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Abstract

‘We present three novel properties for EM-based
multivariate clustering: simplified re-estimation
formulas, a simple pruning technique, and a
novel invariance property preserving the char-
acteristics of the given empirical distribution.
Evaluation on two tasks shows: EM-based mul-
tivariate clustering models require only twice
the storage space of the original sample, and
these models yield reliable estimates for un-
known data. Moreover we refer to selected ex-
periments showing that EM-based multivariate
clustering improves several real-world applica-
tions.

1 Introduction

EM-based multivariate clustering (EMMC) as in-
troduced by (Miiller et al. 00) is an application-
independent framework for unsupervised learning
from multivariate data via the standard Expecta-
tion Maximization (EM) algorithm (Dempster et
al. 77). EMMC provides both good generaliza-
tion performance on sparse data and structural
information on the data-inherent grouping struc-
ture.

The primary goal of this paper is to present
some newly discovered mathematical properties
of EMMC suggesting why EMMC might be useful
for natural language processing (NLP) applica-
tions. A secondary goal of the paper is to demon-
strate that EMMC does indeed improve several
NLP applications.

Our approach is based upon three resources.
The first resource are simplified re-estimation for-
mulas which achieve deeper insight into EMMC.
The second resource consists of a newly discov-
ered invariance property which turns out to be
the theoretical explanation of the good smooth-
ing and disambiguation results observed in sev-
eral NLP applications using EMMC. The third
resource is a new pruning technique which leads
in practice to the efficient representation of the
structural information provided by EMMC.

The paper is organized as follows: in Section 2
we introduce a simplified presentation of EMMC;

in Section 3 we present the fundamental invari-
ance property, and in Section 4 we present our
new pruning technique. Section 5 is dedicated to
some NLP applications which take advantage of
EMMC. In Section 6 we discuss our results and
in Section 7 we summarize our conclusions.

2 Theory

Multivariate data refers to a domain Y with two
or more finite sets ); of objects in which obser-
vations are made for vectors y € ) with one el-
ement from either set, i.e. y; € Y;. Multivari-
ate data arises naturally in many NLP applica-
tions. In the EMMC approach of (Miiller et al.
00), classes corresponding to multivariate data (3-
and 5-dimensional syllable types) are viewed as
hidden data in the context of the maximum like-
lihood estimation from incomplete data via the
EM algorithm. The two main tasks of EMMC are
(i) the induction of a smooth probability model
on the data, and (ii) the automatic discovery of
class structure in the data. The aim is to de-
rive a probability distribution p(y) on multivari-
ate data from a large sample. The key idea is
to view y as conditioned on an unobserved class
¢ € C, where the classes are given no prior in-
terpretation. The probability of a d-dimensional
data type y = (y1, .., yq) is defined as:

> ple,y) =D p(o) - plylo)

ceC ceC

ply) =

d

= Y o) [[pluilo) -

ceC =1

Note that the independence assumption
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for each class ¢ makes clustering feasible since
an independence assumption is not adequate for
the whole sample, and therefore forces the sam-
ple to break into clusters. In general, the number



P(y1,y2) [| smile | laugh | increase | fall | p(y1) |

[ p(y1,y2) || smile | laugh [ increase [ fall | p(y1) |

man 0.2 0.2 man 0.16 0.04 0.2
woman 0.2 0.1 0.3 woman 0.24 0.06 0.3
number 0.1 0.1 number 0.08 0.02 0.1
price 0.3 0.1 0.4 price 0.32 0.08 0.4
[ply2) [ 04 | 01 | 04 [O01] | [ply2) [ 04 [ 01 | 04 [ 01 ] |

Figure 1: Invariant marginals of empirical (left) and model distribution (right)

|C| of classes will be experimentally determined
such that the assumption is optimally met. The
EM algorithm (Dempster et al. 77) is directed
at maximizing the incomplete data log likelihood
L=73,5(y) Inp(y) as a function of the probabil-
ity distribution p for a given empirical probability
distribution p.

Let f(y) be the frequency of a multivariate data
type vy, and

fe(y) = fy) - plcly)

the so-called class-based frequency of y annotated
with class c¢. Note that p(c|y) can be interpreted
as a class-membership probability “p(y € «c)”
since ) .p(cly) = 1. So-called marginal class-
based frequencies fc(y;) = Eye%(yi) fe(y) of an
object y; € YV; can be computed by summing up
the class-based frequencies of all data types lying
in the (d — 1)-dimensional hyper plane H(y;) =
Vi X ... X Vi1 X {yi} X Vig1 X ... X Vy. Finally,
|f] = Xyey f(y) is the total frequency of the sam-
ple, as |f.| are the total class-based frequencies.
Parameter updates p(c), p(yi|c) can thus be com-
puted by (c€ C, y; € Vs, i =1,..,d):

ple) = [fI741fel
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Proof: Following the lines of (Prescher 01b) the
proof consists of two steps: (i) A given EMMC
model is equivalent to a simple probabilistic reg-
ular grammar (c € C, y; € Vi, i = 1,..,d):

S—=Yr...Y]  (plc))

Y= ui (p(yilc))
Here, S is the starting symbol, and Y;° is a non-
terminal symbol. A “sentence” yi...%;...yq has
exactly |C| “syntax trees”:

Each “syntax tree” has the probability of
d
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yielding a “sentence probability” of

d
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which is equal to the EMMC probability of the
type y = y1...yq. (ii) Applying the EM re-
estimation formulas for context-free grammars
(see e.g. (Prescher 0la) for a discussion of these
formulas in the context of the well-known inside-
outside algorithm)

2y ) X p(zly) - fr(2)
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(r denotes a rule, A its left-hand side, y a sen-
tence, z its syntax trees, and f,(z) and fa(z)
count how often r and A occure in z) to the
regular grammar of the first step, (Prescher 01b)
shows that this yields the proposition q.e.d.
Note that the shown re-estimation formulas are
simplified versions of the formulas presented in
(Miiller et al. 00). The simplified formulas reveal
that the re-estimation process of EMMC is based
on recursive application of two basic techniques:

p(r)

e marginalization (via hyper planes), and
e normalization (of marginal frequencies).

In the following, we present an invariance prop-
erty relying on these simple re-estimation tech-
niques.

3 Invariant Marginal Distributions

For a given training corpus, unknown data can
be defined as the set of data types not occur-
ring in the training corpus but in the union of
all evaluation corpora which are reasonable for an
application in mind. Given this definition, real-
world data generally splits into two parts, (i) the
huge set of unknown data, and (ii) the tiny set
of training data. For this reason, the most im-
portant property of all probability models is their
ability to deal with unknown data, i.e. to assign



unknown (but reasonable) data types a non-zero
probability. Since model parameters are solely
estimated from the training corpus, without any
help from other sources of information about the
data, it is commonly accepted that estimates for
unknown data are unreliable. In contrast to this
general setting, we aim to derive an invariance
property of EMMC which indicates that these
models yield reliable estimates for unknown data,
at least for the huge amount of unknown data
types® lying in the given domain Y = Y; x...xY,.
The left hand table of Figure 1 shows the em-
pirical distribution p(y1,y2) = || f(y1, y2) and
its two marginal distributions, p(y1) and p(ys),
of a toy sample of 2-dimensional verb-noun data.
The empirical probability of 0.1 in the third col-
umn and third row of this table indicates that
10 % of the tokens of the sample matches the data
type (woman,laugh), whereas the empty entry in
the third column and the second row indicates
that the data type (man, laugh) has the empirical
probability of zero, and does not occur in the sam-
ple. Given this sample as training data, the pair
(woman, laugh) is a known data type, whereas the
pair (man, laugh) is an unknown data type. It fol-
lows by definition, that unknown data types have
an empirical probability of zero. However, the ta-
ble also includes unreasonable data, like (number,
smile), with an empirical probability of zero.
The table also shows the two marginal distri-
butions p(y;) and p(y2). The value of 0.4 in
the second column and sixth row indicates that
smile occurs in 40% of the data tokens in the
sample, whereas the value of 0.3 in the sixth col-
umn and third row indicates that woman occurs
in 30%. The right hand table of Figure 1 shows a
smoothed probability distribution of this sample.
Smoothed probability distributions ideally assign
unknown data types, in this case (man,laugh) and
(number, fall), a non-zero probability (0.04 and
0.02, respectively), whereas unreasonable data
types keep their zero-probability. Of course, the
shown probability distribution is only one exam-
ple out of the set of all possible smoothed prob-
ability distributions. However, a closer look at
Figure 1 shows that it is a very special proba-
bility distribution: its two marginal distributions
p(y1) and p(y2) are identical to the marginal dis-

! For example, in the smoothing experiment of Section 4
we experimented with a sample of about 600 000 observed
verb-noun types lying in a domain of about 400 000 000
(reasonable and unreasonable) verb-noun types.

class 0 0.5 woman 0.6 smile 0.8
) man 0.4 laugh 0.2

price 0.8 increase 0.8

class 1 0.5 number 0.2 fall 0.2

Figure 2: EMMC model given the toy sample

tributions, p(y1) and p(y2), of the empirical dis-
tributions. We call this property an invariance
property. Invariance properties are very useful
in settings where a given object must be care-
fully modified, since they force the modification
process to respect certain constraints. In our
case, the empirical distribution p(.) is modified
to the smoothed distribution p(.), but the cor-
rections are regarded as minimal, because the
marginal distributions are invariant. Thus, it may
be conjectured, that the smoothed distribution
preserves some characteristical properties of the
empirical distribution, i.e. of the given corpus.

Figure 2 shows the two classes of an EMMC
model trained on the sample shown in the left
hand table of Figure 1. The model was trained
with 10 iterations and randomly initialized start-
ing parameters. The first column displays the
class index and the class probability, the nouns
and their probabilities are listed in descending
order in the second column, as are the verbs in
the third column. Note, the smoothed probabil-
ity distribution given in the right hand table of
Figure 1 can be computed with these model pa-
rameters. This observation indicates that EMMC
models possibly have invariant marginal distri-
butions. We show in the following two steps
that this is indeed true: the following formula
shows that the i marginal distribution p(y;) of
an EMMC model can be easily computed using
class probabilities and the probabilities of y; given
the classes:
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Figure 3: Evaluation via smoothing (left) and pruning (right)

Note that the shown computation only requires
the model property of EMMC. In a second step,
we additionally use the re-estimation formulas of
EMMC. We derive:
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This result shows that the marginal distributions
p(yi), (¢ = 1...d), are invariant during the re-
estimation process of the EM algorithm, and we
conjecture that p(.) preserves the main character-
istical properties of the given corpus?.

4 Pruning and Smoothing

It is usually the case that more training data
will improve a probabilistic model. However, as
the size of the training data increases, the size
of EMMC models increases, which can lead to
models that are too large for practical use. To
deal with this problem, we propose a novel prun-
ing technique which deletes infrequent data types
class-wise from the model.

*Here is an additional, more formal argument: Maxi-
mization of the log likelihood L(p) is equivalent to mini-
mization of the Kullback-Leibler divergence D(p||p). Thus,
we should choose a model p as close as possible to the given

empirical distribution p. Obviously, any kind of invariance
can guide this process.

Class-based frequencies f.(y) play a major role
in the context of EMMC: (i) they are very success-
fully applied to resolve lexical ambiguities (Sec-
tion 5), (ii) their marginals f.(y;) are the key
variables of the simplified re-estimation formulas
(Section 2). As a consequence, our implementa-
tion of EMMC uses the class-based frequencies
fe(y) as internal parameters. Unfortunately, it
can be shown that the size of the internal parame-
ters does not decrease during the pure mathemat-
ical re-estimation procedure since positivity of the
model parameters is a second invariance property
of EMMC (at least for each finite number of iter-
ations). For this reason, a model with |C| classes
would require about |C|-times disk space than the
original data. Therefore, a simple class-wise cut-
off technique was used to prune EMMC models.
After each iteration step of the EM algorithm, we
deleted all infrequent class-based frequencies

foly) <e-1C| 1.

Based on experience, we chose ¢ = 0.001 in all of
our recent experiments®. The cutoff e |C| ! de-
creases as the number of classes increases. This is
the desired effect since the class-based frequen-
cies f.(y) generally decrease as the number of
classes increases. The latter follows since the
sample frequency distributes among the classes:
f(y) = > cec fe(y) - Thus, it makes sense to use
the cutoff € for f.(y) - |C| rather than for f.(y).
The EMMC models were empirically evaluated
by a pruning task. Input to the clustering algo-
rithm was a corpus of about 27 000 verb-object
pairs extracted from the Penn Wall Street Jour-
nal. We trained a 2-dimensional clustering model
with 35 classes and 50 iterations. The right-hand

3as well as in our implementation (Prescher 0lc).



Improvement
NLP application of performance
using EMMC
Induction of semantically
. 0
annotated lexicons
Identification of 0%
collocations/idioms 0
Grapheme-to—phoneme 3% (30%)
conversion
Machine translation 7 %
Stochastic
lexicalized parsing 13-16 %

Figure 4: Improvement of performance of several
NLP applications using EMMC

side of Figure 3 shows the required storage space
of the models (in MB) during the re-estimation
procedure which dramatically decreases between
3 and 10 iterations. Finally, models trained with
more than 15 iterations require only twice the
storage space of the original sample.

Moreover it is important to note that the best
EMMC models used in real-world applications
(see Section 5) were trained with about 10 to 100
iterations. Thus, our pruning method is effective
at reducing the model size without significantly
reducing the model performance.

Unfortunately, the presented pruning technique
can have a negative effect with respect to the
smoothing behaviour: (i) EMMC models can
be expected to be good smoothers, because the
model probability p(y) of a multivariate data type
y is positive if a class ¢ € C exists such that
the conditional probability p(y|c) is positive. (ii)
Unfortunately, the used pruning technique elimi-
nates a data type from the model if these condi-
tional probabilities are small enough.

As a consequence, it is necessary to evaluate
the EMMC models by a smoothing task. The so-
called smoothing power of a multivariate cluster-
ing model is defined as the number of data types
which receive a positive probability by the model,
normalized by the size of the set )1 X ... X Yy
of all possible (including unreasonable) multivari-
ate data types. Using the invariance property,
it follows for EMMC models with only one class
(IC] = 1) that p(y) = TT¢ p(ys) = [Ii: Blwi) -
Obviously, these models have a smoothing power
of 100%. However, we expect that the smoothing
power of EMMC models decreases as the number
of classes increases since p — p as |C| = oco. The
left-hand side of Figure 3 shows the smoothing re-
sults of EMMC models trained (constantly with

50 iterations) on 2-dimensional English verb-noun
data (Rooth et al. 99). For example, a model with
35 classes had a smoothing power of about 95%
which is about 700 times better than the smooth-
ing power of the empirical probability distribution
which has a value of 0.14%. Starting values had
an effect of only 1% on the performance.

5 Well-Tried Performance

From a practical point of view, the task of a
stochastic model is to decide among alterna-
tive analyses proposed by the symbolic analysis
component of a given application. During the
last ten years, evaluation via a so-called pseudo-
disambiguation task has become very popular
(e.g. (Pereira et al. 93), (Rooth et al. 99),
(Miiller et al. 00)). The simple task is to judge
which of two objects is more likely to appear in
the context of a given observation y, where an
participating object y; is compared with a ran-
domly chosen object y; (e.g. man smile with num-
ber smile (i=1) or man increase (i=2)). Pseudo-
disambiguation offers two important technical ad-
vantages: huge evaluation suites (with several
thousand test items) can be automatically con-
structed, and free model parameters can be auto-
matically determined by the evaluation results.

Unfortunately, the pseudo-disambiguation task
seems very artificial and unrealistic to some peo-
ple, and thus, it seems necessary to evaluate the
EMMC models in real-world applications on a
large number of randomly selected examples of
a real-world corpus. For this purpose, we refer
to some selected NLP applications and show that
the performance of these applications were often
dramatically improved using EMMC.

First, Figure 4 gives an overview. The selected
EMMC-based applications are shown in the first
column, and the achieved gains in performance
are listed in the second column. In detail:

Unsupervised Induction of Semantically
Annotated Lexicons. A technique for auto-
matic induction of slot annotations for subcat-
egorization frames was presented by (Rooth et
al. 99). Possible annotations consist of the hid-
den classes of a sample of 2-dimensional verb-
argument pairs, where EMMC was used to reveal
these classes. Induction of slot labeling for sub-
categorization frames is accomplished by a further
application of EM, and applied experimentally on
frame observations derived from parsing large cor-



pora. Thus, it can be argued that unsupervised
induction of semantically annotated lexicons from
free text completely relies on infered EMMC mod-
els, and it seems not unfair to attribute an infinite
gain of performance to EMMC.

Identification of Collocations/Idioms. An
identification method for verb-noun colloca-
tions/idioms was investigated by (Prescher &
Heid 00). The defining criterion for EMMC is
that verbs and arguments freely combine with
each other inside each class and thereby semanti-
cally characterize the classes. In contrast to this,
collocations/idioms do not show this behavior:
their lexemes combine seldom with other part-
ners, and the meaning of an idiom can not be
computed using the meanings of the lexemes. Ob-
viously, collocations/idioms do not conform to the
requirements of EMMC. (Prescher & Heid 00) ex-
ploited this observation and presented a method
for identification of verb-noun collocations/idioms
based on a simple comparison of the empirical
distribution p(v,n) with the distribution p(v,n)
of an infered EMMC model, where high values
of p(v,n) — p(v,n) are expected to identify collo-
cations/idioms. Recent evaluation on 400 items
shows that this method yields as good results as
current state-of-the-art methods for identification
of collocations. Thus, we attribute a gain of 0%
performance to EMMC.

Grapheme-to-Phoneme Conversion. A
novel method of g2p conversion was presented
by (Miiller et al. 00). Their approach (i) uses
a context-free grammar to produce all possible
phonemic correspondences of a given grapheme
string, (ii) applies a probabilistic syllable model
to rank the pronunciation hypotheses taking the
product of the syllable probabilities, and (iii) pre-
dicts pronunciation by choosing the most proba-
ble analysis. The g2p system was evaluated on a
test set of about 2000 unknown words. The ambi-
guity expressed as the average number of analyses
per word was about 300. The g2p system using 5-
dimensional syllable models achieves an increase
of 3% over the performance of the 5-dimensional
baseline system using the empirical syllable dis-
tribution. If compared to the standard probabil-
ity model (probabilistic context-free grammars),
it achieves an increase of about 35% (Miiller 01).

Machine Translation. A novel approach of
lexical ambiguity resolution in machine transla-
tion was presented by (Prescher et al. 00). The

problem to be solved is to find a correct trans-
lation of a source word using only minimal con-
textual information. EMMC was used by choos-
ing the target noun 7 (and a class é) such that

(7, ¢é) = argmax (fc(n,v) + p(c|n,v)) , where A
neA,ceC
is the set of alternative target-words and v is the

governing verb. The term f.(n,v) + p(c|n,v) is
a class-based frequency but based upon a “tuned
frequency” of f(n,v)+1. The evaluation on a cor-
pus with about 800 bilingual sentence pairs with
about 3 translation alternatives on average yields
an increase of 7% precision over the baseline sys-
tem using the empirical noun-verb distribution as
disambiguator.

Stochastic Lexicalized Parsing. An ap-
proach to stochastic modeling of unification-based
grammars was presented by (Riezler et al. 00).
The approach is based on lexicalized log-linear
models and uses EM for estimation from unanno-
tated data. Very similarly to the disambiguation
routine used in machine translation, all parses
of a sentence were pre-disambiguated according
to maximal class-based frequencies of verb-noun
heads in certain grammatical relations. The
stochastic model was evaluated on a corpus of 550
sentences of a foreign language learner’s grammar.
The average ambiguity of this corpus is about 5
parses per sentence. An incorporation of the pre-
disambiguation routine into the log-linear mod-
els improves precision of the stochastic model by
about 13%. It is interesting that incorporation of
class-based frequencies improves stochastic mod-
els by about 16% if treebank training is used in-
stead of EM training.

6 Discussion

EM-based clustering was derived and applied to
syntax (Rooth et al. 99). Unfortunately, this ap-
proach is not applicable to multivariate data with
more than two dimensions. However, (Miiller et
al. 00) presented EMMC models with 3- and 5-
dimensional syllables and applied these models
successfully to phonology.

Restricting the discussion to two-dimensional
data, EMMC models can be found earlier in
(Pereira et al. 93). In contrast to this approach,
EMMC is formalized clearly as EM algorithm,
whereas (Hofmann & Puzicha 98) propose an an-
nealed version of standard EM.

However, the re-estimation formulas of EMMC
play a major role in the proof of the fundamental



invariance property of EMMC models. Thus it
can be conjectured that the invariance property
can not be proven in the approaches of (Pereira
et al. 93) and (Hofmann & Puzicha 98).

Furthermore, to the best of our knowledge, this
is the first time that effective pruning techniques
have been presented for clustering approaches to
multivariate data.

EMMC may also be compared to the ap-
proaches of (Schiitze 92) and (Yarowsky 95) to
word sense disambiguation. However, a compar-
ison is not straight-forward, because these ap-
proaches use large amounts of information in
terms of large context windows, which is easily
obtainable in IR applications, but often unavail-
able in situations such as parsing or translation.

There has been a large amount of previous work
on smoothing and most methods have been shown
to be highly effective. However, the results of
Section 5 indicate that the use of class-based fre-
quencies (lexicon induction, machine translation
and parsing) provided by EMMC is more advan-
tageous for disambiguation than the pure use of
the smoothed model distribution itself (for exam-
ple in grapheme-to-phoneme conversion). EMMC
utilizes the hidden structural information of given
data and clearly, this is a feature lying beyond the
capability of a pure smoother.

7 Conclusion

We have presented simplified re-estimation for-
mulas of EMMC which allow deeper insight into
EMMUC theory. As a consequence, these simpli-
fied formulas lead to detection of a new invariance
property of EMMC.

We have presented a new pruning technique
which makes EMMC feasible. Experimental re-
sults show that this new pruning technique leads
to effective EMMC models of only about twice
the size of the original data.

We have shown that EMMC improves sev-
eral NLP applications, e.g. machine translation,
where other clustering methods are not applica-
ble or e.g. lexicon induction, where competing
smoothing methods are useless. We believe that
the presented invariance property is the basis for
the well-tried performance of EMMC.
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