
UDRT-based Semantics Construction for LTAG
– and what it tells us about the role of adjunction in LTAG –

Philipp Cimiano Anette Frank Uwe Reyle
AIFB Karlsruhe Language Technology Lab Inst. of Natural Language Processing

University of Karlsruhe DFKI GmbH University of Stuttgart
Karlsruhe, Germany Saarbrücken, Germany Stuttgart, Germany

1 Introduction

Lexicalized Tree Adjoining Grammars (LTAGs) [6] are tree rewriting systems con-
sisting of a finite set of trees associated with lexical items, so-called elementary
trees (etrees). Elementary trees represent extended projections of lexical items that
encapsulate all their syntactic/semantic arguments. Due to this property, semantics
construction in LTAG can be based on elementary trees as basic units, and is typ-
ically performed on the basis of the derivation tree, which records the history of
how elementary trees are combined by substitution and adjunction operations.

However, it has been argued by Frank and van Genabith [3] that the deriva-
tion tree is not an appropriate structure for principle-based semantics construction
in that the derivation tree neither mirrors the phrase structure nor the dependency
structure of the sentence. It is essentially due to the adjunction operation that de-
pendencies that are crucial for a principle-based semantics construction procedure
are not available from the derivation tree. Instead, Frank and van Genabith propose
to define semantics construction on the basis of the derived tree.

In this paper we will have a closer look at the role that adjunction plays for
semantics composition in LTAG and examine whether the semantics construction
approach based on derivation trees can be rescued.

The contributions of the paper are manifold. First, we show that the seman-
tics construction approach for LDGs presented by Cimiano and Reyle [2] can in
principle be applied to semantics construction for LTAG. We borrow from Cimiano
and Reyle the idea of talking explicitly about labels and scope, which will turn out
as a crucial component for principle-based semantics construction on the basis of
the derivation tree. Second, we show that an adequate account of quantifier scope
within LTAG is possible without necessarily leading to an extension of LTAG as

1

proposed by Kallmeyer [9], who introduces multicomponent elementary trees and
allows for restricted multiple adjoining in the case of quantifiers. Third, we show
that it is possible to define semantics from derivation trees in a principled way,
thus overcoming the problems arising from the non-isomorphism of adjunction and
syntactic dependencies discussed in [3]. We show that by respecting the depth of
embedding of constituents as well as defining semantic composition as an update
function iteratively combining the semantic representations of a mother node and
each child, the above non-isomorphism can be solved in a principled way. Further,
we show that by resorting to an underspecified semantic representation language
– UDRT in our case [11] – we can handle handle scope phenomena without any
complication of LTAG as well as provide a semantic counterpart for the (syntactic)
operation of adjunction. Finally, from a more general perspective, our work helps
to clarify the role of adjunction in LTAG.

The paper is structured as follows: in Section 2 we briefly introduce the syn-
tactic operations of substitution and adjunction, and the standard approach to se-
mantics construction in LTAG. We then review an example discussed by Frank and
van Genabith, in which the derivation tree does not contain certain dependencies
that are necessary to define semantics compositionally, using standard methods. In
Section 3 we present our UDRT-based approach to semantics construction based
on the derivation tree. In Section 4 we show how the approach elegantly accounts
for two problems which have been observed for semantics construction based on
the derivation tree. In Section 5 we discuss related work. Section 6 concludes.

2 Semantics Construction for LTAG

The two main operations in LTAG are substitution and adjunction. Substitution is
a local operation for the insertion of subcategorized arguments, while adjunction
typically folds one tree into another, thereby introducing modifiers or recursively
embedding structures, such as clausal arguments.

Substitution is illustrated by the quantifier-free example (1), with elementary
trees for John, loves, Mary and the ensuing derivation tree, defined by the two
substitution operations that build the sentence John loves Mary.1

(1)
NP

John

S

NP ��� VP

V NP � �

loves

NP

Mary

loves

john mary

1Throughout this paper, � stands for a substitution node and � marks the footnote of an auxiliary
tree. In derivation trees, direct edges stand for substitution edges, dashed lines for adjoining.

2

Adjunction is illustrated by adjective modification in example (2) below. We
display adjunction of the etree for nice, along with the resulting derivation tree.

(2)

S

NP VP

John V NP

loves DET N

a woman

N

nice N*

loves

john a

woman

nice

For semantics construction based on the derivation tree (as in [9], [7], etc.),
it is essential that all arguments in the semantic form of an elementary tree are
associated with their corresponding substitution nodes in the elementary tree, so
that the main variable of the semantic representation of an elementary tree that is
substituted in can be bound to the correct argument. Similarly, for adjunction the
main variable of the semantic form of an adjoining tree has to bind the variable
associated with the tree or node it adjoins to.

We illustrate this standard mechanism by way of two examples. The semantic
forms given below, phrased in a DRT-style [10] notation, contain simple lexical
DRSs in their middle part. The lower part records the correspondence of argument
variables with syntactic substitution or foot nodes, while the top part marks the
main variable that is externalised for binding.

Semantics construction for the substitution edges in (1) is performed by
binding the externalised variables of the etrees for John and Mary to the variables
of the respective substitution nodes in the etree for loves. The entries for the verb
love, proper nouns like Mary as well as the result after substitution are given below:

�
�

����� �����
	�������
����� � ����� ����� � ����

�
�

�����! 	 � �

� #"$ �
����� �����
	%"$ � �
& ��'$(�	%"��
�����! 	 � �

In the semantic form for the auxiliary tree nice, the predicated variable is
externalised for binding and associated with the the foot node of the elementary
tree. As a result of adjoining, the variable) will be unified with the main variable
in the semantic representation of the noun the adjective tree adjoins to.

�

nice(x)
���+* ,�+�

As noted by Frank and van Genabith, semantics construction from the deriva-
tion tree is not always as straightforward as in the examples above. In certain con-

3

figurations, the special nature of the adjunction operation yields a derivation tree
that does not specify certain syntactic dependencies that are needed for a principle-
based semantics construction procedure. The example they discuss – Spicy hot-
dogs Peter claims Mary seems to adore – involves an interaction of topicalization,
raising and control verbs. The relevant elementary trees are given below, with an
indication of the adjunction operations necessary to build the derived tree. As can
be seen, the semantic dependency between claim and seem does not have any syn-
tactic counterpart in the structure of the derivation tree. This is because seem and
claim are directly and independently adjoined to the etree of adore (cf. [3]).

This causes a serious problem for principle-based semantics construction, as
there is a missing syntactic dependency between claim and seem which needs to be
made explicit in the final semantic representation.

S

NP � � S

NP � � VP

V

adore

S

DP � VP

V S
�

claims

VP

seems to VP
�

adore

hotdogs mary seem claim

spicy peter

Figure 1: Spicy hotdogs Peter claims Mary seems to adore.

Different solutions have been proposed for this problem. Frank and van Gen-
abith [3] as well as Gardent and Kallmeyer [4] propose to construct semantics from
the derived tree, while the proposal of Kallmeyer [8] would suggest introducing an
additional syntactic link between the control and the raising verb. In our proposal
we will try to rescue the standard LTAG approach where semantics construction
is based on the derivation tree, while avoiding to introduce additional syntactic
links as suggested by Kallmeyer. We develop a UDRT-based approach which, by
using a labeled and underspecified semantic representation language, allows us to
’talk’ about scope relations explicitly. This enables us to define a genuine semantic
counterpart of the adjunction operation that solves the problem in a principled way.

3 UDRT-based Semantics Construction for LTAG

The main ingredients of our UDRT-based approach to semantics construction for
LTAG are: (i) a labeled and underspecified semantic representation language al-
lowing to talk about scope (UDRT in our case), (ii) a universal semantic compo-

4

sition operation which is independent of the specific syntactic operation applied,
(iii) a recursively defined semantics construction method which results in iterative
updates of the semantics of the mother node along with the ordered application of
its children, and (iv) an ordered traversal of child nodes in semantic composition,
which mirrors the dominance relations in the derived tree.

We illustrate points (i) and (ii) by way of an example. Consider the following
extended entries for the verb form loves and the determiners every and a:

���
��� :
� � : �

� � � ��� �$	�������

����� � ��� � � �� ��� �
�
�� �

�
�� ��� � � � � � � � ,� � �	��
��� � 	 � 	 � � �,� ,��� �	��
��� � 	 � 	 � �

�,�

� � ���

l’:
� � �

� �

��� � �� � � � �� � ��� � � 	 � � �

� � � � �
l”:

� �

��� � ,� � � � �� ��� ��� �

The above semantic representations consist of four boxes. The upper left box
contains the distinguished referent (���) and the distinguished label (���) of the se-
mantic representation. For verbal entries and determiners, the distinguished refer-
ent is the logically bound referent, and for nouns and adjectives it is the free vari-
able. The distinguished label provides an index for the whole set of labelled UDRS-
components given in the second box. We assume that the � - and � -components
of verbs (and sentential UDRSs in general) are given as values of functions � and
� applied to the distinguished label. For determiners the functions res and scope
map the distinguished label to the labels of the restrictor and scope components,
respectively.2 The third box consists of argument triples representing local substi-
tution/foot nodes X of the elementary tree in question together with their associated
referents and labels. They implement the syntax-semantics interface in the follow-
ing way: substitution or adjunction of a tree � at X will trigger unification of the
argument variable and label associated with X in the 2nd and 3rd component of the
triple with the distinguished referent and label of the semantics of the node com-
bined with X, respectively. The fourth box contains conditions that partially order
the labels (and thus the DRSs) introduced in the second box and in the argument
triples.

Summing up, our semantic representations are 5-tuples �! #"��$�&%'���(%*)+%',-%*.0/ ,
where ��� is the distinguished referent, ��� is the distinguished label,) is a set of
labelled DRSs, , is a set of argument triples consisting of a node identifier, a

2For genuine quantifiers we have 1*2*3547698;:<6 and 3>=(?A@B2C47698D:!6 , and for indefinite determiners
and proper names 1*2*3547698;EF3>=(?A@B2C47698;EF6 . As these are general conditions on the representation
language they are not made explicit in the above representations.

5

referent variable and a label and . is a set of subordination relations on labels.
Let us now turn to point (ii) and consider the semantics composition involving

a main verb, a determiner and a noun. When nouns are combined with determiners,
nouns may either be substituted into the etree of the determiners, or the tree of the
determiner is considered as an auxiliary tree that is adjoined to the noun3 (see [8]).

(2)

loves

man woman

every a

loves

every a

man woman

m �
� : ����� 	 � �

Each derivation tree given in (2) should yield the same UDRS, i.e. the one
given in Figure 2. To achieve this result, we need (i) to form the set-theoretic union
of the second and forth boxes of the semantics of determiner and noun, (ii) unify
the existentially quantified referent of the determiner, the variable provided by the
noun and the argument variable in the verb and (iii) unify the distinguished label of
the noun with the label of the restrictor of the determiner and the distinguished label
of the verb with its scope. The following definition of the semantic composition
operator, � , makes this more precise.

Definition 1 (Semantics composition
�

)
Let � ��� %>�	��
 be an edge in a derivation tree labeled with p, where p is a node in ��� ,
and �� "��$��� %'����� %*)�� %',�� %*.�� / and ��� "��$��� %'����� %*)�� %',�� %*.�� / are the semantic
representations of ��� and ��� respectively. Then the result of combining ��� and
� � is an update of � � , i.e. � ��� � � � � � "�������%'������%*)�� %', ��%*.!�9/ , where one
of two configurations holds, depending on whether the edge was created by (i) a
substitution or (ii) an adjunction operation:

(i) if �#"�� %
)��5%'�$�%
'& ,�� , for "��; (" , then ��� � �$��� , ��� � ���$� ,
))�)��!*)�� where)�� is unified with �$���
. � .���* .+� where �$� is unified with ���,�
, � ,-�/.102�#"� %
)�� %'���%
43�* ,��

(ii) if �#" � %
) � %'� �
�& , � for some " �65 (" , then �$�7� ��� � , ���,� ��� � ,
) �)��!*)�� where)�� is unified with �$�1�
.!� .���* .+� where ��� is unified with ���8�
, � � ,-�9*:��, ��.102�#"�� %
)�� %'����
43�
 3

3This is actually the way determiners are modeled in the XTAG Grammar [5].
3For the cases we have investigated it actually suffices to have ; �=< E>; �8?A@ 4 @ �CB�D �EB 6 � 8$F in case

(i) and ; � < EG; � in case (ii).

6

� � � ��� :

� � : � � � � � : �

� � : man(x)
� � � ��� :

e
e:love(x,y)

� � : woman(y)

Figure 2: UDRS for Every man loves a woman

While we mention the correspondence with the distinct syntactic operations, the
above definition presupposes that semantics composition is completely specified
by the arguments made explicit in the third box of the semantic representation. It
thus represents a universal operation for semantic composition in LTAG. For this
we have required that adjectives and adverbial modifiers specify a noun or a verb
phrase as argument, respectively. Further, the above definition rests on the stan-
dard assumption in LTAG requiring exactly one foot node per auxiliary tree (see
[6]). This implies that there is at most one foot node " � that can be involved in
adjunction, such that for the semantic representation ��� above, all arguments iden-
tified by substitution nodes have been already inserted, while only one argument
identified with the unique foot node remains, which makes case (ii) determinis-
tic.4 In essence, semantic composition could thus also be performed relying on the
lambda calculus, which is an ideal formalism to make required arguments explicit
and model argument insertion through functional application. The bottleneck of
the lambda calculus, however, is that it assumes a specific order in which the inser-
tions need to be carried out, while in the above formalism this is not the case.

Taking stock, we have handled scope in an appropriate way which differs from
the way it is treated in [9] but also in [3]. In Kallmeyer [9], scope relations are
accounted for by separating syntactically the restrictor and scope part of a quan-
tifier and extending the syntactic representation by a ’degenerate’ auxiliary tree.
This presupposes to allow adjoining of multiple auxiliary trees to one tree and thus
the extension to multiple component TAGs (MCTAGs). We have shown that scope
relations can be cleanly accounted for at the semantic representation level with-

4As an alternative, we could revise LTAG’s standard labelling scheme for derivation trees. Edges
of the derivation tree are standardly labelled with the target node of substitution and adjunction
operations. For the adjunction case (ii), though, we need to refer to the source node @ � in the adjoin-
ing tree �

� . By revising the labelling scheme such that edges are labelled with the target node for
substitution and the source node in case of adjunction, conditions (i) and (ii) could be collapsed to
uniformly refer to the edge label @ in order to pick the correct nodes for the unification of referents.

7

out extending LTAG. Further, we have sketched a universal semantic composition
operation which is independent of the syntactic operation performed. Finally, we
have introduced the idea of building up partial semantic structures which represent
the merge of all the semantic representations applied so far. This idea is elaborated
in the next section and is shown to overcome the problems sketched in Section 2.

4 The derivation tree approach revisited

Different configurations have been shown to pose problems for a derivation-based
approach for principle-based semantics construction, due to missing syntactic
links. We have mentioned, on the one hand, the treatment of a determiner as an
auxiliary tree and have shown in the last section that our approach does not face
this problem. On the other hand, we have illustrated problems arising from config-
urations involving topicalization, control and raising verbs by means of the spicy
hotdog example in Section 2. Adding an additional syntactic link between claim
and seem might seem a solution to the problem, but would lead to a rather ‘ad-
hoc’ complication of LTAG. In our approach, these problems are circumvented by
defining semantic composition recursively in such a way that the semantic repre-
sentation of a mother node is not only combined with the semantic representation
of a single child (as in standard derivation-based approaches), but with the merge
(as specified by Definition 1) of the semantic representations built up so far. The
recursive definition is as follows:

Definition 2 (Semantic Composition on the Basis of the Derivation Tree)
For a leaf node � the semantics �9����
 of � is ��� (termination condition).
For a node � with � (unordered) children �7�C%��	�	�
� � , the semantics of f is defined as

�9���
0 ���	�	���C���� � �9�����%
C
 � �9���A��
C
��	�	� � �9��� �
C

where the order of composition is defined such that if an auxiliary tree ��� ad-

joins at a lower node in the elementary tree than another auxiliary tree � " , then ���
is processed before � " , i.e. it holds for their indices that ����� .

The above order specifies that adjunctions are carried out in a way that mirrors
the way semantic composition would be applied in a derived tree approach. For
our spicy hotdog example this means that seem will be processed before claim.
However, it is important to mention that we do not need to construct the derived
tree as such, as the nodes in derivation trees are typically numbered and adjoining
edges typically specify the node where adjunction is performed.

The crucial move is thus to ensure that, after seem has been adjoined to adore,
claim is not only combined with the semantic representation of adore, but with the

8

S

NP � � S

NP � � VP

V

adore

e ���
�
� :

� � � : � �
� :

�
� :

e
e:adore(x � � ,x � �)

VP �

V VP
�

�
seems

��� l �

�
� :

� � � :

�
� :

� �
��� :seem(� 	 � � � �)

S

NP � VP

V S
�

claims

��� l �

�
� :

� � � : � �
� :

�
� :

���
��� :claim(x � ,� 	 � � �)

Figure 3: Semantic representation and interaction between adore, claim and seem.

result of combining adore and claims. The sentential complement of claim is thus
not adore, but seem to adore. As verbs taking a sentential or infinitival complement
need a proposition as argument, the argument of seem and adore can not be bound
to an event variable. Therefore, for the sake of simplicity, we assume a function
"!� �
 which returns the corresponding proposition for some event � . The entries for
seems and claims look as follows:

9

2 � 6 �
�

� :
2 �

��� <���� �
	�� 4 D � B @ 472 � 8 8

� :

:���� � B�D	B 6 � ��� B :���� B 2 � B 6 � � �6 � ���
� B � � � 6 � � B 6 �� �

� B � � � 6 ��

2 � 6 �
�

� :
2 �

��� <�� ��� � 4 @ 472 � � 8 8

� :

:���� � B 2 � � B 6 � ���6 � ���
� B � � � 6 � �

Now, when seem adjoins to adore, it wraps the whole semantic representation of
adore, which gets inserted into the � � � component. The same happens then again
when claim is adjoined, not only to the semantic representation of adore, but to the
whole semantic representation built up so far. Claims thus wraps around the whole
semantic representation built up so far with the result given in Figure 3. Thus, claim
and seem introduce semantic structures which ‘wrap around’ the semantic structure
they adjoin to (compare Figure 3). Such a perspective is indeed very interesting as
it provides a semantic counterpart to the syntactic operation of adjoining, which
can also be defined as an operation in which the auxiliary tree wraps around the
elementary tree it adjoins to (compare [9]).

Note here that the surface-oriented order for traversal of the derivation tree
is indeed crucial as processing claim before seem would have yielded incorrect
semantic dependencies. The order defined in Definition 2 in some sense mirrors
the derived tree, but we have argued that the construction of the derived tree itself
is not necessary as each adjoining child specifies the node and hence the position of
the elementary tree it adjoins to. A similar solution to this problem was discussed
in [7], but their approach was unfortunately not formalized.

5 Related Work

Joshi and Vijay-Shanker [7] proposed a compositional semantics approach based
on the derivation tree. They assume flat semantic representations and define ap-
propriate semantic construction operations for substitution and adjoining. Their
approach is essentially restricted to the predicate-argument domain. Most impor-
tantly, they propose a similar solution to ours, which accounts for the interaction
between control and raising verbs, but is not formalized, however. Further, they
also suggest a treatment of quantifiers by (syntactically) factoring the scope and
restrictor part of quantifiers and representing them via ’degenerate’ auxiliary trees
and extending LTAG to MCTAG (Multi-Component-Tag). This idea is further
elaborated by Kallmeyer and applied to hole semantics [9], showing that MC-
TAG accounts for scope underspecification by introducing the above mentioned
’degenerate’ auxiliary trees which can multiply adjoin to the top . node of the
main clause verb. Actually, in Kallmeyer’s proposal, the expressiveness of MC-

10

TAG is restricted to merely represent the degenerate trees representing quantifiers.
Our proposal, which avoids any extension of LTAG by using an underspecified
representation language, thus being able to talk about labels and scope relations
explicitly, has shown that the use of MCTAG is unnecessary if one resorts to the
semantic level to handle scope5.

The principled problems arising from the non-isomorphism between the oper-
ation of adjunction and the underlying syntactic-semantic dependencies discussed
in Section 2, have led some researchers to abandon the derivation tree for princi-
pled semantics construction (see Frank and van Genabith’s proposal based on glue
logic [3] or the FTAG proposal of Gardent and Kallmeyer [4], based on Minimal
Recursion Semantics). Other proposals have tried to circumvent the problem by
introducing additional syntactic links (e.g. [8]). We have shown that the problems
are indeed not principled ones if we respect the two key characteristics of semantics
construction based on the derivation tree: the depth of constituent embedding and
the fact that the semantics composition is defined as an update function which iter-
atively combines the semantic representation of each child node with the semantic
representation of the mother node.

6 Conclusion

From a more general perspective, our paper offers to take a fresh look at a long
debated issue, namely the special role of adjunction in LTAG and its proper treat-
ment in principle-based semantics construction. Classical approaches to semantics
construction are based on the phrase structure or dependency structure of the sen-
tence. Since adjunction in LTAG factors recursion differently from phrase structure
grammars, this difference is reflected in the structure of the derivation tree.

The main contribution of this paper can thus be seen in three aspects. First,
we show that it is crucial for a proper treatment of LTAG adjunction in semantic
composition, to respect the order of syntactic embedding that is usually reflected
in the phrase structure (here, derived) tree. This embedding structure can be read
off the derivation tree, provided the node position of adjunction sites are recorded.

Second, we have shown that it is essential for an approach based on the deriva-
tion tree to define semantics compositionally in such a way that the semantics
of each child node is not only combined with the semantic representation of the
mother node, but with the iteratively updated representation resulting from the
merge of the semantic representation of the children processed so far with the
mother node’s semantics.

5This only holds with respect to the treatment of quantifiers. There are very good reasons to adopt
an MCTAG analysis to account for German scrambling for example [1].

11

Summarizing, it is the iterative definition of semantics construction as well
as the fact that te depth of syntactic embedding is considered, both key features
of standard approaches to semantics construction based on phrase structure, that
help to overcome the problems resulting from missing dependencies described in
Section 2.

Finally, by resorting to a semantic formalism that defines scope on the basis of
labeled partial semantic structures, it is possible to account for scope underspec-
ification without any additional syntactic extension of LTAG as well as to define
semantic composition for adjunction in a way that mirrors its “wrapping” behavior
to model syntactic recursion at the level of semantics composition

References

[1] T. Becker, A. Joshi, and O. Rambow. Long distance scrambling and tree adjoining
grammars. In Proceedings of EACL, 1991.

[2] P. Cimiano and U. Reyle. Talking about trees, scope and concepts. In H. Bunt,
J. Geertzen, and E. Thijse, editors, Proceedings of IWCS-6, pages 90–102, 2005.

[3] A. Frank and J. van Genabith. LL-based semantics for LTAG - and what it teaches
us about LFG and LTAG. In M. Butt and T. Holloway King, editors, Proceedings
of the International Conference on Lexical Function Grammar (LFG). CSLI Online
Publications, 2001.

[4] C. Gardent and L. Kallmeyer. Semantic construction in feature-based TAG. In Pro-
ceedings of EACL, 2003.

[5] XTAG Research Group. A lexicalized tree adjoining grammar for english. Technical
Report IRCS-01-03, IRCS, University of Pennsylvania, 2001.

[6] A.K. Joshi and Y. Schabes. Tree-adjoining grammars. In Handbook of Formal Lan-
guages, volume 3, pages 69–124. Springer, 1997.

[7] A.K. Joshi and K. Vijay-Shanker. Compositional semantics with lexicalized tree-
adjoining grammar (LTAG): How much underspecification is necessary? In Pro-
ceedings of IWCS-3, pages 131–145, 1999.

[8] L. Kallmeyer. Enriching the tag derivation tree for semantics. In Proceedings of
KONVENS (Konferenz zur Verarbeitung natürlicher Sprache), pages 67–74, 2002.

[9] L. Kallmeyer and A.K. Joshi. Factoring predicate argument and scope semantics:
Underspecified semantics with LTAG. Research on Language and Computation, 1(1-
2):3–58, 2003.

[10] H. Kamp and U. Reyle. From Discourse to Logic. Kluwer, 1993.

[11] Uwe Reyle. Dealing with ambiguities by underspecification: Construction, represen-
tation and deduction. Journal of Semantics, 10(2):123–179, 1993.

12

