�P� default value
 NIL

This parameter speci�es the verbosity behavior during processing type de�nitions� If the
value is NIL only the name of the �successfully� de�ned type will be printed in brackets
e�g� �typeVERB�TYPE�� If an error occurs the output behavior will be independent of the
value of �VERBOSE�TYPE�DEFINITION�P�� Example�
DISCO����� �SETQ �VERBOSE�TYPE�DEFINITION�P� T�

T

� global variable �VERBOSE�TDL
UNIFY�P� default value
 NIL

This parameter increases verbosity in type de�nitions especially for debugging purposes� If
set to T the interface function between type system and uni�er TDL
UNIFY will print the
structures which are passed to the uni�er� Example�
DISCO����� �SETQ �VERBOSE�TDL
UNIFY�P� T�

T

� global variable �LAST�TYPE�
This variable contains the name of the last type de�ned� It is used by the printing functions
PGP PLP LGP LLP FGP FLP SUPERTYPES and RETURN�ALL�INSTANCE�NAMES if no parameter
is speci�ed� The value of this variable can be changed by the user� Example�
DISCO����� �LAST�TYPE�

AGR�EN�TYPE

DISCO�� �� �SETQ �LAST�TYPE� �MYTYPE�

MYTYPE

� global variable �UNIFY�TYPES� default value
T
If set to T �which is the default� the type �eld of a feature structure will be reduced to the
most speci�c type�s� using the type hierarchy at de�nition time or when uni�cation takes
place� Otherwise �if �UNIFY�TYPES� is set to NIL� the type �eld of the resulting feature
structure will not be reduced using the type hierarchy� In this case the type entries become
longer and less readable� Function SUPERTYPES returns a list of all supertypes of a type see
section
���
Important note� changes to �UNIFY�TYPES� will not have an e�ect on previously de�ned
types or instances�

��� Hiding attributes at de�nition time

It is possible to hide values of attributes at type de�nition time so that values will never be used
and coreferences out of such structures will never be regarded�

� function �SET�HIDE�ATTRIBUTES attribute�list �domain�name��
This function sets the list of the attributes to be hidden in the following type de�nitions�
There is one such list for each domain� If no domain is speci�ed the current domain is taken
as the default� The option �hide�attributes in function DEFINE�DOMAIN has the same
e�ect as SET�HIDE�ATTRIBUTES�
Important note� SET�HIDE�ATTRIBUTES will not have an e�ect on previously de�ned types�
Example�
DISCO��!�� �SET�HIDE�ATTRIBUTES ��NUM GENDER� �DISCO�

�NUM GENDER�

��� Collecting parsed identi�ers ��

� function �GET�HIDE�ATTRIBUTES �domain�name��
This function yields the list of the attributes to be hidden �see SET�HIDE�ATTRIBUTES�� If
no domain is speci�ed the current domain is taken by default� Example�
DISCO��"�� �GET�HIDE�ATTRIBUTES �DISCO�

�NUM GENDER�

� global variable �HIDE�COMPLETELY� default value
 NIL

This variable controls whether attributes and values will be hidden �� T� or only the at�
tribute�s value �� NIL��
Important note� changes to �HIDE�COMPLETELY�will not have an e�ect on previously de�ned
types� Example�
DISCO�
#�� �SETQ �HIDE�COMPLETELY� T�

T

��� Collecting parsed identi�ers

� function �GET�IDENTIFIERS �domain�name��
yields a list of all identi�ers �i�e� type names attribute names and atomic value names�
passed through the TDL reader so far� There is a unique list for each domain� Collecting
all identi�ers of a domain is useful when working in several domains �i�e� Common Lisp
packages� at the same time� Example�
DISCO�
��� �GET�IDENTIFIERS �DISCO�

�NUM GEN AGR�TYPE ����

� function �RESET�IDENTIFIERS �identi�er�list � �domain�name��
resets the list of all identi�ers �i�e� type names attribute names and atomic value names�
passed through the TDL reader so far� There is a unique list for each domain� The default
value of identi�er�list is the empty list� Example�
DISCO�

�� �RESET�IDENTIFIERS�

NIL

��� Getting information about de�ned types

All functions described in this section �except the last one� take an argument type which must not
be quoted�

� function �AUTHOR type�
returns the author�s name �a string� given in the de�nition of type or in global variable
�AUTHOR�� Example�
DISCO�
��� �author agr�en�type�

�Klaus Netter�

� function �DOC type�
returns the documentation string given in the de�nition of type type or in the global variable
�DEFAULT�DOCUMENTATION�� Example�
DISCO�
��� �doc agr�en�type�

�Agreement for �en��

� function �DATE type�
returns time and date of de�nition of type� Example�
DISCO�
��� �date agr�en�type�

�The feature type AGR�EN�TYPE was defined on #�$��$�""� at �!�#"��#�

� function �STATUS type�
returns the status symbol given in the de�nition of type or inherited by its supertype �de�
fault�� Further details are described in section ������� Example�

�	 � USEFUL FUNCTIONS	 SWITCHES AND VARIABLES

DISCO�
��� �status agr�en�type�

�UNKNOWN

� function �SURFACE type�
returns the de�nition string of type� Example�
DISCO�
 �� �surface person�number�type�

�� person�number�type �� PERSON� NUMBER���

� function �SUPERTYPES �type��
This function returns a �possibly empty� list of all types type inherits from i�e� the super�
types of type� The default for type is the name of the last type de�ned i�e� the value of the
global variable �LAST�TYPE�� Example�
DISCO�
!�� �supertypes agr�en�type�

�AGR�GRADE�TYPE AGR�TYPE GRADE�TYPE AGR�FEAT�

� function �RETURN�ALL�TYPE�NAMES�

RETURN�ALL�TYPE�NAMES prints and returns the names of all types de�ned before� Example�
DISCO�
"�� �return�all�type�names�

The following types are defined�

PERSON�NUMBER�TYPE

PL���PHON

AGR�PLURAL�TYPE

� � �

Functions for printing prototypes are described in section
����

��	 Getting information about de�ned templates

� function �DESCRIBE�TEMPLATE template�name�
DESCRIBE�TEMPLATE prints a short information text about a template de�nition� Example�

DISCO��#�� �describe�template �a�template�

The template A�TEMPLATE was defined on #�$��$�""� at � ��
�
��

The author is� tdl�info�

The following definition is associated with A�TEMPLATE�

� a�template ��inherit �var�� �attrib PHON� �value� ��

�inherit��attrib �� �value�

COPY ����

� function �RETURN�ALL�TEMPLATE�NAMES�

RETURN�ALL�TEMPLATE�NAMES prints and returns the names of all templates de�ned before�
Example�

DISCO����� �return�all�template�names�

The following templates are defined�

A�TEMPLATE

��
 Getting information about de�ned instances

� function �RETURN�ALL�INSTANCE�NAMES �type�name��
RETURN�ALL�INSTANCE�NAMES prints and returns the names of all instances of type type�
name� If no type name is speci�ed RETURN�ALL�INSTANCE�NAMES prints and returns all

��
 Deleting instances ��

instances of the last type de�ned� If type�name is �all the function will print and return
all instance names of all types de�ned before� Example�

DISCO��
�� �return�all�instance�names �trans�verb�lex�

The following instances of type TRANS�VERB�LEX are defined�

TRANS�VERB�LEX
�#�!

TRANS�VERB�LEX
���!

TRANS�VERB�LEX
�#"!

Functions for printing instances are described in section
����

��� Deleting instances

� function �CLEAR�INSTANCES �instance�name��
removes instance instance�name or all instances from the hashtable �FEATURE�TYPES�� If
no instance�name is speci�ed then the default value �all will be taken� In this case all
instances will be removed� Example�
DISCO����� �CLEAR�INSTANCES�

NIL

���� Printing type prototypes and instances

For debugging and documentation purposes it is possible to print the prototype and instances of
a de�ned feature type� This can be done by using the following functions�

���� Printing to the interactive screen

� function �PLP �type�name �p�options���
PLP prints the local prototype of the feature structure with name type�name� If no type
name is speci�ed PLP prints the prototype of the last type de�ned before evaluating PLP�
The local prototype contains only the local information given in the de�nition of type
type�name� Example�
DISCO����� �PLP �MAS�SG�AGR �hide�types T �init�pos �
�

GENDER � FEM � �

MAS � ��

NUM � SG�

� function �PGP �type�name �p�options���
PGP prints the global prototype of the feature structure with name type�name� If no type
name is speci�ed PGP prints the prototype of the last type de�ned before evaluating PGP�
The global prototype contains all information that can be inferred for type type�name
and its supertypes� Example�
DISCO����� �PGP �MAS�SG�AGR �hide�types nil�

MAS�SG�AGR GENDER � GENDER�VAL FEM � �

MAS � ��

CASE � �

NUM � SG�

� function �PTI instance�name �p�options��
PTI prints the feature structure of instance instance�name� Example�
DISCO����� �PTI �agr�en�type�����

p�options are the following optional keywords�

�� � USEFUL FUNCTIONS	 SWITCHES AND VARIABLES

� �hide�types �ag default value
 the value of global variable �HIDE�TYPES� � NIL

possible values� fTjNILg
If �ag is NIL types will be printed before feature structures �the top type will not be printed��
If �ag is T types will not be printed� See section
������

� �remove�tops �ag default value
 NIL

possible values� fTjNILg
If �ag is T attributes with empty values �i�e� values that unify with any value� will not be
printed� If �ag is NIL all attributes �except those in label�hide�list� will be printed�

� �label�hide�list list default value
 ��

possible values� a list of symbols �attribute names�
Attributes in list and their values will not be printed�

� �label�sort�list list default value
 the value of �LABEL�SORT�LIST�
possible values� a list of symbols �attribute names�
list de�nes an order for attributes to be printed� Attributes of the feature structure will be
printed �rst�to�last according to their left�to�right position in list � All remaining attributes
which are not member of list will be printed at the end�

� �stream stream default value
 T

possible values� fT j NIL j a Lisp stream variableg
If stream is T the feature structure will be printed to standard output or to the interactive
screen� If stream is NIL the feature structure will be printed to a string� In all other cases
the feature structure will be printed to the Lisp stream stream�

� �init�pos number default value
 �
possible values� a positive integer number
number de�nes the left margin o�set �in space character units� for the feature structure to
be printed�

���� Printing to Fegramed

Fegramed is DISCO�s feature structure editor� Further details are described in �Kiefer � Fettig
����

� function �FLP �type�name �f�options���
FLP starts Fegramed with the local prototype of the feature structure with name type�
name� If no type name is speci�ed FLP takes the prototype of the last type de�ned before
evaluating FLP� The local prototype contains only the local information given in the
de�nition of type type�name� Example�
DISCO�� �� �FLP �MYTYPE�

� function �FGP �type�name �f�options���
FGP starts Fegramed with the global prototype of the feature structure with name
type�name� If no type name is speci�ed FGP takes the prototype of the last type de�ned
before evaluating FGP� The global prototype contains all information that can be inferred
for type type�name and its supertypes� Example�
DISCO��!�� �FGP �MAS�SG�AGR �wait T �hide�types T�

� function �FTI instance�name �f�options��
FTI starts Fegramed with the feature structure of instance instance�name� Example�
DISCO��"�� �FTI �agr�en�type�����

f�options are the following optional keywords�

���� Printing type prototypes and instances ��

Figure �� A feature structure type in Fegramed

� �hide�types �ag default value
 the value of global variable �HIDE�TYPES� � NIL

possible values� fTjNILg
If �ag is NIL types will be printed at the top of feature structures� If �ag is T types will

�� � USEFUL FUNCTIONS	 SWITCHES AND VARIABLES

not be printed� See section
������

� �filename �lename default value
 �type�name�gp�fed� �type�name�lp�fed� or
possible values� a string or a Lisp path name �instance�name�fed�
Unless �lename is speci�ed a �lename will be �computed� from the type name� The �le will
be created by the TDL�Fegramed interface in order to communicate the feature structure
information�

� �wait �ag default value
 NIL

possible values� fTjNILg
If �ag is T Fegramed will wait until the user chooses the return options� If �ag is NIL
Fegramed will not wait�

An example screen dump of a feature structure in Fegramed is shown in Figure ��

���� Printing pretty with TDL�LATEX

TDL�LATEX is a tool which generates LATEX compatible high�quality output of TDL feature struc�
ture types�

� function �LLP �type�name �l�options���
LLP starts TDL�LATEX with the local prototype of the feature structure with name type�
name� If no type name is speci�ed LLP takes the prototype of the last type de�ned before
evaluating LLP� The local prototype contains only the local information given in the
de�nition of type type�name� Example�
DISCO��#�� �LLP �agr�en�type �fontsize �small�

�doc�options �a�wide�palatino��

� function �LGP �type�name �l�options���
LGP starts TDL�LATEX with the global prototype of the feature structure with name
type�name� If no type name is speci�ed LGP takes the prototype of the last type de�ned
before evaluating LGP� The global prototype contains all information that can be inferred
for type type�name and its supertypes� Example�
DISCO����� �LGP �agr�en�type �mathmode �equation�

�doc�options �leqno��

� function �LTI instance�name �l�options��
LTI starts TDL�LATEX with the feature structure of instance instance�name� Example�
DISCO��
�� �LTI �agr�en�type�����

An example of a complex feature structure generated by TDL�LATEX is shown in Figure ��
l�options are the following optional keywords�

� �filename �lename default value
 �type�name�gp� �type�name�lp� or
possible values� string �instance�name�
Unless �lename is speci�ed a �lename will be �computed� from the type name� The �lename
will be used to generate the LATEX output �le�

� �filepath pathname default value
 value of variable �FILEPATH�
possible values� a string or a Common Lisp path name
pathname sets the directory in which the LATEX output �le will be created and the shell
command command will be executed� The value of �FILEPATH� defaults to the tmp directory
in the user�s home directory�

� �hide�types �ag default value
 value of variable �HIDE�TYPES� � NIL

possible values� fTjNILg
If �ag is NIL types will be printed at the top of feature structures �the top type will not be
printed�� If �ag is T types will not be printed� See section
������

���� Printing type prototypes and instances ��

�
��

agr�en�type

AGR ��

	

�

�

	

�

�

�
������������

gen�mn�sg�agr

CASE

�
�gen�dat�val�nom�gen�valOBL �

GOV �

�
�

GENDER

�
�gender�valFEM �

MAS � �

�
�

NUM sg

�
������������

�
��������

dat�pl�agr

NUM pl

GENDER � �

CASE

�
�gen�dat�val�acc�dat�valOBL �

GOV �

�
�

�
��������

�

�	

�

�

�
��������

dg�sg�agr

NUM sg

GENDER � �

CASE

�
�gen�dat�valOBL �

GOV � �

�
�

�
��������

�
���
pl�agr

NUM pl

CASE � �

GENDER � �

�
���

�

��

������������

acc�mas�sg�agr

NUM sg

GENDER

�
�gender�valMAS �

FEM �

�
�

CASE

�
�nom�acc�val�acc�dat�valOBL �

GOV �

�
�

�
������������

�

�

GRADE ��

	�
�
st

we

� �

�
�

�
��

Figure �� A complex feature structure generated by TDL�LATEX

� �remove�tops �ag default value
 value of �REMOVE�TOPS� � NIL

possible values� fTjNILg
If �ag is T attributes with empty values �i�e� values that unify with any value� will not be
printed� If �ag is NIL all attributes �except those in LABEL�HIDE�LIST� will be printed�

� �label�hide�list list default value
 value of �LABEL�HIDE�LIST� � ��

possible values� a list of symbols �attribute names�
Attributes in list will not be printed�

�� � USEFUL FUNCTIONS	 SWITCHES AND VARIABLES

� �label�sort�list list default value
 value of variable �LABEL�SORT�LIST� � ��

possible values� a list of symbols �attribute names�
list de�nes an order for attributes to be printed� Attributes of the feature structure will be
printed �rst�to�last according to their left�to�right position in list � All remaining attributes
which are not member of list will be printed at the end�

� �shell�command command default value
 value of �SHELL�COMMAND� � �tdl
latex�

possible values� fNIL j string g
If command it NIL only the LATEX �le will be created and TDL�LATEX will return� If
command is a string TDL�LATEX will start a shell process and execute command with
parameter �lename� An example for command is the following shell script with name tdl
ps
which starts LATEX with the output �le of TDL�LATEX and writes PostScriptTM code to the
�le �lename�ps�
�%binsh

latex ��

dvips �� �o ���ps

� �wait �ag default value
 value of variable �WAIT� � NIL

possible values� fTjNILg
If �ag is NIL and the shell command command is not NIL command will be started as a
background process� Otherwise TDL�LATEX will wait for command to be terminated�

� �latex�header�p �ag default value
 value of �LATEX�HEADER�P� � T

possible values� fTjNILg
If �ag is T a complete LATEX �le with &documentstyle etc� will be generated� If �ag is
NIL only the LATEX code of the feature structure enclosed in &begin�featurestruct� and
&end�featurestruct� will be written to the output �le� This is useful for inserting LATEX
feature structures into LATEX documents for papers books etc�

� �align�attributes�p �ag default value
 value of �ALIGN�ATTRIBUTES�P� � NIL

possible values� fTjNILg
If �ag is T attribute names and values will be aligned� If �ag is NIL no alignment will take
place�

� �fontsize size default value
 value of �FONTSIZE� � �normalsize�

possible values� a string
This parameter sets the size of the LATEX feature structures� It must be a string consisting
of a valid LATEX font size name e�g� �tiny� �scriptsize� �footnotesize� �small�
�normalsize� �large� �Large� �LARGE� �huge� or �Huge��

� �corefsize size default value
 value of �COREFSIZE� � NIL

possible values� f string j NIL g
This parameter sets the font size for coreference symbols� If size is NIL the size for the
coreference symbol font will be computed from the value of the �fontsize keyword� A font
one magni�cation step smaller than given in �fontsize will be taken� If size is a string it
must contain a valid LATEX font size as in �fontsize�

� �coreffont string default value
 value of variable �COREFFONT� � �rm�

This parameter sets the LATEX font style for printing coreference symbols� string must
contain a valid LATEX font style e�g� tt bf it etc�

� �coreftable a�list default value
 value of variable �COREFTABLE� � ��

This parameter de�nes a translation table for coreferences and corresponding full names
�strings or numbers� e�g� ��� � �subcat�� �
 � �phon�� �� � �� �� �
��� All
coreference numbers at the left side of each element in a�list will be replaced by the right
side� All other coreferences will be left unchanged�

���� Printing type prototypes and instances �

� �arraystretch number default value
 value of �ARRAYSTRETCH� � ���
This parameter sets the vertical distance between attribute names or disjunction alternatives�
number is a factor which will be multiplied with the standard character height�

� �arraycolsep string default value
 value of �ARRAYCOLSEP� � �#��ex�

This parameter sets the left and right space between braces or brackets and attribute names
or values� string must contain a LATEX length expression�

� �doc�options string default value
 value of �DOC�OPTIONS� � �a�wide�

This parameter sets the LATEX &documentstyle options if �latex�header�p is T� string
must be a string consisting of the names of zero one or more valid LATEX document styles
�separated by commata�� Possible document styles are �a�� �a�wide� ���pt� ��
pt�
�leqno� �fleqn� �twoside� �twocolumn� �titlepage� etc� and PostScriptTM font
styles �avantgarde� �bookman� �chancery� �ncs� �palatino� and �times��

� �mathmode string default value
 value of �MATHMODE� � �displaymath�

This parameter sets the LATEX display mode for feature structures� It must be a string
consisting of the name of a LATEX or user de�ned math mode environment name e�g�
�math� �displaymath� or �equation��

� �typestyle style default value
 value of �TYPESTYLE� � �infix

possible values� f �infix j �prefix g
If style has value �infix complex type entries will be printed in in�x notation �e�g� a�b�c��
If style has value �prefix complex type entries will be printed in pre�x �Lisp like� notation
�e�g� �and a b c���

� �print�title�p �ag default value
 value of variable �PRINT�TITLE�P� � T

possible values� fTjNILg
If �ag is T a title with type�name will be printed at the bottom of the feature structure� If
�ag is NIL no title will be printed�

���� Hiding the type �eld while printing

� global variable �HIDE�TYPES� default value
 NIL

If �HIDE�TYPES� is set to NIL functions FLP FGP FTI PLP PGP PTI LLP LGP and LTI print
the type names of all feature types� This causes a wider output� If �HIDE�TYPES� is set to
T the type names of the feature types are left out� This causes a smaller output� Example�

DISCO����� �SETQ �HIDE�TYPES� T�

T

DISCO����� �PGP �NOM�SG�AGR�

CASE � GOV � �

OBL � ��

GENDER � �

NUM � SG�

DISCO����� �SETQ �HIDE�TYPES� NIL�

NIL

DISCO����� �PGP �NOM�SG�AGR�

NOM�SG�AGR CASE � CASE�VAL GOV � �

OBL � ��

GENDER � �

NUM � SG�

�� � TOP LEVEL ABBREVIATIONS

� Editing and Loading TDL 	les

TDLExtraLight supports loading type de�nitions from �les� TDL �les can be written using an
ordinary text editor� When Emacs is used we recommend running it in fundamental mode
�which can be switched on with the Emacs command M�x fundamental�mode��
A TDL �le may contain type de�nitions template de�nitions instance de�nitions or Lisp code
�e�g� Lisp function de�nitions� in arbitrary order�
Before loading a TDL �le the TDL reader must be switched on using �RON�� This may also be
done within the TDL �le�
Common Lisp function �LOAD �le�name ��verbose fTjNILg� ��print fTjNILg��
loads either Lisp �les or TDL �les or mixed �les�

 Displaying the TDL type hierarchy

It is possible to display the TDL type hierarchy using the Allegro ComposerTM� If Allegro
ComposerTM isn�t active by default it is necessary to load it explicitly by
DISCO�� �� �COMPOSER�START�COMPOSER� �or alternatively �com�
The TDL type hierarchy is represented via the Common Lisp Object System �CLOS� �Keene
	�� Steele ����
Select menu �CLOS� and then submenu �Show Class Subclasses� or �Show Class Superclasses� and
choose DISCO���var� or any other TDL type in a domain e�g� DISCO� The Composer will show
all subclasses �or superclasses� of the speci�ed TDL type�
DISCO���var� is the top type of domain DISCO� It is important not to forget the domain name
which is internally the Common Lisp package name of the domain package�
An example screen dump of a TDL type hierarchy in CLOS is shown in Figure ��

� Top level abbreviations

In the Franz Allegro Common Lisp version of TDLExtraLight some often used commands are
also available as top level abbreviations� The top level command �alias prints a list of available
abbreviations�

Alias Description

����� �����������

�composer start Allegro Composer

�define�domain define a TDL domain

�fegramed initialize Fegramed

�fgp Fegramed global prototype

�flp Fegramed local prototype

�fti Fegramed type instance

�lgp LaTeX global prototype

�llp LaTeX local prototype

�lti LaTeX type instance

�pgp print global prototype

�plp print local prototype

�pti print type instance

�roff switch TDL reader OFF

�ron switch TDL reader ON

�composer �define�domain and �fegramed may also be abbreviated by �com �def and �feg�
All top level commands take the same parameters as the corresponding TDL�Lisp functions de�
scribed in the sections before� Top level commands can only be used in the interactive mode of
Lisp but not in TDL or Lisp source �les�

��

Figure �� A TDL type hierarchy in CLOS

Important Note� Parameters of top level commands should not be quoted� Example�
DISCO��!�� �PGP �agr�en�type �label�hide�list ��GOV OBL��

but
DISCO��"�� �PGP agr�en�type �label�hide�list �GOV OBL�

�ron �roff �composer and �fegramed don�t take any parameter�

In addition to these TDL speci�c commands the user may de�ne its own abbreviations� Details
are described in the Franz Allegro Common Lisp manual�

� Sample session

USER���� �load�system �tdl�el��

� Fast loading 			

	

	

	

Welcome to DISCO
s Type Definition Language TDL�el	

USER���� �def �disco

DISCO�TDL�Reader is on	

�DOMAIN DISCO�

�	
 SAMPLE SESSION

DISCO���� �SETQ �VERBOSE�TYPE�DEFINITION�P� NIL�

NIL

DISCO���� � �	 a simple type definition�

� case�val �� �OBL� GOV� �doc �a very simple type�

�author �trick�	

�type�CASE�VAL�

DISCO���� �PGP�

CASE�VAL �GOV � ��

OBL � ���

DISCO���� � �	 type definition using single inheritance and coreferences�

� nom�dat�type �� �CASE case�val��GOV ���

OBL ����	

�type�NOM�DAT�TYPE�

DISCO���� �PGP
nom�dat�type�

NOM�DAT�TYPE �CASE � CASE�VAL �GOV � �� ���

OBL � ����

DISCO���� � �	 build an instance of type nom�date�type

� nom�dat�type��CASE case�val��GOV ���	

�instance�NOM�DAT�TYPE�����

�TDL��FEATURE�STRUCTURE�INFON � �xd������

DISCO� �� � �	 type definition using multiple inheritance �which is only possible

� on toplevel� and disjunction �which is NOT allowed on toplevel��

� num�sing�type �� �NUM sg�	

�type�NUM�SING�TYPE�

DISCO����� � pers�type �� �PERS !�����"� �doc �contains a disjunction�	

�type�PERS�TYPE�

DISCO����� � multi�inh���num�sing�type�pers�type���pers �� �doc �multiple inheritance�	

�type�MULTI�INH�

DISCO����� �PLP�

MULTI�INH �PERS � ��

DISCO����� �PGP�

MULTI�INH �NUM � SG

PERS � ��

DISCO����� � �	 lists�

� l�type �� �LIST�SLOT �VAR���A �c �hi��� �� �c��	

�type�L�TYPE�

DISCO����� �PGP�

L�TYPE �LIST�SLOT � LIST ��REST � LIST ��REST � LIST ��REST � �END

�FIRST � �hi��

�FIRST � �END�

�FIRST � �A � �hi����

DISCO����� � �	 distributed disjunction�

� dd�type �� �a ��!�����"�

b ��!�one�� �two�� �three�"�	

��

�type�DD�TYPE�

DISCO����� �PGP�

DD�TYPE �B � !#� �one� �two� �three� "

A � !#� � � � "�

DISCO����� � dd�type���dd�type��a ��

�doc �� at attribute a triggers value $two
 at attribute b	�	

�type�DD�TYPE��

DISCO�� �� �PGP�

DD�TYPE� �B � �two�

A � ��

DISCO����� � �	 functional constraints�

� f�type �� �x �x� y �y� result ����x��y��	

�type�F�TYPE�

DISCO����� �PGP�

F�TYPE �RESULT � �� ���

Y � �� ���

X � �� ����

FUNCTIONAL�CONSTRAINTS�

�� � �� �� ���

DISCO����� � f�type��x �� y ��	

�instance�F�TYPE����

�TDL��FEATURE�STRUCTURE�INFON � �xc��a�e�

DISCO����� � �	 template definitions�

� a�b�template�#attrib� #value����VAR���#attrib #value� FLAG ��	

�template�A�B�TEMPLATE�

DISCO����� � 	 template expansion�

� a�b�in�type���x �a�b�template�#attrib PHON� #value �hi���	

�type�A�B�IN�TYPE�

DISCO����� �PGP�

A�B�IN�TYPE �X � �FLAG � �

PHON � �hi���

DISCO����� � ��	 negated coreferences�

� neg�coref�type���a ��� b ��� c %�������	

�type�NEG�COREF�TYPE�

DISCO����� �PLP�

NEG�COREF�TYPE �C � ���� ���� ���

B � �� ���

A � �� ����

DISCO����� � ��	 define a LISP function and use it in a FS�

�DEFUN strcat �&rest args�

�APPLY �
CONCATENATE
STRING args��

STRCAT

DISCO�� �� � app���a �� �horn�� b �� �Ein�� c �strcat��������haus���	

�type�APP�

�� �� TDLEXTRALIGHT SYNTAX

DISCO����� �PLP�

APP �C � �Einhornhaus�

B � �Ein�

A � �horn��

DISCO����� �PPRINT �Get�Identifiers�� � PPRINT prints �all� identifiers

�APP C NEG�COREF�TYPE PHON A�B�IN�TYPE FLAG A�B�TEMPLATE RESULT Y X

F�TYPE DD�TYPE� B DD�TYPE A LIST�SLOT L�TYPE MULTI�INH PERS PERS�TYPE SG NUM

NUM�SING�TYPE � CASE NOM�DAT�TYPE GOV OBL CASE�VAL #ATTRIB #VALUE�

DISCO����� '

� TDLExtraLight syntax

The next pages contain the TDLExtraLight syntax in extended BNF �Backus�Naur Form�� Ter�
minal characters are printed in bold style� Nonterminal symbols are printed in italic style� There
are three grammars one for type de�nitions one for instance de�nitions and one for template
de�nitions� Each grammar starts with the start production� The metasymbols � � f g j � and
	 in extended BNF have the following meaning�

metasymbols meaning

� hexpressioni � one optional expression
� hexpressioni j hexpressioni j � � �� one or none of the expressions
f hexpressioni j hexpressioni j � � �g exactly one of the expressions
f hexpressioni g� n successive expressions where n 	 f�� �� � � �g
f hexpressioni g	 n successive expressions where n 	 f�� �� � � �g

���� Type de�nitions

start ��� � type�name �� type�def ftype�optg��

type�def ��� f complex�def j template�call g

complex�def ��� �
variable� � f type�name j � ftype�name�g	 type�name � g � �
� � ffeature�descr �g� feature�descr �

feature�descr ��� attribute�name �value�

value ��� �
variable� � �
� variable f� variableg� � � val

val ��� ��� f atom j
conjunction�val j
��disj�index � f fvalue �g� value g j
� � fvalue �g� value � � j
�function�name � � fvalue �g� value � � j
template�call g

conjunction�val ��� � type�name � � � � ffeature�descr �g� feature�descr �

template�call ��� �template�name � � � fparam�spec �g� param�spec � � �

param�spec ��� �symbol �value�

atom ��� f string j symbol j ���integer g

���� Instance de�nitions ��

variable ��� f symbol j integer g

attribute�name ��� symbol

type�name ��� symbol

function�name ��� symbol

template�name ��� symbol

disj�index ��� integer

type�opt ��� f �author string j
�date string j
�doc string j
�status statuskey g

statuskey ��� f �lex�entry j �lex�rule j �rule j �epsilon j �root j �unknown j
�multi�word�lexeme j �sar�rule j �lex�triggered�rule j
�morph�template j �sar�rule��nd g

integer ��� f�j�j�j�j�j�j�j�j�j�j�g	

symbol ��� symbol�begin�charfsymbol�continue�charg�

symbol�begin�char ��� fa�zjA�Zj j�j�j�g

symbol�continue�char ��� fa�zjA�Zj���j j�j�j�j�g

string ��� �fany character except �g��

���� Instance de�nitions

start ��� f � type�name finstance�optg�� j
� conjunction�val finstance�optg�� j
� template�call finstance�optg� � g

instance�opt ��� f �author string j
�date string j
�doc string j
�status statuskey j
�name symbol g

���� Template de�nitions

start ��� � template�name � �fparam�spec �g� param�spec� � �� conjunction�val ftemplate�optg��

template�opt ��� f �author string j
�date string j
�doc string g

�� REFERENCES

References

�A��t�Kaci � Nasr 	�a� Hassan A��t�Kaci and Roger Nasr� LOGIN
 A Logic Programming Language
with Built�In Inheritance� Journal of Logic Programming ���	
���
 ��	��

�A��t�Kaci � Nasr 	�b� Hassan A��t�Kaci and Roger Nasr� Residuation
 A Paradigm for Integrating
Logic and Functional Programming� Technical Report AI��
��	� MCC Austin TX ��	��

�Alshawi ��� Hiyan Alshawi �ed��� The Core Language Engine� ACL�MIT Press Series in Natural
Language Processing� MIT Press �����

�Backofen � Smolka ��� Rolf Backofen and Gert Smolka� A Complete and Recursive Feature The�
ory� Technical Report RR������ Deutsches Forschungszentrum f�ur K�unstliche Intelligenz
Saarbr�ucken Germany �����

�Backofen � Weyers ��� Rolf Backofen and Christoph Weyers� UDiNe�A Feature Constraint
Solver with Distributed Disjunction and Classical Negation� Technical report Deutsches
Forschungszentrum f�ur K�unstliche Intelligenz Saarbr�ucken Germany ����� Forthcoming�

�Backofen et al� ��� Rolf Backofen Lutz Euler and G�unter G�orz� Towards the Integration of
Functions� Relations and Types in an AI Programming Language� In� Proceedings of
GWAI��� Berlin ����� Springer�

�Bresnan 	�� Joan Bresnan �ed��� The Mental Representation of Grammatical Relations� Cam�
bridge Mass�� MIT Press ��	��

�Carpenter ��� Bob Carpenter� ALE�The Attribute Logic Engine Users Guide� Version �� Tech�
nical report Laboratory for Computational Linguistics� Philosophy Department Carnegie
Mellon University Pittsburgh PA December �����

�Daelemans et al� ��� Walter Daelemans Koenraad De Smedt and Gerald Gazdar� Inheritance
in Natural Language Processing� Computational Linguistics �	������
���	 �����

�D�orre � Eisele 	�� Jochen D�orre and Andreas Eisele� Determining Consistency of Feature Terms
with Distributed Disjunctions� In� Dieter Metzing �ed�� Proceedings of GWAI�	� ��
th
German Workshop on AI� pp� ������� Berlin ��	�� Springer�Verlag�

�D�orre � Eisele ��� Jochen D�orre and Andreas Eisele� A Comprehensive Uni�cation�Based Gram�
mar Formalism� Technical Report Deliverable R����B DYANA Centre for Cognitive Sci�
ence University of Edinburgh January �����

�Gazdar et al� 	
� Gerald Gazdar Ewan Klein Geo�rey Pullum and Ivan Sag� Generalized Phrase
Structure Grammar� Harvard University Press ��	
�

�Harman ��� Gilbert Harman� Generative Grammars Without Transformation Rules
 A Defence
of Phrase Structure� Language ���
������ �����

�H�ohfeld � Smolka 		� Markus H�ohfeld and Gert Smolka� De�nite Relations over Constraint
Languages� LILOG Report
� WT LILOG�IBM Germany Stuttgart October ��		�

�Johnson 		� Mark Johnson� Attribute Value Logic and the Theory of Grammar� CSLI Lecture
Notes Number ��� Stanford� Center for the Study of Language and Information ��		�

�Kantrowitz ��� Mark Kantrowitz� Portable Utilities for Common Lisp� Technical Report CMU�
CS������� School of Computer Science Carnegie Mellon University Pittsburgh PA �����

�Karttunen 	�� Lauri Karttunen� Features and Values� In� Proceedings of the ��th International
Conference on Computational Linguistics COLING�	� pp� �	��� ��	��

REFERENCES ��

�Karttunen 	�� Lauri Karttunen� Radical Lexicalism� Technical Report CSLI�	���	 Center for
the Study of Language and Information Stanford University ��	��

�Kasper � Rounds 	�� Robert T� Kasper and WilliamC� Rounds� A Logical Semantics for Feature
Structures� In� Proceedings of the ��th Annual Meeting of the Association for Computa�
tional Linguistics pp� �
����� ��	��

�Kasper � Rounds ��� Robert T� Kasper and William C� Rounds� The Logic of Uni�cation in
Grammar� Linguistics and Philosophy ����
�
	 �����

�Kay ��� Martin Kay� Functional Grammar� In� C� Chiarello et al� �ed�� Proceedings of the
th
Annual Meeting of the Berkeley Linguistics Society pp� �����
	 Berkeley Cal �����

�Kay 	
� Martin Kay� Parsing in Functional Uni�cation Grammar� In� David R� Dowty Lauri
Karttunen and Arnold M� Zwicky �eds�� Natural Language Parsing� Psychological Com�
putational and Theoretical Perspectives chapter � pp� �
����	� Cambridge� Cambridge
University Press ��	
�

�Keene 	�� Sonya E� Keene� Object�Oriented Programming in Common Lisp
 A Programmers
Guide to CLOS� Reading Massachusetts� Addison�Wesley ��	��

�Kiefer � Fettig ��� Bernd Kiefer and Thomas Fettig� FEGRAMED�An Interactive Graph�
ics Editor for Feature Structures� Technical report Deutsches Forschungszentrum f�ur
K�unstliche Intelligenz Saarbr�ucken Germany �����

�Kiefer ��� Bernd Kiefer� Gimmie more HQ Parsers� Technical report Deutsches Forschungszen�
trum f�ur K�unstliche Intelligenz Saarbr�ucken Germany ����� Forthcoming�

�King 	�� Paul J� King� A Logical Formalism for Head�Driven Phrase Structure Grammar� PhD
thesis University of Manchester Department of Mathematics ��	��

�Knight 	�� Kevin Knight� Uni�cation
 A Multidisciplinary Survey� ACM Computing Surveys
������������ March ��	��

�Knuth �	� Donald E� Knuth� Semantics of Context�Free Languages� Mathematical Systems The�
ory �����������
 ���	�

�Krieger � Sch�afer ��� Hans�Ulrich Krieger and Ulrich Sch�afer� TDL�A Type Description Lan�
guage for HPSG� Part 	
 Overview� Technical report Deutsches Forschungszentrum f�ur
K�unstliche Intelligenz Saarbr�ucken Germany ����� Forthcoming�

�Laubsch ��� Joachim Laubsch� Zebu
 A Tool for Specifying Reversible LALR�	� Parsers� Tech�
nical report Hewlett�Packard �����

�Moens et al� 	�� Marc Moens Jo Calder Ewan Klein Mike Reape and Henk Zeevat� Expressing
generalizations in uni�cation�based grammar formalisms� In� Proceedings of the �th EACL
pp� �����	� ��	��

�Montague ��� Richard Montague� Formal Philosophy� Selected Papers of Richard Montague� New
Haven� Yale University Press ����� Edited by Richmond H� Thomason�

�Netter ��� Klaus Netter� Architecture and Coverage of the DISCO Grammar� In� S� Busemann
and Karin Harbusch �eds�� Proceedings of the DFKI Workshop on Natural Language
Systems� Modularity and Re�Usability �����

�Pereira � Shieber 	�� Fernando C�N� Pereira and Stuart M� Shieber� The Semantics of Gram�
mar Formalisms Seen as Computer Languages� In� Proceedings of the ��th International
Conference on Computational Linguistics pp� ������� ��	��

�� REFERENCES

�Pereira � Warren 	�� Fernando C�N� Pereira and David H�D�Warren� De�nite Clause Grammars
for Language Analysis�A Survey of the Formalism and a Comparison with Augmented
Transition Networks� Arti�cial Intelligence ���������	 ��	��

�Pereira 	�� Fernando C�N� Pereira� Grammars and Logics of Partial Information� In� J��L� Lassez
�ed�� Proceedings of the �th International Conference on Logic Programming Vol� � pp�
�	������ ��	��

�Pollard � Moshier ��� Carl J� Pollard and M� Drew Moshier� Unifying Partial Descriptions of
Sets� In� P� Hanson �ed�� Information Language and Cognition� Vol� � of Vancouver
Studies in Cognitive Science pp� xxx�yyy� University of British Columbia Press �����

�Pollard � Sag 	�� Carl Pollard and Ivan Sag� Information�Based Syntax and Semantics� Vol� I

Fundamentals� CSLI Lecture Notes Number ��� Stanford� Center for the Study of Lan�
guage and Information ��	��

�Pollard � Sag ��� Carl Pollard and Ivan Sag� Head�Driven Phrase Structure Grammar� CSLI
Lecture Notes� Stanford� Center for the Study of Language and Information �����

�Pollard 	�� Carl Pollard� The Syntax�Semantics Interface in a Uni�cation�Based Phrase Struc�
ture Grammar� In� Stephan Busemann Christa Hauenschild and Carla Umbach �eds��
Views of the Syntax�Semantics Interface� Proceedings of the Workshop on GPSG and
Semantics Technische Universit�at Berlin ������Feb ��	� pp� �����	�� Technische Uni�
versit�at Berlin� KIT FAST ��	��

�Reape ��� Mike Reape� An Introduction to the Semantics of Uni�cation�Based Grammar For�
malisms� Technical Report Deliverable R����A DYANA Centre for Cognitive Science
University of Edinburgh January �����

�Rounds � Kasper 	�� William C� Rounds and Robert T� Kasper� A Complete Logical Calculus
for Record Structures Representing Linguistic Information� In� Proceedings of the �
th
Annual Symposium of the IEEE on Logic in Computer Science ��	��

�Rounds 		� William C� Rounds� Set Values for Uni�cation�Based Grammar Formalisms and
Logic Programming� Technical Report CSLI�		���� Center for the Study of Language and
Information ��		�

�Russell et al� ��� Graham Russell Afzal Ballim John Carroll and Susan Warwick�Armstrong� A
Practical Approach to Multiple Default Inheritance for Uni�cation�Based Lexicons� Com�
putational Linguistics �	����������� �����

�Sag � Pollard 	�� Ivan A� Sag and Carl Pollard� Head�Driven Phrase Structure Grammar
 An
Informal Synopsis� Technical Report CSLI�	��	� Center for the Study of Language and
Information Stanford University ��	��

�Shieber et al� 	�� Stuart Shieber Hans Uszkoreit Fernando Pereira Jane Robinson and Mabry
Tyson� The Formalism and Implementation of PATR�II� In� Barbara J� Grosz and Mark E�
Stickel �eds�� Research on Interactive Acquisition and Use of Knowledge pp� ������ Menlo
Park Cal�� AI Center SRI International ��	��

�Shieber 	�� Stuart M� Shieber� An Introduction to Uni�cation�Based Approaches to Grammar�
CSLI Lecture Notes Number �� Stanford� Center for the Study of Language and Informa�
tion ��	��

�Smolka 		� Gert Smolka� A Feature Logic with Subsorts� LILOG Report �� WT LILOG�IBM
Germany Stuttgart Mai ��		�

�Smolka 	�� Gert Smolka� Feature Constraint Logic for Uni�cation Grammars� IWBS Report ��
IWBS�IBM Germany Stuttgart November ��	��

REFERENCES �

�Smolka ��� Gert Smolka� Residuation and Guarded Rules for Constraint�Logic Programming�
Research Report RR������ DFKI Saarbr�ucken �����

�Steele ��� Guy L� Steele� Common Lisp
 The Language� Bedford MA� Digital Press �nd edition
�����

�Uszkoreit 	�� Hans Uszkoreit� Categorial Uni�cation Grammars� In� Proceedings of the ��th
International Conference on Computational Linguistics pp� �	����� ��	��

�Uszkoreit 		� Hans Uszkoreit� From Feature Bundles to Abstract Data Types
 New Directions in
the Representation and Processing of Linguistic Knowledge� In� A� Blaser �ed�� Natural
Language at the Computer!Contributions to Syntax and Semantics for Text Processing
and Man�Machine Translation pp� ������ Berlin� Springer ��		�

�Zajac ��� R"emi Zajac� Inheritance and Constraint�Based Grammar Formalisms� Computational
Linguistics �	�����
���	� �����

