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ABSTRACT: Finite-state devices such as finite-state automata and finite-state 
transducers have been known since the emergence of computer science and are 
recently extensively used in many areas of language technology. The use of finite-
state devices is mainly motivated by their time and space efficiency. In this paper we 
present the Finite-State Machine Toolkit for building, combining and optimizing the 
finite-state machines, developed at the Language Technology Lab of the German 
Research Center for Artificial Intelligence. 

 

 

1. Overview 
 
Finite-State devices such as finite-state automata and finite-state transducers have been known 
since the emergence of computer science and have been successfully applied in many areas 
such as compiler construction, pattern matching, cryptography, data compression and 
switching theory. Recently, finite-state technology has been widely applied to various 
domains of natural language processing, including phonology [Kaplan and Kay, 94], 
construction of lexical and morphological analyzers [Koskenniemi, 83], [Silberztein, 93], 
part-of-speech filtering [Roche and Schabes, 95], shallow parsing [Abney, 96], [Pavia, 99], 
[Greffenstette, 96], [Ait-Mohtar and Chanod, 97] and speech recognition [Pereira and Riley, 
97], [Mohri, 97]. The use of finite-state devices is mainly motivated by their time and space 
efficiency [Lewis and Papadimitriou, 81]. From the linguistic point of view, most of the local 
language phenomena can be easily and intuitively expressed as finite-state devices [Roche 
and Schabes, 97]. 

Over the last few years, there has been ongoing research work centered around 
application of finite-state technology in NLP at the Language Technology Lab at the German 
Research Center for Artificial Intelligence (DFKI). This includes amongst others finite-state 
based shallow text processing systems, SMES [Neumann, et. al., 97] based on an ATN 
compiler [Krieger, 95], and SPPC – shallow text processing system for German [Piskorski 
and Neumann, 00], morphological parsing of Japanese [Siegel and Scherf, 00], regular 
approximation of context-free grammars [Mohri and Nederhof, 01], [Nederhof, 01], and core 
finite-state tools for manipulating finite-state devices [Scherf, 00]. 

In this paper we present the Finite-State Machine Toolkit (FSM Toolkit) – a library of 
tools for constructing, combining and optimizing finite-state machines, developed at the 
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Language Technology Lab of DKFI. Finite-state machines are generalizations of better 
known weighted finite-state automata and weighted finite-state transducers. The architecture 
and functionality of the DFKI FSM Toolkit is mainly based on the tools developed by AT&T 
[Mohri et. al., 00], and it provides all state-of-the-art transformation and optimization 
operations for finite-state devices. Additionally, the toolkit includes implementations of some 
recently presented operations (e.g., incremental construction of minimal deterministic finite-
state automata [Daciuk, 98]) and modifications of some of the state-of-the-art algorithms 
(e.g., removal of epsilon transitions, weighted version of the local extension algorithm). The 
Toolkit runs on both Unix and MS Windows platforms and constitutes the backbone of the 
earlier mentioned system SPPC and a named-entity recognition platform presented in 
[Piskorski et. al., 02B]. 

The rest of this paper is organized as follows. In section 2 we introduce the basic 
definitions of finite-state devices including in particular finite-state machine which is an 
underlying model for the FSM Toolkit. Actually, there are many definitions of automata and 
transducers, but the differences are mainly notational and therefore not important from a 
scientific point of view. The definitions presented here are based on the definitions in 
[Hopcroft and Ullman, 79], [Mohri, 97] and [Roche and Schabes, 96], which are regarded as 
standard references for finite-state devices. In section 3 we present the FSM Toolkit, 
including detailed description of provided operations and comparison with other similar 
finite-state packages. Finally, a quick user guide to the FSM Toolkit is presented in Appendix 
A.  

 
2. Finite-State Devices  
 
2.1 Finite-State Automata 
 
A finite-state automaton is a device that can be in one of a finite number of states. Under 
certain conditions it switches from one state into another. The set of states contains an initial 
state, final states and other states. The automaton starts working in its initial state and 
processes a sequence of input symbols. The symbols must come from a finite set of symbols, 
usually called an alphabet of the automaton. The interpretation of the symbols depends on the 
task which has to be solved. Processing of the input symbols consists of a sequence of moves, 
where in each move the automaton consumes (reads) the next symbol and possibly switches 
to another state, depending on the current state and current symbol. The set of so called 
transitions of the automaton defines for each state how the automaton may be switched from 
this state into another one. A single transition consists of source state, target state, and input 
symbol, where the latter is usually called the input label of the transition. In a given state, the 
automaton tests whether the next input symbol and current state match any of the transitions 
for this state. If they do, the automaton switches to the target state of the transition. 
Obviously, there may be more than just one valid transition from a given state. In such case, 
the transition is chosen arbitrarily. In case there are no transitions that match the current input 
and the current state, the automaton stops and rejects the input. Further, it is also possible to 
move from one state to another without consuming any input symbol. Such non-consuming 
transitions are labeled with ε  (epsilon transitions). If the automaton succeeds in consuming 
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the input completely and is in a final state, then we say that it accepts the input. The set of all 
sequences of symbols which are accepted by a given automaton is called the language 
accepted by this automaton. 

Let us now formally define a finite-state automaton. A finite set of symbols is denoted 
as an alphabet Σ . As mentioned above, an empty string is represented as ε . Let Σ  be an 
alphabet and nvvvv ...21= , muuuu ...21=  two strings, where Σ∈mn uuuvvv ,...,,,,...,, 2121 . 
Then we define the concatenation of two strings as: 

 

mn uuuvvvuv ...... 2121=$  (1) 
 

Concatenation can be easily extended to sets. Further, we define the set of all possible words 
over the alphabet Σ  as:  
 
 { } { }ε 1 allfor   and 1for  ...| 21

* ∪≤≤Σ∈≥==Σ nivnvvvvv in  (2) 
 

For *Σ∈w  with nwwww ...21=  we define its reversion as Rw : 
 
 11...wwww nn

R
−=  (3) 

 
Definition 1  A finite-state automaton (FSA) is a 5-tuple ( )FiQM ,,,, δΣ= , where Q is a 
finite set of states, Qi ∈  is the initial state, QF ⊆  is a set of final states, Σ  is a finite 
alphabet and { }( ) QQ 2 : →∪Σ× εδ  is the transition function. 
 
Further, we extend the transition function δ  to QQ 2:ˆ * →Σ×δ  to accept words over Σ  as 
argument. We denote the size of the automaton M with || M , which is equal to the number of 
states ||Q . We denote the language accepted by the automaton M as ( )ML  and define it as: 
 
 ( ) ( ){ }∅≠∩Σ∈= FvivML ,ˆ| * δ  (4) 
 

Automata can be represented as directed graphs, where the nodes denote states and 
edges represent transitions. We use positive natural numbers for labeling the nodes. In order 
to extend the standard convention for visualizing graphs, we represent the final states as two 
concentric circles and the initial state is represented by a circle drawn with a thicker line. Note 
that an initial state may be simultaneously a final state. Example 1 presents a simple 
automaton and its corresponding visual representation.  

 
Example 1 Let ( )MMMMM FiQM ,,,, δΣ=  be an FSA, where { }3,2,1,0 =MQ  , { }cbaM ,, =Σ , 

( ) ( ) ( ){ }3,,1,2,,1,1,,0 cbaM =δ  , 0=Mi  and { }3,2 =MF .   
 
The automaton M accepts the language ( ) { }acabML , = . 
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We say that an automaton is −ε free if it has no transitions labeled with ε . An 
automaton is said to be deterministic if it is free−ε  and for each state there is at most one 
transition labeled with the same symbol, otherwise it is said to be nondeterministic. Every 
nondeterministic automaton may be converted to an equivalent deterministic automaton, 
which accepts the same language [Hopcroft and Ullman, 79]. Among many automata that 
accept the same language there exists one which has a minimal number of states (has minimal 
size) [Hopcroft and Ullman, 79]. It is called a minimal automaton. The automaton presented 
in example 1 is deterministic. Further, it is the minimal automaton that accepts the language 
{ }acab, . Finally, the FSAs are closed under union, Kleene-star, concatenation, intersection 
and complementation, thus allowing for natural and flexible descriptions [Roche and Schabes, 
96]. 

 
2.2 Finite-State Transducers 
 
Finite-state transducers (FST) are automata for which each transition has an output label in 
addition to the more familiar input label. Transducers transform (transduce) input strings into 
output strings. The output symbols come from a finite set, usually called output alphabet. 
Since the input and output alphabet are frequently the same, there is usually no distinction 
between them. A formal definition of a transducer follows in definition 2. 
 
Definition 2  A finite-state transducer (FST) is a 5-tuple ( )FiEQM ,,,,Σ= , where Q is a 
finite set of states, Qi ∈  is the initial state, QF ⊆  is a set of final states, Σ  is a finite 
alphabet and { }( ) QQE ×Σ×∪Σ× * : ε  is the set of transitions (arcs).  
 
Further, we define the state transition function { }( ) QQ 2 : →∪Σ× εδ  as follows: 
 
 ( ){ }EqvapvQqap ∈Σ∈∃∈= ,,,:| ),( *δ  (5) 
 
The emission function { }( ) *2 : Σ→×∪Σ× QQ ελ  is defined as: 
 
 ( ){ }Eqvapvqap ∈Σ∈= ,,,| ),,( *λ  (6) 
 
Example 2  Let ( )MMMMM FiEQM ,,,,Σ=  be an FST, where { }2,1,0 =MQ , { }cbaM ,, =Σ , 

( ) ( ){ }2,,,0,1,,,0 cabaM =δ  , 0=Mi  and { }2,1 =MF  
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M transduces a to b or a to c. Note that for visualizing transducers we use the colon to 
separate the input and output labels of a transduction. 
 
The emission function λ  may be extended to { }( ) ** 2 :ˆ Σ→×∪Σ× QQ ελ . It takes as an 
argument strings over Σ  and emits a set of all possible output strings. A transducer 

( )FiEQM ,,,,Σ=  can be seen as a mapping ** 2: Σ→Σf , where ( )vfu ∈  if and only if 
Fq ∈∃  with ( )qviu ,,λ̂∈ . We denote such mapping for a transducer M as M

&
. For the 

transducer in example 2, ( ) { }cbaM , =
&

.  
 
Definition 3  A mapping ** 2: Σ→Σf  is called rational transduction if there exists a FST M 
such that Mf

&
= . If *Σ∈∀v , ( ) 1≤vM

&
 then M

&
 is called rational function. 

 
Since transducers compute functions, a slightly different definition of being deterministic is 
used. A FST M  is said to be deterministic if Σ∈∀∈∀ vQpq , , : 

( ) ( ) ( ) ( ) 0,, and  ,0,  ,1,,  ,1, ==≤≤ qppqvpvp ελεδλδ . The transducer in the example 2 
is not deterministic. The term subsequential transducer is often used as a synonym for 
deterministic transducer. However, the formal definition of subsequential transducers is 
slightly different [Mohri, 97]. Subsequential transducers are seven tuples 

( )ρλδ ,,,,,, FiQM Σ= , where FiQ ,,,Σ  are defined as before and QQ →Σ×:δ  is the 
deterministic transition function, *: Σ→Σ×Qλ  is the deterministic emission function, and 

*: Σ→Fρ  is the final emission function. The final emission function is used to output 
strings when the automaton has consumed the input string and is in a final state. In [Mohri, 
97] p-subsequential transducers were introduced, which allow emission of up to p final 
output strings. They proved to be very useful for describing linguistic ambiguities.  

Contrary to finite-state automata, finite-state transducers have weaker closure 
properties, e.g., they are not closed under intersection. Further, only a certain subclass of 
transducers are determinizable [Mohri, 97]. Weighted finite-state automata (WFSA) or 
weighted finite-state transducers (WFST) are automata or transducers in which each 
transition has a weight as well as input/output labels. Instead of defining these devices 
formally, in the next section the more general device, the finite-state machine, will be 
introduced. 
 
2.3 Finite-State Machines 

 
A finite-state machine (FSM) is a generalization of FSAs, WFSAa, FSTs and WFSTs. It is 
used as an underlying model for the finite-state tools presented in section 3. In contrary to 
simple transducers (FSTs), an FSM distinguishes between input and output alphabet and 
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allows only single symbols as output labels (letter transducer). Additionally, a weight is 
assigned to each transition in an FSM. The semirings are used as a basis in the theory of 
weighted finite-state devices [Kuich and Salomaa, 86]. In FSMs, the choice of a semiring 
determines the interpretation (computation) of weights. 
 
Definition 4  A closed semiring is a system ( )1 , 0 ,  ,  , ⊗⊕S , where S is a possibly infinite set 
of elements, ⊕  (the summary operator) and ⊗  (the extension operator) are binary 
operations on S, and 0  and 1  are elements of S, satisfying the following properties: 
 
 1. ( )0 ,  , ⊕S  and ( )1,  , ⊗S  are monoids, which means that S is closed under ⊕  and ⊗ ,  

 both operations are associative, i.e.,  :,, Scba ∈∀ ( ) ( )cbacba ⊕⊕=⊕⊕  and 
( ) ( )cbacba ⊗⊗=⊗⊗ , and 0  and 1  are identities of ⊕  and ⊗ . 

 2. ⊕  is commutative: abbaSba ⊕=⊕∈∀  :,  

 3. 0  is an annihilator: aaSa ⊗=⊗∈∀ 00 :  

 4.  ⊕  is idempotent: aaaSa =⊕∈∀  :  

 5. ⊗  distributes over ⊕ :  :,, Scba ∈∀  
  ( ) ( ) ( ) ( ) ( ) ( )cbcacbacabacba ⊗⊕⊗=⊗⊕⊗⊕⊗=⊕⊗  and  

 
If the fourth property is not satisfied, we call such a system a semiring. The systems 
( )1 , 0 ,  ,  , ⋅++R  and ( )0 ,  ,  , min , ∞+∞∪R 1 are examples of semirings, where the latter one is 
called a tropical semiring. Note that the tropical semiring is closed in contrary to 
( )1 , 0 ,  ,  , ⋅++R , since addition is not idempotent (whereas the min operation is).  

An FSM follows a path corresponding to a given input string and emits an output string 
plus a weight obtained by combining the weights along this path. The extension operator ⊗  
of the semiring is used for combining the weights on a single path. In case the FSM is not 
deterministic, there might exist more than one corresponding path for a given input string. 
Furthermore, different paths might produce different output strings. In such a situation, the 
summary operator ⊕  is used to combine the weights of paths yielding the same output string 
for a given input string. Thus, an output of an FSM for a given input string can be seen as a 
set of pairs, each consisting of an output string and an associated weight. The identity element 
0  serves as the weight of an empty path, whereas 1  serves as the neutral weight of a single 
transduction. In the rest of this section we define these concepts formally. 
 
Definition 5 A finite-state machine M is a 9-tuple ( )( )1,0,,,,,,,,,,, ⊗⊕ΣΣ= SECFciQM ioutin  
where: 

 inΣ  is a finite alphabet, called the input alphabet 

 outΣ  is a finite alphabet, called the output alphabet 

 Q   is a finite set of states 

                                                           
1 







 <

=
otherwise 

 if 
),min(

b

baa
ba  



7 

  Qi ∈  is the initial state  

 ic   is the initial weight 

 QF ⊆   is the set of final states 

 SFC →:   is the final weight function 

 { }( ) { }( ) QSQE outin ××∪Σ×∪Σ×⊆ εε     is the set of transitions (arcs) 

 ( ) 1 , 0 ,  ,  ,  ⊗⊕S   is a semiring 

 
Given a finite-state machine M = ( )( )1,0,,,,,,,,,,, ⊗⊕ΣΣ SECFciQ ioutin  we define some 
additional notions. The state transition function { }( ) Q

inQ 2 : →∪Σ× εδ  of  M is defined as: 
 
 ( ) ( ){ }Eqsbapqap ∈= ,,,,| ,δ  (7) 
 
The string emission function outE Σ→:λ  of M is defined by: 
 
 ( ) bt =λ  for all Et ∈  where ( )qsbapt ,,,,=  (8) 
 
The weight emission function SE →:ω  of M is defined by: 
 
 ( ) st =ω  for all Et ∈  where ( )qsbapt ,,,,=  (9) 
 
Definition 6  Let M be an FSM. A path ( )mttt ,...,, 21=π  in M from 0q  to mq  is a finite 
sequence of transitions if for { }mi ,...,2,1 ∈  ( )iiiiii qsbaqt ,,,,1−=  and ( )iii aqq ,1−∈δ . The 
first and the last state on the path π  is represented by ( )πstart  and ( )πend , resp. 
 
Let ( )mttt ,...,, 21=π  be a path. We now extend the notion of the string emission and weight 
emission function to paths: 
 
 ( ) ( ) ( ) ( )mttt λλλπλ $$$ .....21=  (10) 
 

 ( ) ( ) ( ) ( ) ( )mi
mi

tttt ωωωωπω ⊗⊗⊗== ⊗
≤≤

.....21
1

 (11) 

 
Further, we extend the notion of the string emission function to a set of paths as follows: 
 

 ( ) ( )�
C

C
∈

=
π

πλλ   (12) 

 
Definition 7  Let M be an FSM and Qqp ∈, . With qp v→  we define the set of all paths 
from p to q with the input string v: 
  
 ( ) ( )( ){ Mqsbaqqsbapqp mmmm

v  in path is ,,,,,.....,,,,,| 11111 −==→ ππ  
        }maaav $$$ ..... and 21=  
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Given an input string *
inv Σ∈ , the set of all accepting paths can be defined as: 

 
 �

Fq

vv qiFi
∈

→=→  (13) 

 
Since a given input string may correspond to different paths, which on the other hand produce 
different output strings, we would like to partition Fi v→  into sets of paths, where all paths 
in a single set produce the same output string. In order to achieve this, we define an 
equivalence relation 

***

2 EEinSO ××Σ⊆ which reflects this property: 
 
 ( ) ( ) ( ){ }212121  and ,|,, πλπλππππ =→∈= FivSO v  (14) 
 
This relation yields an equivalence class: 
 
 [ ] ( ){ }SOvv ∈= 2111 ,,| ππππ  (15) 
 
The equivalence classes of SO  form the desired partition: 
 
 [ ]{ }Fi v

vv →∈=Π ππ |  (16) 
 
Finally, we can define the output of an FSM. 
 
Definition 8  Let M be an FSM. The output of M is a mapping S

inM
outinO ×Σ×Σ→Σ
**

2: * , where 
the output of M on the input string v is defined as follows: 
 

 ( ) ( ) ( ) ( )( )[ ]�
vP

i
P

M endCcPvvO
Π∈ ∈






 ⊗⊗= ⊕ ππωλ

π
,,  

 
The notion of rational transduction for FSMs could be adopted directly from definition 3. 
Analogously to FSAs, we can define the language accepted by an FSM. It is also called the 
domain of an FSM. 

 
Definition 9  Let M be an FSM. The set of all input strings which are transformable by M is 
called the language accepted by M and is defined by: 
 
 ( ) ( ) ( )( ){ qsbaqqsbaiMvML mmmm ,,,,,.....,,,,,: in | 11111 −=∃= ππ  
   }Fqaaav m ∈=  and ..... and 21 $$$  
 
The set of all possible outputs of a given FSM is called the image of M and is defined as 
follows. 
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Definition 10  Let M be an FSM. The image of M is: 
 

 ( ) ( )
( )
�

MLv

M vOMI
∈

=   

 
Obviously, an FSM may accept an infinite number of input strings if there is an infinite 
number of paths in such FSM. This may occur when there exist cycles, which we define 
formally in the following definition. 
 
Definition 11  Let M be an FSM. A cycle in M is a path π  with: 
 
 ( ) ( )( ) mmmmmm qqqsbaqqsbaq == − 0111110  and ,,,,,.....,,,,,π  
 

We extend the visual representation for FSMs as follows. The labels of the arcs contain 
input and output symbols separated by a colon and followed by a slash and the weight of the 
arc. Analogously, the labels of initial state and final states are extended with a slash followed 
by the weight associated with these states. 
 
Example 3 Let ( )( )0,,min,,,,,,,,,, ∞+∞∪ΣΣ= RECFciQM MMMiMMMoutMin M

 be a finite-
state machine which is defined as follows: { }4,3,2,1,0 =MQ , { }4,3 =MF ,  { }baMin , =Σ , 

{ }cbMout , =Σ , ( ) ( ){ ,2,1,,,0,1,4,,,0 babaEM = ( ) ( ) ( ) ( )}3,5,,,2,4,6,,,2,3,3,,,1,4,1,,,1 cbbacbba , 
0=Mi , 1=

Mi
c , ( ) ( ) 14 ,23 == MM CC . 

 
The FSM M accepts the language ( ) { }abaaML , =  and it transduces the string aa into bb and 
the string ab into bc. There are two paths corresponding to the input string aa, 

( ) ( )( )4,1,,,1,1,4,,,01 baba=π  and ( ) ( )( )4,6,,,2,2,1,,,02 baba=π . 
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Definition 12  Let M be an FSM. M is a nondeterministic FSM, if and only if there exists a 
transition ( )qsbptEt ,,,,  with ε=∈  and SsbQqp out ∈Σ∈∈  , ,,  or there exist at least two 
transitions Ett ∈21,  with ( )111111 ,,,, qsbapt = , ( )222222 ,,,, qsbapt =  and 21 pp = , 21 aa = . 
If these conditions are not fulfilled, then the FSM M is said to be deterministic. 

 

 

Figure 1. A deterministic FSM corresponding to the FSM in the example 3 

 
The FSM in figure 1 accepts the same language as the FSM in example 3 and has the same 
image. Unfortunately, not all FSMs are determinizable [Mohri, 97]. Analogously to automata, 
there exist for every finite-state machine an equivalent FSM, which accepts the same 
language and has the same image and has the minimal size. The FSM in figure 2 corresponds 
to the FSM in example 3 and is minimal. 
 
Definition 13  Let M be an FSM. An FSM minM  is minimal finite-state machine for M if 

( ) ( )minMLML = , ( ) ( )minMIMI =  and ||  || min MM ≤ . 

 

Figure 2. A minimal FSM corresponding to the FSM in the example 3 

 

Lastly, we introduce the notion of useful states and useful FSMs. 
 
Definition 14  Let M be an FSM. A state Qq ∈  is said to be useful if and only if there exist 

( )MLv ∈  and at least one path π , such that q lies on π  and Fi v→∈π . We say that an 
FSM is useful if all of its states are useful.  
 
The notion of useful states is important since many of the algorithms implementing standard 
operations (e.g., intersection between two automata) produce as a result finite-state devices 
containing a huge amount of states which can never be reached or which do not lie on any 
path between an initial state and a final state. Moreover, some of the transformation 
algorithms yield proper results only when applied to useful finite-state devices. 
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  user-program level:    C++ library level: 

  fsm intersect in1.fsm in2.fsm out.fsm     FSM   in[2]; 

        FSM   out; 

        in[0].initialize(“in1.fsm”); 

        in[1].initialize(“in2.fsm”); 

        out = fsm_intersection(in,2); 

        out.save(“out.fsm”); 
 

Figure 3. An intersection of two finite-state machines realized on the 
user-program level and C++-library level 

 

The DFKI FSM Toolkit supports two formats for representing FSMs: textual format, 
which eases converting FSMs to the textual format of some other finite-state packages, and 
compressed binary format, optimized for processing. In figure 4, a simple FSM together with 
its textual representation is presented. 

The transitions of a finite-state machine are usually stored in so called transition tables 
[Hopcroft and Ullman, 79], also called transition matrix. However, this requires ( )Σ⋅Ο Q  
storage space, which might be seen as infeasible from the space complexity point of view. For 
compression of the transition table we adopted a variant of the row-indexed storage method 
presented in [Tarjan and Yao, 92] and [Wilhelm and Mauer, 92]. This method compresses the 
rows of the transition matrix into a single array MA  containing all transition information and 
an index array IA  with the information where the transition-entries for each state in MA  
begin. A detailed description of this compression strategy is given in [Kiraz, 99].  

 

    

    (a)     (b) 

 

Figure 4. (a) A simple FSM for converting a into b or c  (b) textual representation 

 

3.2 Overview of the Operations 
 
In this subsection, the functionality of the FSM Toolkit is described in more detail. The 
operations of the FSM Toolkit are divided into four main pools: (a) converting operations, (b) 
rational and combination operations, (c) equivalence transformations, (d) auxiliary operations. 

The group of converting operations includes converting textual representation into 
binary format and vice versa. Further, a conversion operation for creating graph 
representation in dot format from binary encoded FSMs is provided. The dot utility 

0    1.0  
0    1    a    b    1.0 
0    2    a    c    2.0 
1    3.0 
2    4.0 
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[Koustofios, 96] developed at AT&T Bell Laboratories reads attributed graph text files and 
converts them into a graphics language such as Postcript. 

The essential core algorithms are included in the pool of rational and combination 
operations and equivalence transformations. Algorithms on WFSAs have strong similarities 
with their better known unweighted counterparts, but the proper treatment of weights 
introduces some additional computations. On the other hand, algorithms on transducers are in 
general more complicated than the corresponding algorithms for automata. Since closure 
properties of transducers are much weaker than those of automata, some of the provided 
operations may only be applied to a restricted class of FSMs. Furthermore, only a small class 
of transducers is determinizable [Mohri, 97].  

Apart from the standard operations some new operations are provided, which are of 
great importance in shallow text processing. Among others the new operations include direct 
incremental construction of minimal deterministic acyclic FSA, proposed in [Daciuk, 98], and 
local extension for WFSTs presented in [Roche and Schabes, 95]. The general algorithm for 
removing epsilon-transitions from weighted FSMs on arbitrary semirings has been modified. 
The group of rational and combination operations and equivalence transformations are 
described in more detail in subsection 3.3 and 3.4. 

The auxiliary pool contains operations which are frequently used as subroutines in other 
operations. Nevertheless, they may be also used as stand-alone operations. This group 
includes for instance displaying statistical information about FSMs (e.g., number of epsilon 
transitions, number of nondeterministic moves), determinicity test, collecting arcs with 
identical labels and extending the input/output alphabet.  
 

3.3 Rational & Combination Operations 
 
The group of the rational and combination operations contains the following 
operations: (a) union, concatenation, Kleene-closure, inversion, reversion, complement, 
difference, and (b) composition, local extension, intersection. 

The operations in (a) are well known [Roche and Schabes, 96], and since their 
implementation is straightforward, they will not be described. Just for the sake of clarity, the 
difference between inversion and reversion will be described here briefly. An inversion of an 
FSM M is an FSM invM  where ( )MLv ∈∀ : ( ) ( ) ( ) ( )uOcvuvOcuv

invMM ∈⇔∈ ,,,, . A 
reversion of a finite-state machine M is an FSM revM  where ( )MLv ∈∀ : 
( ) ( ) ( ) ( )R

M
RR

M vOcuvvOcuv
rev

∈⇔∈ ,,,, . The complement construction and difference 
operation are dedicated only to FSAs. 

 
3.3.1 Composition 

 
Composition is the main operation involved in the construction and use of transduction 
cascades [Pereira and Riley, 97]. The composition of an FSM 1M  and 2M  is an FSM M̂  
with following property: if 1M  transduces input string s to t with cost (weight) 1c  and 2M  
transduces input string t to v with cost 2c , then M̂  will transduce string s to v with costs 

21 cc ⊗ . The implementation of this operation is based on the algorithm proposed in [Pereira 
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and Riley, 97]. Note that the composition can only be constructed if the output alphabet of the 
first FSM is identical with the input alphabet of the second FSM. 
 
3.3.2 Local Extension 
 
Given an FSM that transforms a into b one would like to extend it to an FSM such that it 
transforms string u into v, where v is the word built from the word u, by replacing each 
occurrence of a by b. Such transformation of an FSM is called local extension. More formally 
a local extension of an FSM M is an FSM locextM , which for all *

inu Σ∈  with 

112211 ........ +−= nnnn xyxyyxyxu  and { }nk ,....,1 ∈∀ : ( )MLyk ∈  and { }1,....,1 +∈∀ nl : 
( )( )***

inininl MLx ΣΣ−Σ∈ $$  and for all ( ) ( )kMkkk yOcyy ∈,,  transduces u into v where 

1211 ..... += nn xyxyxv $$$$$  with cost nccc ⊗⊗⊗ .....21 . Note that due to the definition 
above, the local extension of an FSM has to consider each possible factorization of the input 
string u.  

The algorithm for computing local extension is taken from [Roche and Schabes, 95]. 
This has been extended in order to compute local extension of weighted finite-state machines. 
The local extension algorithm presented in [Roche and Schabes, 95] creates so called identity 
transitions for all symbols which can not be transformed at some state (merging many 
transitions into one transition). The FSM Toolkit enables the user to specify the symbol that 
will be used for representing identity transitions. Using this option obviously reduces the size 
of a resulting FSM. Since some operations on FSMs would not be able to interpret such 
transitions correctly, by default all identity transitions are expanded. 

In the general case, a local extension of a given FSM is neither deterministic nor 
determinizable. Local extension together with composition are essential operations in the 
process of compilation of rewriting rules. 
 

3.3.3 Intersection 
 

Intersection is an operation usually used for merging single constraints on lexical or syntactic 
ambiguities in the context into a single finite-state device. Formally, an intersection [Roche 
and Schabes, 96] of two FSMs 1M  and 2M  is an FSM ∩M  where ( ) ( ) ( )21 MLMLML ∩=∩  
and ( )∩∈∀ MLv : ( ) ( )vOcuv M11,, ∈  and ( ) ( )vOcuv M22,, ∈  ( ) ( )vOccuv M∩

∈⊗⇔ 21,, . Only 
free−ε  FSMs are closed under intersection. Hence, the ε  symbol is treated as all other 

symbols while constructing intersection of FSMs.  
 

3.4 Equivalence Transformations 
 
The group of equivalence transformations include determinization, epsilon removal, trimming 
(removing states which are not useful), and bunch of minimization algorithms. The aim of 
these operations is to transform FSMs into deterministic, free−ε , useful and minimal FSMs, 
since processing such FSMs saves space and time. 
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3.4.1 Determinization 
 
The determinization tool is based on the general determinization algorithm for arbitrary 
semirings presented by Mohri [Mohri, 97]. This algorithm constructs in the general case a p-
subsequential transducer (see also 2.3), which allows up to p final emissions. They are 
represented in my FSM model by default by ε -transitions (reading nothing and emitting the 
symbols from final emissions). However, it is rather inconvenient to use ε -transitions, since 
there could also be some other outgoing ε -transitions from the same final state and the 
resulting FSM would not be deterministic in a strict sense. Further, localization of final 
emissions would be impossible in such case. Therefore, FSM Tools provide an option to 
specify what symbol (best choice is a symbol not included in the input alphabet) will be used 
as the input symbol in transitions which simulate final emissions. Nevertheless, the 
determinization algorithm usually constructs a deterministic FSM without final emissions 
when applied to FSMs used in real-world applications. In general, the determinization 
algorithm might not stop if the input is not determinizable since not all FSMs are 
determinizable. Note that WFSAs are determinizable only if they have the twins property 
[Buchsbaum et. Al., 00]. For the sake of clarity, we define it here briefly. If two states q and p 
are reachable from state t by a common string, then q and p are twins only if any string that 
induces a cycle at each, induces cycles of equal optimal cost. A WFSA is said to be have the 
twins property if all pairs q and p are twins (two states having no cycle on a common string 
are twins).   
 
3.4.2 Minimization 
 
Reducing the size of finite-state devices without losing their recognition and transition 
properties is crucial. Both finite-state automata and finite-state transducers have their minimal 
counterparts as described in section 2. For minimization of FSMs various algorithms are 
provided. In case of FSMs representing useful, unweighted and free−ε  FSAs the standard 
algorithm proposed in [Hopcroft and Ullman, 79] and [Watson, 94] is used. For minimization 
of their weighted counterparts a variant of the algorithm proposed in [Mohri, 94] is used. In 
the more general case of WFSTs, the well-known method proposed in [Brzozowski, 62] was 
used, which is capable of minimizing only a certain class of transducers, so called 
bideterminizable transducers, [Mohri, 97]. In this approach, a minimal FSM is obtained by 
applying determinization to the reversion of the input FSM, then reversing the obtained 
automaton and applying the determinization again. A transducer T is said to bideterminizable 
when its reversion rev(T) is determinizable and the reverse of det(rev(T)) can also be 
determinized. The standard algorithm for minimizing FSTs proposed in [Mohri, 94] has not 
been implemented since it is not suitable for letter transducers. Additionally, a novel and very 
fast utility for constructing a minimal, deterministic and acyclic finite-state automaton from 
the list of sorted words (or sorted sequences of words) is provided [Daciuk, 98]. It performs 
construction, determinization and minimization simultaneously in ( )MINQwm log⋅⋅Ο , where 

MINQ  denotes the state set of the minimized automaton, m is the number of words and w  is 
the maximum length of an input word. Due to its time complexity, this operation is crucial for 
on-line construction of gazetteers and encoding of other lexical resources. 
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3.4.3 Trimming 
 
The operation of trimming transforms an input FSM into an equivalent useful FSM (an FSM 
with useful states) which accepts the same language and has the same image as the input 
FSM. Trimming is realized with a simple depth-first-search algorithm for graphs [Cormen et 
al., 92]. Removing inaccessible states and transitions is very useful since the FSMs returned 
by operations like intersection or composition generally contain many arcs and states that do 
not lie on any path from the initial state to a final state. Additionally, the trimming can be 
parametrized in order to remove symbols from an input/output alphabet which do not occur as 
input or output symbols on any arc of the input FSM. Removing such symbols may reduce the 
size of an FSM enormously. 
 
3.4.4 Epsilon Removing 
 
Epsilon removing is an essential operation in the process of determinization of FSMs and is 
usually performed directly before determinization. Further, many operations like for instance 
union or closure introduce epsilon transitions. For performing the task of removing epsilon 
transitions we adopted the general algorithm for arbitrary semirings presented in [Mohri et al., 
96]. In contrary to FSAs, it is only possible to remove epsilon transitions for a restricted class 
of FSTs which have no ε -cycles. Due to the fact that FSMs allow only single symbols as 
input and output labels, the epsilon removal is restricted only to removing epsilon transitions 
of type εε . However, the input FSM may contain ε -cycles if it represents a finite-state 
automaton (the type of input finite-state device is identified before the proper epsilon removal 
algorithm is triggered).  

We will now briefly sketch the algorithm and introduce the modifications that proved to 
improve the performance of this algorithm when applied in the process of optimizing finite-
state grammars used by tal shallow processing system presented in [Piskorski and Neumann, 

00]. The standard algorithm presented in [Mohri, 96] is divided into two phases. In the first 
phase, the input FSM M is subdivided into εM  which contains only ε  moves of M, and εM  
containing all other arcs. Subsequently, εM̂  representing the transitive closure of εM  is 
computed. Finally, in the second phase, the new equivalent free−ε  FSM is constructed from 

εM  by iterating over the set of transitions of εM̂  and performing appropriate weight 
modifications of existing arcs in εM  and introducing new transitions to εM . 

Since the computation of the transitive closure in the general case of arbitrary semirings 
has complexity of ( )3nΟ  assuming that the computation of semiring operations ⊗  and ⊕  can 
be performed in ( )1Ο  [Cormen at. al., 92], we propose two general modifications of the 
algorithm described above. 

Firstly, in the preprocessing step all of the simple ε  moves are removed from the input 
FSM, where an ε  move is considered as simple when its target state does not have any 
outgoing ε  arcs. Removing such transitions introduces occasionally new transitions to the 
input FSM and/or requires some weight modification of existing transitions, but since it is 
rather trivial, it will be not described here. Since the removing of simple ε  transitions could 
yield some new ε  transitions which are simple, this process is repeated until no more simple 
ε  moves in the input FSM exist. Removing such transitions proved in practice to reduce the 
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overall number of ε  moves significantly. The technique described here is more of a guideline 
for removing ε  moves, since, depending on the input data, one could define simple ε  moves 
differently and use various methods for removing them. 

Secondly, analogously to the standard algorithm, the resulting FSM is then subdivided 
into εM  and εM . In the next step, the transitive closure of each connected component in εM  
is computed since one could expect them to be small in relation to the overall size of εM . The 
remaining procedure is identical to that of standard algorithm. Despite the fact that the 
modifications described here impair the worst-case time complexity, they proved to speed up 
the removal of ε  moves considerably in the process of optimization of finite-state grammars 
in practice. In this way, we could experience that the formal complexity of algorithms might 
be significantly distant from the operational performance of algorithms. As a matter of fact, 
the second phase of the algorithm (computing the transitive closure) turned to be superfluous 
since there were no remaining ε  moves. 

 

3.5 Comparison to Other Similar Packages 
 
This subsection presents a short comparison of the functionality of the FSM Toolkit with 
other similar finite-state packages. The figure 5 gives an overview of operations provided in 
the DFKI FSM-Toolkit, tools developed at AT&T [Mohri et. al., 00] and tools developed by 
van Noord [Noord, 98]. The symbol ‘FSA’ denotes that the operation is only available or 
applicable to finite-state automata. The Finite-state Tool from Xerox Parc [Kartunen et al., 
96] has not been considered since it does not support operations on weighted finite-state 
devices.  

The DFKI FSM-Toolkit was implemented in C++ and a corresponding extendible 
XML-based regular expression compiler with a user-friendly graphical interface is provided 
[Piskorski, et. al., 2002]. The AT&T Tools were written in C and show very good 
performance, whereas the Toolkit of van Noord was written in Prolog, and is equipped with 
user-friendly visualization tools for finite-state networks and a similar extendible regular 
expression compiler [Noord and Gerdemann, 99] which is not XML-based, but provides 
regular expression operators for regular relations. However, the latter tools do not provide 
operations for weighted finite-state transducers. Further, the AT&T package includes tools for 
computing finite-state approximations of context-free grammars [Mohri and Nederhof, 01] 
not present in DFKI FSM Toolkit. The main functional difference between the toolbox 
presented in this paper and the other tools is that DFKI Tools provide the operation for 
computation of local extension for weighted FSTs and an operation for incremental 
construction of minimal deterministic acyclic FSAs (denoted as perfect hashing in the table in 
figure 5), which are not provided in other packages. On the other hand best paths operations 
are missing, but their implementation is straightforward.  

GFSMT – Generic Finite-State Machine Toolbox presented in [Scherf, 00] is another 
finite-state toolkit developed at DFKI. It was written in LISP, and offers nearly identical 
functionality as DFKI FSM Toolkit. However, it is rather dedicated for research purposes 
since the implementation was not efficiency oriented (e.g., transition tables are not 
compressed). 
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Other tools which provide some of the operations discussed in this paper were presented 
in [Daciuk, 00]. 

 

 
Operation AT&T FSA6 FSM Toolkit 
UNION + + + 
INTERSECTION + + + 
CONCATENATION + + + 
CLOSURE + + + 
REVERSION + + + 
COMPLEMENT FSA FSA FSA 
DIFFERENCE FSA FSA FSA 
INVERSION + + + 
LOCAL EXTENSION   + 
COMPOSITION + + + 
EPSILON REMOVAL + + + 
DETERMINIZATION + + + 
MINIMIZATION + + + 
EQUALITY FSA   
TRIMMING + + + 
BEST PATHS + +  
PERFECT HASHING   FSA 
VISUALIZATION + + + 
CFG-APPROXIMATION +   
REGULAR COMPILER + + + 

 
Figure 5. Comparison of the functionality of DFKI FSM-Toolkit with finite-state tools  

developed by AT&T and tools of van Noord. 

 
   

Acknowledgements 
 
The research underlying this report and implementation of the FSM Toolkit was supported by 
a research grant from the German Bundesministerium für Bildung, Wissenschaft, Forschung 
und Technologie (BMBF) to the DFKI projects: PARADIME, FKZ ITW 9704, and 
WHITEBOARD, FKZ: 01 IW 002. 

I would also like to thank my colleagues from the Language Technology Lab in DFKI 
for fruitful discussions and valuable comments I received from them. In this respect, I am 
particularly indebted to Hans-Ulrich Krieger, Mark-Jan Nederhoff, Günter Neumann, Oliver 
Scherf, Wojciech Skut, Hans Uszkoreit, and Feiyu Xu. 



19 

Appendix A.  A Quick User Guide to the DFKI FSM Toolkit 
 
This is a quick guide to the user-program level of the DFKI Finite-State Machine Toolkit – a 
library of tools for constructing, manipulating, combining and optimizing weighted finite-
state machines. We assume users familiarity with the theory of formal languages, and in 
particular regular languages and automata theory. The user-program level of FSM Toolkit 
provides two semirings for real numbers: (a) ( )0 ,  ,  , min , ∞+∞∪R  - the tropical semiring 
and (b) ( )1 , 0 ,  ,  , ⋅++R  - the ‘plus-mul semiring’.  
 

A.1. Representation of Finite-State Machines 
 
DFKI FSM Toolkit uses textual and binary format for representing finite-state machines. 
Before carrying out any operation on an FSM represented in textual format, it must be 
converted into a compressed binary representation. Textual format consists of three files: 
FSM file (list of weighted transitions etc.), input alphabet file and output alphabet file, where 
the last two files are optional. If the input or output alphabet files are not explicitly defined, 
then the alphabets will be automatically extracted from the FSM file. However, in some 
applications it might be necessary to include some symbols in the alphabet even if they do not 
occur on any arc. This can be achieved only by using alphabet files. In textual format, each 
state and alphabet symbol is assigned an arbitrary string, whereas the string „EPS“ is reserved 
for representing the empty string ε . Each arc cost is represented as a floating point number. 
The following is the textual representation of an FSM: 

 

 (1) the first line is of the form: 

  S C 

   where S is the initial state and C is the initial weight of the FSM. 

 

 (2) for each arc in the FSM, there is a line of the form: 

   S T IA OA C 

where S is the source state, T is the destination state, IA is the input 
symbol, OA is the output symbol, and C is the arcs weight (last field is 
optional, if it is omitted, the arc is assigned weight 0.0). 

 

 (3) for each final state, there is a line of the form: 

   S C 

where S is the state and C is the weight of accepting at that state. The 
second field is optional; if it is omitted, the state is accepted with weight 0.0. 
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The complete printed representation of an FSM consists of lines of the form in (1), (2) and 
(3). For example, an FSM represented by a file containing: 

 

   0 1.0 
   0 1 a b 1.0 
   0 2 a c 2.0 
   1 3.0 
   2 4.0 
 

consists of 3 states, with an initial state 0, initial weight 1.0, two transitions ( 0 , a , b , 1.0 , 1 ) 
and ( 0 , a , c , 2.0 , 2 ) and two final states: 1 and 2 with final weights 3.0 and 4.0 
respectively. In order to encode a finite-state automaton as an FSM, identity transitions should 
be used instead of using the empty string as an output symbol in the transitions. 

 

The input/output alphabet file consists of a list of input/output symbols and their short names. 
For each input/output symbol there is a line of the form: 

   S SN 

   where S is the input/output symbol and SN is a short name for S 

 

In case an input/output alphabet file is used during converting textually represented FSM into 
binary format, there exist an option of extending all occurrences of short names to their full 
names if necessary. For example, using this option applied to the following input alphabet 
file: 

   Yellow  Y 
   Green  G 
   Blue   B 
 

will cause all occurrences of input symbols Y, G or B in lines of type (2) in FSM file to be 
replaced by Yellow, Green and Blue during converting this FSM file into the corresponding 
binary representation.  

 

A.2. Running the Toolkit 
 

The user-program level of the FSM Toolkit consists of the stand-alone program fsm, which 
takes as input argument command name followed by the list of optional switches and other 
arguments depending on the command being used. 
 

General Syntax: fsm  command [switches] [arguments] 
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The switches may appear in an arbitrary order. In this section, all commands available in the 
current version will be described in more detail. Except the commands that compile and 
display information concerning FSMs, all the commands take as an argument one or more 
binary-encoded FSMs and send to files one binary-encoded FSM. The provided operations are 
divided into four pools: (a) converting operations, (b) rational and combination operations, (c) 
equivalence transformations and (d) auxiliary operations. 

 

A.2.1. Converting Operations 
 
COMPILE  
 
SYNTAX: fsm compile [options] fsm_text fsm_bin 

 
DESCRIPTION: compile converts an FSM represented textually in the file fsm_text 
into compressed binary encoding and writes the result in the file fsm_bin.  
 

OPTIONS: 
 
–w this option is required if the input FSM has weights. 

-I ialph allows the inclusion of the input alphabet file stored in the file ialph 

–o oalph allows the inclusion of the output alphabet file stored in the file oalph 

–n if short names for input/output symbols have been used in transitions, then 
this switch has to be used in order to extend them properly. 

 
PRINT 
 
SYNTAX: fsm print [options] fsm_bin fsm_text 
 

DESCRIPTION: print converts binary-encoded FSM in the file fsm_bin into textual 
format and writes the result to the file fsm_text.  
 
OPTIONS: 
 

–w this option has to be used in order to include the weights in the resulting FSM file in 
textual format. 

–a creates an input and output alphabet file.  
 
PRINT_INTERN 
 
SYNTAX: fsm print_intern fsm_bin fsm_text 
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DESCRIPTION: print_intern creates the compressed textual representation of the input 
FSM encoded in the binary file fsm_bin and writes the result to the file fsm_text. This 
operation is used by the JAVA-Interface to FSM Toolkit, not described in this manual.  
 
CV2DOT 
 
SYNTAX: fsm cv2dot fsm_bin dot_txt 

 
DESCRIPTION: cv2dot converts the binary-encoded FSM fsm_bin into dot-format file 
dot_txt. The dot utility developed at AT&T Bell Laboratories reads attributed graph text 
files and converts them into graphics language such as Postscript. 
 

A.2.2. Rational and Combination Operations 
 

Note that for the following operations the user may determine the semiring which will be 
used. 
 
UNION 
 
SYNTAX: fsm union [options] fsm_1 ... fsm_k fsm_res 
 
DESCRIPTION: union allows to build a union of two or more FSMs, where the input FSMs 
are stored in the files fsm_1,fsm_2,...,fsm_k and the result will be written to the file 
fsm_res. 
 

OPTIONS: 
 
–s semiring specifies the semiring that is used. The parameter semiring 

may be set to tropical or plusmul for the tropical and real-plus semiring 
respectively. By default the tropical semiring is used. 

 
CONC 
 
SYNTAX: fsm conc [options] fsm_1 fsm_2 fsm_res 
 
DESCRIPTION: conc computes the concatenation of two FSMs, where the input FSMs are 
stored in fsm_1 and fsm_2, and the result will be written to the file fsm_res. 
 

OPTIONS: 
 

–s semiring specifies the semiring that is used. The parameter semiring 

may be set to tropical or plusmul for the tropical and real-plus semiring 
respectively. By default the tropical semiring is used. 
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CLOSURE 
 
SYNTAX: fsm closure [options] fsm fsm_res 

 
DESCRIPTION: closure builds the Kleene closure of the input FSM stored in the file 
fsm. The resulting FSM is written to the file fsm_res.  
 

OPTIONS: 
 
–e is used in order to exclude accepting of the empty string (Kleene +  is used 

instead of Kleene *). 

–s semiring specifies the semiring that is used. The parameter semiring 

may be set to tropical or plusmul for the tropical and real-plus semiring 
respectively. By default the tropical semiring is used. 

 

INV 
 
SYNTAX: fsm inv [options] fsm fsm_res 
 
DESCRIPTION: inv computes the inversion of the input FSM stored in the file fsm, and 
writes the resulting FSM to the file fsm_res. 
 

OPTIONS: 
 
–s semiring specifies the semiring that is used. The parameter semiring 

may be set to tropical or plusmul for the tropical and real-plus semiring 
respectively. By default the tropical semiring is used. 

 
REV 
 
SYNTAX: fsm rev [options] fsm fsm_res 
 
DESCRIPTION: rev reverses the input FSM stored in the file fsm, and writes the resulting 
FSM to the file fsm_res. 
 

OPTIONS: 
 
–s semiring specifies the semiring that is used. The parameter semiring 

may be set to tropical or plusmul for the tropical and real-plus semiring 
respectively. By default the tropical semiring is used. 
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COMPL 
 
SYNTAX: fsm compl [options] fsm fsm_res 

 
DESCRIPTION: compl constructs the complement to the input FSM stored in the file fsm, 
representing a deterministic, free−ε  and cost-free finite-state automaton, and writes the 
resulting automaton to the file fsm_res. The weights of all arcs and states of the resulting 
automaton are set to the neutral element of the extension operator of the currently used 
semiring. 
 

PTIONS: 
 
–s semiring specifies the semiring that is used. The parameter semiring 

ay be set to tropical or plusmul for the tropical and real-plus semiring 
respectively. By default the tropical semiring is used. 

 
DIFF 
 
SYNTAX: fsm diff [options] fsm_1 fsm_2 fsm_res 
 
DESCRIPTION: diff computes the difference of two input FSMs representing finite-state 
automata stored in the files fsm_1 and fsm_2 respectively. The second FSM should 
represent a deterministic, free−ε  and cost-free finite-state automaton. The result is written 
to the file fsm_res. 
 

PTIONS: 
 
–s semiring specifies the semiring that is used. The parameter semiring 

ay be set to tropical or plusmul for the tropical and real-plus semiring 
respectively. By default the tropical semiring is used. 

 
COMPOSE 
 
SYNTAX: fsm compose [options] fsm_1 fsm_2 fsm_res 
 
DESCRIPTION: compose builds the composition of two input FSMs stored in the files 
fsm_1 and fsm_2. The output alphabet of the first FSM must be identical with the input 
alphabet of the second FSM. Otherwise, the composition will not be constructed. The 
resulting FSM is written to the file fsm_res. 
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OPTIONS: 
 
–s semiring specifies the semiring that is used. The parameter semiring 

may be set to tropical or plusmul for the tropical and real-plus semiring 
respectively. By default the tropical semiring is used. 

 
LOCEXT 
 
SYNTAX: fsm locext [options] fsm fsm_res 
 
DESCRIPTION: locext conctructs local extension of a given FSM stored in the file fsm, 
and writes the resulting FSM to the file fsm_res.  
 

OPTIONS: 
 

–I id_symbol defines the symbol which will be used for representing 
identity transitions (local extension algorithm creates so called identity transitions for all 
symbols in the input alphabet which can not be transformed at some state). By default all 
identity transitions are expanded to transitions with adequate symbols. 

–s semiring specifies the semiring that is used. The parameter semiring 

may be set to tropical or plusmul for the tropical and real-plus semiring 
respectively. By default the tropical semiring is used. 

 
INTERSECT 
 
SYNTAX: fsm intersect [options] fsm_1..fsm_k fsm_res 
 
DESCRIPTION: intersect returns the intersection of two or more FSMs, where the input 
FSMs are stored in the files fsm_1,...,fsm_k and the output FSM will be written to the 
file fsm_res. The ε  symbol is treated as all other symbols. 
 

OPTIONS: 
 

–s semiring specifies the semiring that is used. The parameter semiring 

may be set to tropical or plusmul for the tropical and real-plus semiring 
respectively. By default the tropical semiring is used. 

 

A.2.3. Equivalence Transformations 
 
DET 
 
SYNTAX: fsm det [options] fsm fsm_res 
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DESCRIPTION: det turns the input FSM stored in the file fsm into an equivalent 
deterministic FSM and writes the result to the file fsm_res. In general, this operation will 
not stop if the input FSM is not determinizable (note that WFSAs are determinizable only if 
they have twins property). Before determinizing FSMs representing finite-state automata, ε  - 
transitions should be removed. The ε  symbol is treated as all other symbols during 
determinization. 
 

OPTIONS: 
 

–f fe_symbol specifies what symbol will be used as input symbol in the 
transitions simulating final emissions (a symbol not included in the input alphabet would 
be a suitable choice) since the general determinization algorithm may produce an FSM 
containing final emissions. The final emissions are represented by default by ε  - 
transitions (reading nothing and emitting the symbols from final emissions). 

–s semiring specifies the semiring that is used. The parameter semiring 

may be set to tropical or plusmul for the tropical and real-plus semiring 
respectively. By default the tropical semiring is used. 

 
MIN 
 
SYNTAX: fsm min [options] fsm fsm_res  
 
DESCRIPTION: min returns the minimal deterministic FSM equivalent to the to the input 
FSM stored in the file fsm, representing either weighted bideterminizable transducer or 
weighted deterministic, free−ε  finite-state automata. The result is written to the file 
fsm_res. 
 
OPTIONS: 
 
–s semiring specifies the semiring that is used. The parameter semiring 

may be set to tropical or plusmul for the tropical and real-plus semiring 
respectively. By default the tropical semiring is used. 

 
MIN_ACC 
 
SYNTAX: fsm min_acc [options] fsm fsm_res 
 
DESCRIPTION: min_acc returns the minimal deterministic FSM equivalent to the input 
FSM stored in the file fsm, representing unweighted deterministic, free−ε  and useful finite-
state automaton. The result is written to the file fsm_res.  
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OPTIONS: 
 
–w weight  is used in order to set all final weights in the resulting FSM to 

weight. 
 
RMEPS 
 
SYNTAX: fsm rmeps [options] fsm fsm_res 
 
DESCRIPTION: rmeps removes all epsilon transitions of type εε  from a given FSM 
stored in the file fsm. The input FSM may have ε -cycles only if it represents a finite-state 
automaton (removing of all εε  arcs from a finite-state transducer is not possible if it 
contains ε -cycles). The resulting FSM is written to the file fsm_res. 
 
OPTIONS: 
 
–s semiring specifies the semiring that is used. The parameter semiring 

may be set to tropical or plusmul for the tropical and real-plus semiring 
respectively. By default the tropical semiring is used. 

 
CLEAN 
 
SYNTAX: fsm clean [options] fsm fsm_res 
 
DESCRIPTION: clean returns an useful FSM corresponding to the input FSM stored in the 
file fsm. The resulting FSM is written to the file fsm_res.  
 

OPTIONS: 
 
-a allows to remove symbols from the input/output alphabet which do not 

occur as input or output symbols on any arc of the resulting FSM.  

–s semiring specifies the semiring that is used. The parameter semiring 

may be set to tropical or plusmul for the tropical and real-plus semiring 
respectively. By default the tropical semiring is used. 

 

MINDET 

 
SYNTAX: fsm mindet [options]  input_file fsm_res 
 
DESCRIPTION: mindet constructs from a given list of multi-words stored in the file 
input_file the corresponding minimal deterministic finite-state automaton. The resulting 
FSM is written to the file fsm_res. 
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OPTIONS: 
 
–w weight  is used in order to set all final weights in the resulting FSM to 

weight. 

-e is used for interpreting each word in a multi-word as a single symbol (e.g. ‘New York’ 
will be interpreted as two symbols in the input alphabet of the corresponding FSM). Note 
that in this case, all words in a multi-word must be separated by single space symbols.  

 
A.2.4. Auxiliary Operations 
 
LIST 
 
SYNTAX: fsm list 
 
DESCRIPTION: lists all currently available commands  
 
INFO 
 
SYNTAX: fsm info [options] fsm_bin 
 
DESCRIPTION: info prints information about the input FSM stored in the file fsm_bin 
to the standard output stream.  
 
OPTIONS: 
 
–e allows to obtain more detailed information about the input FSM (list of all 

transitions, final states etc.). 
 
EXTALPHABET 
 
SYNTAX: fsm extalphabet [options] a_file fsm fsm_res  
 
DESCRIPTION: extalphabet extends the input and output alphabet of the input FSM 
stored in the file fsm with the symbols listed in the alphabet file a_file. The resulting FSM 
is written to the file fsm_res. 
 

OPTIONS: 
 

-i a_file is used in order to extend only the input alphabet 

–o a_file is used in order to extend only the output alphabet  

 
COLLECT 
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SYNTAX: fsm collect [options] fsm fsm_res 
 
DESCRIPTION: collect merges identically labeled arcs (same input and output symbols, 
but different weights) between the same source and destination states of an input FSM stored 
in the input file fsm. The resulting FSM is written to the file fsm_res.  
 

OPTIONS: 
 
–s semiring specifies the semiring that is used. The parameter semiring 

may be set to tropical or plusmul for the tropical and real-plus semiring 
respectively. By default the tropical semiring is used. 

 
IS_DETERMINISTIC 
 
SYNTAX: fsm is_deterministic [options] fsm 
 
DESCRIPTION: is_deterministic carries out the determinicity test for the input FSM 
stored in the file fsm. It returns the number of nondeterministic moves found in the input 
FSM to the standard output.  
 

OPTIONS: 
 
-f excl_symbol allows to exclude the symbol excl_symbol from being 

considered during the determinicity test (it seems to be useful to exclude the symbol used 
for denoting final emissions if the input FSM contains such transitions). 

 
A.3. An Example of Using FSM Toolkit 
 

As an introductory example of using FSM Toolkit let us consider a very simple case of 
constructing token classifier. For the simplicity, we only consider natural numbers. Let us 
assume that there are four classes of natural numbers: ‘one-digit number’, ‘two-digit number’, 
‘four-digit number’ and ‘any natural number’. Obviously, these classes are not disjunctive. 
Further, let us assume that we want to assign each number class a priority in order to resolve 
potential ambiguities (e.g., ‘one-digit number’ is included in the class ‘any natural number’). 
We set the priorities as follows: ‘one-digit number’ - 1, ‘two-digit number’ – 2, ‘four-digit 
number’ - 3 and ‘any natural number’ - 4. In order to build corresponding number classifier 
represented as a single finite-state automaton, following steps must be undertaken: 

 

(1) For each natural number class a corresponding finite-state automaton is created in 
textual format (one-dig.txt, two-dig.txt, four-dig.txt, any-
number.txt) and converted into compressed binary format. The priorities of 
the number classes are encoded in the final weights of the corresponding 
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automata (all final weights of the automaton representing the class ‘one-digit-
number’ are set to 1).   

  fsm compile -w one-dig.txt one-dig.fsm 
  fsm compile -w two-dig.txt two-dig.fsm 
  fsm compile -w four-dig.txt four-dig.fsm 
  fsm compile –w any-number.txt any-number.fsm 
 

(2) All automata created in the previous step are merged into a single automaton 
using the union operation. The use of tropical semiring seems to be suitable here. 
The resulting automaton is written to the file final.fsm. 

 

  fsm union –s tropical one-dig.fsm two-dig.fsm 

   four-dig.fsm any-number.fsm final.fsm 
 

(3) The automaton created in the previous step is optimized by removing all epsilon 
transitions, determinization and minimization. The weighted minimal 
deterministic and epsilon free automaton representing the number classifier is 
now stored in the file final.fsm. 

 

  fsm rmeps –s tropical final.fsm final.fsm 

  fsm det –s tropical final.fsm final.fsm 

  fsm min –s tropical final.fsm final.fsm 

 

For access to more operations please refer to the user guide to the C++-library level of the 
FSM Toolkit or contact the author. 
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