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Abstract
In this paper we discuss motivations and strategies for generalising over instance-based frame assignment rules that we extract from
frame-annotated corpora. Corpus-induced syntax-semantics mapping rules for frame assignment can be used for automatic semantic role
labelling of unparsed text, but further, to extract linguistic knowledge for a lexical semantic resource with a general syntax-semantics
interface. We provide a data analysis of a comprehensive rule set of corpus-induced frame assignment rules, and discuss the potential of
applying different types of generalisations and filters, to obtain a uniform extended data set for the extraction of linguistic knowledge.

1. Introduction
Various research groups are currently concerned with the
creation of large-scale lexical semantic resources that pro-
vide information about predicate-argument structure. The
Berkeley FrameNet project (Baker et al., 1998), following
Fillmore’s theory of frame semantics (Fillmore, 1976), is
building a large semantic lexicon, including the definition
of frames and semantic roles, and a corpus of manually an-
notated sentences. A strictly corpus-based approach is car-
ried out with ‘PropBank’ (Kingsbury et al., 2002) – a man-
ual semantic role annotation on top of the PennII Treebank.

There are first approaches for learning stochastic mod-
els for semantic role assignment from annotated corpora;
e.g. (Gildea and Jurafsky, 2002; Fleischman et al., 2003).
Probabilistic models for semantic role assignment systems
will eventually be used for automated semantic annotation
in NLP applications, but they can also be used, in a boot-
strapping architecture, to learn increasingly refined proba-
bilistic models from extended training sets, by application
of meta-learning strategies, such as active learning.

The current models for stochastic role assignment mod-
els are essentially corpus-based. Yet, besides the develop-
ment of systems for automated role labelling, there is also
interest in a general lexical semantics resource that can be
formalised and integrated into alternative NLP systems.

In our work we investigate techniques for automated
induction of rules for automatic semantic role assignment
from semantically annotated corpora.1 In this paper we dis-
cuss strategies for generalising over corpus-induced frame
assignment rules. We provide a data analysis of a compre-
hensive rule set, and discuss the potential of applying differ-
ent types of generalisations and filters, to obtain a uniform
extended data set – for semi-automatic acquisition of new
training data, and the extraction of linguistic knowledge.

1The work is conducted in the context of the SALSA project;
see (Erk et al., 2003) and http://www.coli.uni-sb.de/lexicon.

2. Deep syntactic analysis
for semantic role labelling

Since semantic role assignment is based on a syntactic an-
notation layer, automated processing for semantic role as-
signment on unparsed text requires an interface between
a syntactic analyser and the targeted semantic annotation.
Current competitions explore the potential of shallow pars-
ing as a basis for semantic role labeling. However, (Gildea
and Palmer, 2002) have emphasised the role of deeper syn-
tactic analysis for semantic role assignment. We follow this
line, and explore the potential of deep syntactic analysis for
semantic role labelling, choosing Lexical Functional Gram-
mar (Bresnan, 2001) as underlying syntactic framework.

In a first study, (Frank and Erk, 2004) discuss advan-
tages of semantic role assignment on the basis of functional
syntactic analyses as provided by LFG parsing, and present
an LFG projection architecture for frame semantics. In this
architecture, frames are projected from f-structure repre-
sentations, as displayed in Figure 1. The semantic projec-
tion is defined by lexical entries of frame evoking predi-
cates, which map f-structure nodes for grammatical func-
tions to frame semantic roles in a frame semantics projec-
tion. The projection of frames in context can yield par-
tially connected frame structures. In Figure 1, Gespräch
projects to the MESSAGE role of REQUEST, but it also in-
troduces a frame of its own, CONVERSATION. Thus the
CONVERSATION frame, by coindexation, is an instantia-
tion, in context, of the MESSAGE of REQUEST. Figure 2
displays how these mappings can defined in a classical LFG
co-description projection architecture, by use of functional
descriptions; see (Frank and Erk, 2004) for details.

As an alternative to the co-description approach, we
implemented frame projection in a description-by-analysis
(DBA) architecture. In co-description, semantics projec-
tion is tightly intervowen with grammar definitions and the
parsing process. The DBA approach, by contrast, is more
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SPD fordert Koalition zu Gesprächen über Reform auf.
’SPD requests coalition to talk about Reform’

Figure 1: LFG projection architecture for Frame Annotation

auffordern V,
(↑PRED)=‘AUFFORDERN〈(↑SUBJ)(↑OBJ)(↑OBL)〉’
...
(σ(↑) FRAME) = REQUEST

(σ(↑) FEE) = (↑ PRED FN)
(σ(↑) SPEAKER) = σ(↑ SUBJ)
(σ(↑) ADDRESSEE) = σ(↑ OBJ)
(σ(↑) MESSAGE) = σ(↑ OBL OBJ)

Figure 2: Frame projection in lexical entry (co-description)

modular. Here, frame projection rules apply to completed
f-structure representations produced by the LFG parser.

The DBA approach is realised by use of a transfer
rewrite system.2 The system allows the definition of rewrite
rules that apply to an f-structure context and introduce,
on their right-hand side, a semantic projection for frames:
the specific FRAME evoked by the frame evoking element
(FEE), i.e., the triggering predicate in the f-structure. The
rules further define the projection of frame-specific seman-
tic roles from particular local (or sometimes non-local)
functional paths (such as SUBJ, OBJ, OBL OBJ), starting
from the f-structure node of the frame evoking predicate.
The example of Figure 3 is equivalent to the co-description
variant in Figure 2, and thus yields the same frame projec-
tion, displayed in Figure 1.

3. Corpus-based induction of an
LFG–frame semantics interface

(Frank and Semecky, 2004) present a method for the auto-
matic induction of LFG-based frame assignment rules from
semantically annotated corpora. This method was first ap-
plied to the SALSA corpus (Erk et al., 2003), a German
newspaper corpus enriched with frame semantic annota-
tions. The SALSA annotations are built on, and extend
the syntactically annotated TIGER corpus (Brants et al.,
2002). In (Frank and Semecky, 2004) the frame semantic
annotations of the SALSA/TIGER corpus were ported to a
’parallel’ TIGER corpus of corresponding LFG f-structure
analyses (Forst, 2003). Figure 3 displays an example of a
frame assignment rule that was extracted from the result-
ing frame-extended LFG SALSA/TIGER corpus. (Frank

2The system comes as a module of the grammar development
platform XLE (http://www2.parc.com/istl/groups/nltt/). It was de-
signed and implemented by Martin Kay (Xerox Parc) for a Ma-
chine Translation prototype; see (Frank, 1999). Recent enhance-
ments to the system were realised by Richard Crouch.

pred(X,auffordern),
subj(X,A), obj(X,B), obl(X,C), obj(C,D)
==>
+’s::’(X,SemX), +frame(SemX,request), +fee(X,auffordern)
+’s::’(A,SemA), +speaker(SemX,SemA),
+’s::’(B,SemB), +addressee(SemX,SemB),
+’s::’(D,SemD), +message(SemX,SemD).

Figure 3: Frame projection rule (as a transfer rewrite rule)

and Semecky, 2004) further present first experiments to ap-
ply the resulting computational syntax-semantics interface
for frame semantics in an LFG parsing architecture, using
a wide-coverage LFG grammar of German.3

A similar architecture for corpus-based induction of a
frame semantics interface was recently developed in the
context of the Senseval-3 task on semantic role labeling
for English.4 Here, the basis was a subset of the En-
glish frame annotated sentences of the FrameNet project
(Baker et al., 1998), and the wide-coverage stochastic En-
glish LFG grammar developed at Parc (Riezler et al., 2002).
The grammar provided a ’parallel’ LFG corpus with most-
probable analyses for the annotated sentences. Similar to
the methods applied for SALSA/TIGER, we port the frame
annotations to the LFG parsed sentences, and extract frame
assignment rules that can be applied to new sentences in an
LFG parsing-transfer architecture.

In both scenarios, the next steps towards an automated
system for LFG-based frame assignment involve the design
of probabilistic models to select the most probable frame
assignments from the choice of possible assignments that
are generated by application of the corpus-induced frame
assignment rules proper – as well as generalisations of these
rules, which account for unseen configurations.

Besides the development of a probabilistic semantic
role labelling system, the aim of the SALSA project is to ac-
quire generalised linguistic knowledge, i.e. a frame seman-
tic lexicon with a well-defined syntax-semantics interface,
from a large frame-annotated German corpus. It is also in
view of this more ambitious aim that we are concerned with
a closer inspection of the corpus-induced syntax-semantic
mapping rules for frame assignment.

3The German LFG grammar is being developped at the IMS,
University of Stuttgart.

4This was done in joint work with Katrin Erk and Ulrike
Baldewein.



4. Generalisations over corpus-induced
frame assignment rules

In this section we discuss motivations and strategies for
generalising over sets of instance-based frame assignment
rules that we extract from frame annotated corpora. In Sec-
tion 5 we provide a quantitative evaluation of the rule set we
extracted from the English FrameNet corpus sentences that
were provided as training data in the Senseval-3 semantic
role labeling task.

On the basis of this evaluation, Section 6 reviews the po-
tential of the proposed generalisations over corpus-induced
frame assignment rules: for abstraction of a general linguis-
tic knowledge base, and for the targeted acquisition of train-
ing material in an active learning scenario, to develop in-
creasingly refined stochastic models for frame assignment
on the basis of continuously extended training corpora.

4.1. Motivations

Corpus-based extraction of frame assignment rules is con-
fronted with two problematic issues: quality and coverage.

Quality It is well-known from treebank-based grammar
induction that corpus-based acquisition and formalisation
of linguistic knowledge is confronted with the problem
of noise in the data. In our case, noise can be imported
from various sources: (i) mistakes and inconsistencies in
the manual syntactic or semantic annotations; (ii) problems
in the automated mapping from corpus specific syntactic
annotation schemes to the LFG f-structure encoding; (iii)
problems in the extraction of frame assignment rules from
the frame-enriched LFG corpora, and finally (iv) parsing er-
rors or missing coverage of the underlying LFG grammars.

Coverage The problem of coverage is specific to the na-
ture of lexical semantic corpus annotation. Lexical seman-
tic annotation is confronted with a severe sparse data prob-
lem, since we may not encounter a large-enough variety of
predicates in specific senses and constructions within man-
ageable sizes of manually annotated corpora. E.g., while
the SALSA corpus is comparable, in size, to the Penn Tree-
bank, of the 4185 verbs (types), 1457 (34.81%) occur only
once, and 3307 (79.02%) occur with frequency 1-10.

This sparse data problem is even more serious if we con-
sider, as we do in SALSA, semi-automatic annotation of
new corpus instances and learning of a principled syntax-
semantics interface from corpus annotations: since there
are multiple sources of noise in the data (see above), we
may miss out a number of (already rare) corpus instances.

’Filling Gaps’ In order to address these problems, we in-
vestigate the potential of various generalisations or ’filters’
over instance-based rule sets, which can be used to identify
and ‘fill gaps’ in the base of corpus samples.

Targeted acquisition of new corpus data to fill these gaps
will enable the extraction of more homogeneous syntax-
semantics mapping constraints for the final semantic lex-
cion resource. Most importantly, though, this way of ac-
quiring new corpus material can be used to support ac-
tive learning techniques, by providing a selection of ‘in-
formative’ novel annotation instances, i.e. novel train-
ing instances that are promising candidates for improving
stochastic models for automated frame assigment.

In the following we present different aspects of gen-
eralisations over corpus-based frame annotation instances.
These range from linguistically motivated generalisations
to distributional criteria regarding the densitiy of annota-
tion samples for different classes of annotation events.

4.2. Linguistic generalisations

LFG f-structures provide a level of representation that ab-
stracts away from surface-syntactic variations that are ir-
relevant for frame assignment (such as word order, long-
distance phenomena or coordination). On the other hand,
f-structures are genuine syntactic representations that differ
from semantic predicate argument structures in that they do
represent functional syntactic variants that are not distin-
guished in the semantic representation.

Diatheses A prominent example is the active-passive
diathesis. Due to the sparseness of data we encounter with
current sizes of annotated corpora, we may or may not en-
counter both active and passive constructions for a given
frame evoking predicate and its specific semantic role con-
figuration. This ‘gap’ in the training data may be compen-
sated by the use of a greater variety of features in stochastic
modelling for role assignment, but the lack of generalisa-
tion will be problematic for automated methods in building
a final lexicon resource from the corpus-induced rule sets.

In order to fill such gaps in the training corpus we can
generate missing active or passive variants of frame projec-
tion rules, and apply them to candidate sentences extracted
from unparsed corpora. Sentences that receive the targeted
annotation can be presented to annotators for acknowledge-
ment, and – on approval – can be added to the set of train-
ing samples. On the basis of the extended corpus, we can
extract more general frame assignment rules, with disjunc-
tive constraints to account for active and passive construc-
tions (see Figure 4). This will lead to a more homogeneous
frame semantic lexicon resource, and will increase the cov-
erage of automated frame assignment models when applied
to unseen text.

pred(X,auffordern),
{ passive(X,−), subj(X,A), obj(X,B)
| passive(X,+), subj(X,B), obl ag(X,A) },
obl(X,C), obj(C,D) ==>
+’s::’(X,SemX), +frame(SemX,request), +fee(X,auffordern)
+’s::’(A,SemA), +speaker(SemX,SemA),
+’s::’(B,SemB), +addressee(SemX,SemB),
+’s::’(D,SemD), +message(SemX,SemD).

Figure 4: Generalisation over active-passive diathesis

Non-local frame element assignments Another source
of gaps in the annotation samples are frames that occur in
non-local syntactic contexts. In case the evoking predicate
is not, alternatively, found in a local syntactic context, the
extracted rules will not be able to annotate the same frame
in a more general, local context.

The LFG formalism provides a significant capacity for
argument localisation (in long-distance, coordination, rais-
ing and control constructions). However, there are con-
structions where arguments cannot be localised on syntactic



grounds. A classical example are constructions involving
anaphoric control, such as gerunds.

In example (1), from the FrameNet data, the THEME

role of the frame evoking predicate, disappear, was anno-
tated as the passive SUBJ of the main clause, while the FEE
is contained in the clausal ADJUNCT phrase (cf. Figure 5),
while the local subject of the adjunct clause is a non-overt
pronominal SUBJ. The functional path from the f-structure
node of the frame evoking predicate to the f-structure of
the THEME role is inside-out and non-local: ((ADJUNCT

$ ↑) SUBJ).5 Starting out from the local f-structure ↑ of
the frame evoking element disappear the path leads inside-
out via the set-valued ADJUNCT function to the dominat-
ing node (ADJUNCT $ ↑). From this node, the path leads
outside-in via the function SUBJ to the f-structure of sword.

(1) The Solland Sword was lost for many years, having
disappeared during the destruction of Solland by Gor-
bad Ironclaw’s Orcs .

Similar to the active-passive distinction, in cases were our
rule set does not comprise the corresponding local variant
of the identified non-local frame assignment rule, we can
generate an alternative local assignment rule, here looking
for a local SUBJ of the frame evoking predicate in active
voice. We can use such rules to automatically annotate
sentences from unparsed corpora, again presenting the tar-
geted instances to annotators for acknowledgement. With
this method, we systematically extend the set of general,
local frame assignment rules.

The identified patterns of typical non-local path descrip-
tions can, moreover, serve as a ’functional bridge’ in non-
local annotation contexts. That is, we can state generic
frame assigning rules that account for such ‘bridging’ non-
local functional paths for frame element assignment. These
can be triggered as fallback rules, to identify novel annota-
tion instances in non-local configurations.

4.3. Abstractions from frame assignment rules
Finally, we can apply similar methods for acquiring novel
annotation instances, by analysing the distribution of role
assignments for a given frame, abstracting over the spe-
cific frame evoking elements that were found to invoke the
frame. That is, from the FEE-specific annotations in the
corpus we abstract classes of ’non-lexicalised frames’ with
syntactic mapping constraints. We can apply these generic
frame assignment rules to novel corpus instances, where we
condition the application to the set of FEEs that can trigger
the given frame. We will further experiment with frame
assignment rules that define clusters (instead of specific in-
stances) of role-preposition correspondences.

5. Investigating corpus-induced samples
of frame assignment rules

In this section we provide a data analysis of LFG frame as-
signment rules that we acquired from frame-annotated cor-
pora. For this analysis, we concentrate on the rule set we
induced from the FrameNet corpus data (Section 3).6

5ADJUNCTs are represented as set-valued f-structures. In func-
tional path descriptions, reference to an element of a set is made
by the path symbol ’$’ for ’in set’.

5.1. Coverage

Due to the lexicographic approach of the FrameNet project,
the English FrameNet data can be assumed to be rather ho-
mogeneous and balanced as to the quantitative distribution
of frame evoking predicates and their constructional vari-
ants. By contrast, the mapping from the FrameNet annota-
tions to LFG representations is currently based on the most
probable analysis of the English LFG grammar, which may
still feature wrong selections. Moreover, a number of frame
element bracketings in the FrameNet annotations did not
map to a unique f-structure node in the corrsponding LFG
analysis, and hence did not yield frame assignments in the
LFG-based frame-enriched corpus.7

These (interrelated) challenges are reflected in the cov-
erage figures of Table 1, with 90.19% of sentences that re-
ceive frame element annotations, yet only 67.41% coverage
at the level of overall frame element assignments, measured
against the target annotations in the original FrameNet cor-
pus.8 We obtain 1.77 frame element assignments per sen-
tence in average, against 2.33 in the FrameNet data.

abs no in % avg/s
s(entences) 24274 100 -

s with extracted fpaths 21893 90.19 -
target fes 57325 100 2.33 fe/s

extracted fpaths for fes 38643 67.41 1.77 fe/s

Table 1: Coverage: extracted fe-assignment paths

Table 2 gives an overview of the distribution of different
types of functional path equations (fpaths) that lead from
(the f-structure of) the frame evoking element (FEE) to (the
f-structure of) its frame element (or semantic role) – for dis-
tinct FEEs, or abstracting over the FEE of a given frame. As
expected, taking the assigned semantic roles into account
(in fpath-role) leads to a greater variety of distinct fpath-
role assignments, both for FEE-specific and – proportion-
ally higher – for frame-specific assignment paths.

per FEE all min max avg.
fpath 11465 1 67 8.10

fpath-role 13477 1 79 9.52

per Frame all min max avg.
fpath 4211 22 292 105.28

fpath-role 5497 24 385 137.43

Table 2: Distribution of fpath types (per FEE, per Frame)

5.2. Active-passive diathesis

The above figures are not really informative as to how
complete the distribution of the acquired frame assignment

6As the SALSA corpus is still under construction, our rule set
is considerably smaller, and relatively unbalanced over frames. A
data analysis on the basis of the more balanced and sufficiently
varied FrameNet data therefore seemed to prove more indicative.

7We will further improve the mapping procedures from corpus
annotations to LFG parses, so we expect the figures to improve.

8We lost 284 sentences of the original corpus that we could not
map to f-structures for technical reasons. These sentences have
not been subtracted from the FrameNet data counts in Table 1.



rules is for specific syntactic variants (i.e. fpath-role assign-
ments) over the different classes – whether FEEs or frames.

A closer look is provided by Table 3, for the distribu-
tional patterns of fpath-role assignments in active-passive
alternations. Almost half of the verb types do only appear
in either active or passive constructions - and it is not clear
from the counts whether there are missed-out alternations,
or whether there are genuinely non-alternating verbal pred-
icates.9 Moreover, as is seen on the right-hand side, the
proportion of local (subj,obj, obl ag) fpaths found in active
and passive constructions is very low (11.89–15.09% for
active, and 12.09-20.48% for passive constructions).

Table 4 views the active-passive alternation from a dif-
ferent angle, by looking at passive-invariant semantic roles,
i.e. the roles whose functional path assignment is (for given
a frame, or a given FEE) never affected by the active-
passive alternation. The frequency of such invariant fpath-
role pairs (i.e. identical fpath-role assignments in a passive
and active constructions) is very low.

verbs (types) all vs. local fpaths
active passive

nonfragmented 590 all fp 7118 all fp 3028
active/passive 321 subj 1072 subj 620
passive only 24 obj 846 obl ag 366
active only 245 obl ag 2 obj 4

Table 3: Active-passive diathesis: distribution and fpaths

all passive-invariant
FEE-fpath-role 4827 224 4.64%

Frame-fpath-role 2210 206 9.32%

Table 4: Passive-invariant fpath-role assignments

Closer inspection of the data underlying Table 4 shows that
many fpath-role pairs are wrongly classified as passive-
invariant due to a rare active or passive occurance that is
produced by noise in the data (e.g. a wrong parse). Typi-
cal examples of such misclassifications are cases like mum-
ble, occurring with SUBJ-SPEAKER assignment in both ac-
tive and passive, yet with a distribution of 28 vs. 3. While
these are rather clear weighted distributions, there are cases
where the distribution is more unmarked (e.g. murder with
a SUBJ-VICTIM distribution of 1 vs. 3 active vs. passive
occurrences), and thus become difficult to distinguish from
correct, but still infrequent distributions of correct instances
of passive-invariant fpath-role pairs, in particular adjuncts.

This kind of noise in the data does clearly not only af-
fect the identification of passive-invariant fpath-role assign-
ments, but also the identification of active-passive alternat-
ing verbs in Table 3. That is, we observe a high number
of instances that are identified as active-passive alternating,
but on the basis of erroneous active or passive occurrences.

Filtering noise In order to filter such misclassifications,
we computed a confidence weight for fpath-role assign-
ments on the basis of their proportional distribution in pas-
sive vs. active assignments. The weight for a given fpath-
role assignment in an active or passive construction, respec-

9We only consider verbs whose functional context is not af-
fected by fragmentary parses (nonfragmented).

tively, is computed by its relative frequency wrt. the overall
number of fpath-role assignments in the respective voice,
for a given FEE (or frame). This value we then used to ex-
periment with different thresholds for computing counts on
the active-passive distribution of fpath-role assignments.

As seen in Table 5, this filter reduces the number of
active-passive alternating verb (type)s, by filtering erro-
neous instances from the base of counts. While the num-
ber of instances drastically reduces, only a small number of
verb types are eliminated from consideration. On the other
hand, the proportion of correct local functional subcategori-
sation paths in the retained set of fpath-role assignments
increases with the threshold. For active verbs, the culmina-
tion point for positive filtering effects seems to be around
.6. For passive verbs, we obtain the best filtering effect for
subj with threshold .6, and for obl ag with .7. Thus, the
filters eliminate erroneous or otherwise rare occurrences.

verbs (types) all vs. local fpaths
active passive

nonfrag 590 all fp 7118 in % all fp 3028 in %
act/pass 321 subj 1072 15.06 subj 620 20.48

pass only 24 obj 846 11.89 obl ag 366 12.09
act only 245 obl ag 2 obj 4
thresh .6 581 all fp 1470 all fp 741
act/pass 309 subj 386 26.26 subj 211 28.48

pass only 25 obj 332 22.59 obl ag 167 22.58
act only 247 obl ag 1 obj 1
thresh .7 580 all fp 1470 all fp 677
act/pass 307 subj 386 26.26 subj 166 24.52

pass only 24 obj 332 22.59 obl ag 160 23.63
act only 249 obl ag 1 obj 1

Table 5: Filters on active-passive diathesis

As a filter of noise in the computation of passive-invariant
fpath-role assignments, we compute a weight for each
fpath-role pair based on the relative frequency of passive
as opposed to active occurrences (per FEE or frame). As
seen in Table 6, this results in a radical reduction of passive-
invariant fpath-role assignments, since many fpath-role oc-
currences do not show a sufficiently unbalanced distribu-
tion over active and passive, and thus do not exceed the
threshold. This holds in particular for adjuncts and obliques
which are clearly non-alternating functions. Selected appli-
cation of the filter to functions that participate in the active-
passive alternation, such as SUBJ and OBJ, shows moderate
filtering effects that produce satisfactory results.10

threshold (.6) filter on all fpaths filter on subj/obj
FEE-fpath-role 141/224 62.95 54/71 76.06%

frame-fpath-role 157/206 76.21 69/82 84.15%
threshold (.7)

FEE-fpath-role 86/224 38.39 40/71 56.34%
frame-fpath-role 110/206 53.40 52/82 63.41%

Table 6: Filters on passive-invariant fpath-roles

10We will further experiment with weights that are parame-
terised for specific functional roles and patterns of argument struc-
ture variation, along the lines of (Merlo and Stevenson, 2001).



all (w/o fragmented) outside-in inside-out (and outside-in)
abs in % types in % abs in % types in % abs in % types in &

all lengths 38034 100/100 1582 100/100 31568 83/100 431 27/100 6466 17/100 1151 73/100
length 1 27567 72.48 97 6.13 27567 87.33 97 22.51 0 0.00 0 0.00
length 2 5967 15.69 218 13.78 3577 11.33 75 17.40 2390 36.96 143 12.42
length 3 3460 9.10 610 38.56 314 0.99 158 36.66 3146 48.65 452 39.27
length 4 820 2.16 456 28.82 63 0.20 57 13.23 757 11.71 399 34.67
length 5 187 0.49 169 10.69 47 0.15 44 10.21 140 2.17 125 10.86
length 6 29 0.08 28 1.77 0 0.00 0 0.00 29 0.45 28 2.43
length 7 4 0.00 4 0.25 0 0.00 0 0.00 4 0.00 4 0.35

Table 7: Path types

outside-in inside-out (and outside-in)
path frequency path frequency

↑ 9213 ((OBJ ADJUNCT $ ↑) OBJ) 548
(↑ SUBJ) 5030 ((OBJ $ ↑) SUBJ) 497
(↑ SPEC POSS) 3228 ((ADJUNCT $ ↑) SUBJ) 240
(↑ OBJ) 3176 ((SUBJ ADJUNCT $ ↑) SUBJ) 228
(↑ ADJUNCT) 2835 (($ ↑) $) 195
(↑ MOD) 2556 (($ ADJUNCT $ ↑) $) 160
(↑ ADJUNCT OF) 1001 (($ OBJ ↑) $) 135
(↑ OBL AG) 499 ((ADJUNCT $ ↑) $) 133
(↑ ADJUNCT IN) 314 (($ OBJ ↑) SUBJ) 123
(↑ OBL WITH) 297 ((XCOMP ADJUNCT $ ↑) XCOMP) 121

Table 8: Top ten frequent path types

5.3. Local and non-local frame assignment paths

Another issue that affects the homogeneity of the corpus-
induced syntax-semantics interface for frame semantics is
the nature and variety of functional paths that are extracted
from frame-annotated sentences. As seen in Table 5, only a
small proportion of fpaths involved in active-passive alter-
nations is found to be local, i.e. involve a locally subcate-
gorised SUBJ, OBJ, or OBL AG grammatical function.

Path types Table 7 gives an overview of the distribution
of path lengths in the fpath assignments we extracted from
the FrameNet data. With increasing path length, the fre-
quency of occurrences decreases, while the variety of fpath
types increases. We further differentiate between outside-
in paths (the path leads from the f-structure of the FEE
downwards to an embedded f-structure node) and inside-
out paths (leading from the FEE inside-out and outside-in
to an f-structure node that is not dominated by the FEE).

Infrequent path occurrences are susceptible of noise in
the data or are not expected to contribute valuable informa-
tion in stochastic training. So, both for the extraction of
linguistic knowledge and for stochastic training, we could
set a frequency-based threshold on the length of paths to
consider. A general cut-off for all paths to length ≤3 re-
tains 97.27% of the coverage, and yields a reduction of
path types to 58.47%. However, the frequency distributions
for inside-out and outside-in path types are quite different.
Also, the variety of fpaths is significantly higher for inside-
out paths (73%) as opposed to outside-in paths (27%). A
selective cut-off, restricting path length to ≤2 for outside-
in, and ≤3 for inside-out paths leaves 96.44% coverage and
48.48% of path types; including path length 3 for inside-out
yields 98.43% coverage with 73.70% of the path types.

As seen in Figure 8, inside-out fpaths of length 3 occur

most frequently among inside-out fpaths, and two of them
range among the top ten frequent fpaths overall.11

Thus, as an alternative to a cut of data based on path
length, a cut-off on the basis of frequencies for individual
fpaths could be more adequate for cautious filtering.

Generalising over non-local assignment paths Among
the top ten inside-out fpaths we also find the non-local fpath
described in Section 4.2. This fpath occurs with 135 verb
types (210 tokens). For 4 verb types we do not find a cor-
responding local fpath in the extracted rule set. However,
there are 501 verbs (4385 tokens) with local subject fpaths,
while we have seen the non-local configuration only for 135
types. These remaining 370 types can be caught by gener-
alised fall-back rules for the non-local variant, if in new
corpus data they occur in the identified non-local context.

On the other hand, there are less frequent non-local
paths that account for general syntactic configurations that
we may encounter in new data, such as the coordination
construction in (2). Here the FEE occupants, which triggers
the RESIDENCE frame, takes as its LOCATION role the co-
ordinated adjunct PP of .. flats. The coordinated adjunct is
attached high to the coordinated noun heads owners and oc-
cupants. This high attachment is reflected in the f-structure,
which differs from non-coordination.12 The fpath we obtain
is (($ ↑) ADJUNCT), crossing coordination inside-out.

(2) give greater protection to the [[owners and occupants]
[of shops, commercial premises, houses and flats]]

We identified 97 instances of this pattern, for 38 predicates
in 13 frames and for 16 roles. The corresponding local

11The element relation of set-valued ADJUNCTs does not con-
tribute to the path length, but it does for coordination: (($ ↑) $).

12The grammar does not distribute ADJUNCTs in coordination.



fpath (adjunct of) occurs in 1013 instances of 340 predi-
cates in 33 frames and for 62 roles. Again, we can provide
alternative local/non-local annotation rules, to account for
non-local configurations that are not in the data set.

6. Implications
There are several conclusions that can be drawn from the
data analysis in Section 5.

Filtering noise In order to be able to extract a lexical se-
mantic resource with a general syntax-semantics interface
from corpus annotations, we must acquire sufficiently large
and varied corpus samples. We have seen for various ex-
amples that reliable generalisations can only be obtained
if noise in the data can be eliminated by various kinds of
frequency-based filters. Where appropriate, these should
be combined to yield reliable confidence measures.

Targeted data acquisition On the basis of quantititive
evaluations and an automated frame-assignment architec-
ture, we can identify candidate sentences in unparsed text
to ’fill gaps’ in the pruned set of annotations, or to pro-
vide additional ’evidence’ in cases of indiscriminative data
counts. Thus, we can pursue a process of targeted data ac-
quistion in an effective, and semi-automated way.

Rule generalisations As seen in Table 7, and in the anal-
ysis of the active-passive diathesis, there is a great variety
of fpaths in the mapping to semantic roles, due to con-
structional varieties in the underlying corpus sentences. We
identified related local and non-local fpath assignments,
and more of these need to be established by data inspec-
tion. For such regular alternations, we can identify gaps for
local variants, which we can fill with newly acquired data,
for the extraction of a frame semantic lexicon with well-
defined syn-sem mappings.

For the purpose of active learning techniques in stochas-
tic model building, regular alternations and constructional
variants in frame projection can be modeled by generalising
frame assignment rules to account for the respective vari-
ants. This extends the coverage of automated frame assign-
ment, and the stochastic models that are built on top of it.

Corpus-driven vs. lexicographic The SALSA project –
a primarily corpus-driven annotation effort – will be con-
fronted with additional challenges. In contrast to FrameNet
data, assembled in a lexicographic effort, the TIGER cor-
pus is less balanced and features novel annotation problems
(idioms, support constructions, or metaphors). The need to
acquire additional data by generalisations over existing an-
notations will be even more important in this scenario, to
extend the base of annotations in a targeted way.

However, the TIGER annotations will provide a signifi-
cant boost, for construction of an initial set of frame assign-
ment rules and models for probabilistic selection. Acquisi-
tion of novel informative training data can be steered by
data analysis and generalisations over existing annotations.

Interplay of statistical and symbolic techniques In
sum, we propose to combine statistical techniques with a
symbolic syntax-semantics interface for frame assignment,
to support both the targeted acquisition of ‘informative’
training data and the extraction of a semantic lexicon with
a well-defined syntax-semantics interface.
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Appendix

(1) The Solland Sword was lost for many years , having disappeared during the destruction of Solland by Gorbad Iron-
claw’s Orcs .

Figure 5: F-structure for example (1), with partial s-projection for frames


