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Abstract

This paper describes the second participation of the open
source MARY TTS unit selection system in a Blizzard chal-
lenge. Compared to last year’s system, a number of well-
defined changes have been made to the algorithm, concerning
unit definition, prosody models, and signal modification. The
results in this year’s challenge are considerably improved, con-
firming that the changes were worthwhile. The paper also re-
ports on an approach to the selection of a subset of the utter-
ances provided, in order to build a voice with good coverage
not larger than the pre-defined “Arctic” subset. Results show
that this small voice is perceived slightly better than the voice
we built from the Arctic subset.

1. Introduction: Motivation and Frame

The work reported in this paper is a puzzle piece in a long-
term research effort on parameterisable, expressive high-quality
speech synthesis. In this effort we pursue several strands,
including HMM-based speech synthesis [1], which has very
promising properties of reliability and parametric control,
and unit selection synthesis, in which we aim to combine
expressivity-based selection with signal modification [2]. The
basis for research on expressivity in unit selection is a highly
controllable unit selection system with a well-defined quality.
The work reported in this paper provides such a baseline sys-
tem, and prepares for the control of expressivity.

The benefit of the Blizzard challenge in general is the fact
that it allows the research community to compare different data-
driven speech synthesis algorithms on the same data. Through
centrally organised listening tests, the perceptual effects of var-
ious design choices are made evident. To the extent that the
differences between systems are well documented, that allows
for conclusions about the effectiveness of the different methods,
and thus a learning experience for all participants.

The Blizzard challenge 2007, which uses material from the
same speaker as the Blizzard challenge 2006, additionally al-
lows for some comparison within systems. Any major changes
in perception scores between the two years are likely to be at-
tributable to a considerable extent to changes made in the sys-
tem.

For DFKI, the Blizzard challenge 2006 was our first partic-
ipation in a unit selection competition [3], with moderate suc-
cess: the overall impression of the listeners for our large voice,
measured by Mean Opinion Scores (MOS), was somewhat be-
low average (2.5, the average being 3.0); the intelligibility, mea-
sured by Word Error Rate (WER), was slightly worse than av-
erage (25% error compared to the average of 22% error, for
native English speaking undergraduate listeners). At the work-
shop, we received feedback pointing out possible improvements

to the system. Some of these were implemented in time for this
year’s participation.

The algorithms presented in the present paper differ from
the previous system in the following key points:

o diphone units, rather than phone units, are used, with a
fallback to halfphones when the diphone coverage is in-
sufficient;

e statistical prosody models are used to predict target val-
ues for Fy and duration, and these values are used in
target costs;

e signal post-processing, e.g. for Fjy smoothing, is avoided
altogether.

While there have been many more changes, notably a much
more efficient implementation, we consider these to be the ma-
jor differences to the previous system, so that they can be ex-
pected to be key factors in explaining any differences between
the results of last year’s and this year’s system.

The remainder of the paper is structured as follows. We first
give an overview of the MARY unit selection system as it stands
today, including the open source platform in general, the unit
selection algorithm as such, and the voice building toolkit. We
then describe the creation of voices for the Blizzard challenge,
with some detail describing the selection of utterances for the
small voice (voice C). We present and discuss the results before
concluding on some ideas for future work.

2. The MARY unit selection system
2.1. The open source MARY TTS platform

MARY (Modular Architecture for Research on speech sYnthe-
sis) is a platform for research, development and teaching on
text-to-speech synthesis. Originally developed for German, it
was extended to US English by incorporating some TTS mod-
ules from the FreeTTS project [4], and, as the result of a student
project, to Tibetan. MARY uses an XML-based representation
format for its data, which makes it possible to access interme-
diate processing states, and to connect it to other XML-based
processing components.

Apart from being a research platform, MARY is also a sta-
ble Java server capable of multi-threaded handling of multiple
client requests in parallel.

The design is highly modular. A set of configuration files,
read at system startup, define the processing components to
use. For example, the file german.config defines the Ger-
man processing modules, english.config defines the En-
glish modules, etc. If both files are present in the config-
uration directory, both subsystems are loaded when starting
the server. Each synthesis voice is defined by a configuration
file: german-mbrola-de7.config loads the MBROLA



voice de7, english-arctic—jmk.config the unit selec-
tion voice built from the Arctic recordings of speaker jmk [5],
etc.

Each synthesis module has an input and an output format,
which can be flexibly defined. This makes it extremely easy to
define pipeline architectures for processing any given input for-
mat into one or more output formats, without explicitly stating
the required chain of modules. Starting from the input format
specified for the system input (e.g., plain text, SSML [6], etc.),
the TTS system searches a path through the available processing
components until it arrives at the requested output format (e.g.,
audio). Although this is a very simple mechanism for specify-
ing a component architecture, it seems to be sufficient for the
processing requirements of a TTS system.

For the generation of audio, MARY includes the concept
of a collection of waveform synthesisers; these are defined in
an extensible way through the MARY configuration files. Cur-
rently, the list of available waveform synthesisers includes the
MBROLA diphone synthesiser; an LPC-based diphone synthe-
siser provided by FreeTTS; the MARY unit selection synthe-
siser covered in the present paper; and an experimental interpo-
lating synthesiser, creating intermediate voices from two exist-
ing unit selection voices [2] using a spectral interpolation algo-
rithm [7].

The architecture of the MARY platform as well as the En-
glish and Tibetan processing components are available under a
liberal BSD-style license. The German processing components
are available free of charge under a research license. By permis-
sion from the MBROLA team, MBROLA binaries and voices
are provided with MARY under the MBROLA license.

The system runs under Windows, Linux, Solaris, and
Mac OS X. A comfortable graphical installer can be down-
loaded from the MARY website. During installation, users can
indicate which components they want to install; only these com-
ponents are downloaded from the MARY page.

In order to avoid misconfigurations, the configuration files
define a number of dependencies, which are checked automat-
ically at every system startup. If a component is found to be
missing, the system offers to download it from the MARY web-
site.

2.2. Unit selection in MARY

The unit selection system in MARY implements a generic unit
selection algorithm, combining the usual steps of tree-based
pre-selection of candidate units, a dynamic programming phase
combining weighted join costs and target costs, and a concate-
nation phase joining the selected units into an output audio
stream.

Units to concatenate are uniform. The Blizzard 2006 sys-
tem [3] used phoneme units. After getting feedback at the Bliz-
zard Challenge Workshop 2006, we switched to diphone units,
because joining in the mid-section of phonemes is expected to
introduce less discontinuities than joining at phoneme bound-
aries. For each target diphone, a set of candidate units is se-
lected by separately retrieving candidates for each halfphone
through a decision tree, and retaining only those that are part of
the required diphone. When no suitable diphone can be found,
the system falls back to halfphone units.

The most suitable candidate chain is obtained through dy-
namic programming, minimising a weighted sum of target costs
and join costs. Both are themselves a weighted sum of compo-
nent costs. Target costs cover the linguistic properties of units,
and the way they match the linguistically defined target. A sec-

ond major change compared to the Blizzard 2006 entry is the
use of acoustic target costs. These are currently used for com-
paring a unit’s duration and FO to the ones predicted for the tar-
get utterance by means of regression trees trained on the voice
data. In the future, we intend to use acoustic target costs to also
cover expressivity-related acoustic measures, such as spectral
tilt or other robust measures of voice quality.

Join costs are computed as a weighted sum of FO difference
and of spectral distance, computed as the absolute distance in
12-dimensional MFCC space. We had experimented with a step
function for the FO penalty, based on the reasoning that small
FO deviations can be corrected by a smoothing algorithm [3];
currently, we are using a linear cost function instead and avoid
signal post-processing as it seems to degrade the overall quality.

Like all unit selection systems, we face the challenge of
determining appropriate weights for the individual target and
join cost components. As we have not yet developed a princi-
pled way of determining these weights, we have set a number
of ad hoc values through iterative listening and adapting. The
resulting weights give slightly higher importance to join costs
than to target costs, a higher importance to FO continuity than
to spectral continuity, and a higher importance to duration and
FO targets than to phonetic context.

After the chain of units minimising these costs is deter-
mined, the units are retrieved from a timeline file and concate-
nated using overlap-add of one pitch period at the unit bound-
aries. The timeline file currently contains uncompressed PCM
audio data, but is designed in a way that makes it easy to use
more efficient encodings in the future.

The system is reasonably efficient: it synthesises speech
about ten times faster than real-time on a recent Core 2 Duo
processor. Decision trees and feature vectors required for the
cost computation are held in memory; audio data is retrieved
from a file after selection.

2.3. The voice creation toolkit in MARY

We are in the process of developing a toolkit for creating voices
for MARY. We originally used the Festvox tools [8], and we
continue to be deeply grateful to their creators for making them
available to the community. However, it appears that some as-
pects of Festvox are tightly linked to the Festival system, and
we felt that in the long run, the gain in control and flexibility
justifies the development of our own voice creation toolKkit.

The system combines an extensible list of “voice import
components” in a graphical interface which is currently still
very simple (see Figure 1). The user can select a series of im-
port components, which are run in sequence. A progress bar
is shown for the component which is currently running. After
successful completion, the component is coloured in green; if
processing fails, it is displayed in red, and processing of subse-
quent components is aborted. Configuration of non-default file
system paths and special settings for the components is done via
command-line options.

The voice import components that are currently available
include components for automatic labelling using Sphinxtrain
[9]; for importing text files in Festvox format; for predicting
unit features with MARY; for making sure the unit labels and
the feature chain predicted by MARY are properly aligned; for
pitchmarking using Praat [10]; for the conversion of data into
the compact format required by the MARY unit selection run-
time system; for building classification trees for candidates us-
ing the wagon tool from the Edinburgh speech tools [11]; for
pruning outliers from the generated trees; and for creating re-
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Figure 1: The MARY voice creation toolkit at work. In the
situation shown, half-phone unit labels have been created suc-
cessfully, unit features are being computed, and a number of
components are scheduled for subsequent execution.

gression trees for duration and FO.

One of the most time-consuming tasks is the training of
classification trees for the prediction of candidate units. Sim-
ilarly to [12], we use acoustic distance between units as the im-
purity measure, and run wagon based on distance tables. In
order to speed up the process on a multi-processor machine,
the MARY CartBuilder component can run several wagon pro-
cesses in parallel. Given the fact that the computation of acous-
tic distances is currently done in a single Java process, there is
a limit to the number of wagon processes that should reason-
ably be started in parallel; we have experienced considerable
speedup with running 3-5 wagon processes alongside one Java
process on an 8-processor machine.

The MARY voice creation toolkit currently requires a con-
siderable amount of expert knowledge in order to set paths cor-
rectly via command-line options and to select the right compo-
nents for the task at hand. We intend to develop a more intuitive
system providing groupings of the components that are usually
required for a given task. For example, components working
with halfphones are required for creating the necessary files to
build classification trees for pre-selection of candidate units, but
phone-sized units are needed for training regression trees for the
prediction of duration and FO.

3. The Blizzard voices

As in previous Blizzard challenges, participants’ task consisted
of building synthesis voices from recordings provided cen-
trally. This year’s database consisted of 6579 sentences (cor-
responding to 477 minutes of speech data, i.e. just under eight
hours) kindly provided by ATR. The speaker is the same as in
last year’s database, but the selection of sentences is different.
The database includes a subset of 1032 sentences (49 minutes,
approximately 1/10th of the total) called the “Arctic” subset.
Three voices were to be built: one from the full set of record-
ings (voice A); one from the Arctic subset (voice B); and one
from a self-chosen subset of sentences (voice C). The subset
used for voice C could be chosen from all sentences. Full sen-
tences needed to be chosen; the total duration of speech in the
chosen subset was limited to the total duration of speech in the
Arctic set.

3.1. Preselection of sentences and transcription of unknown
words

One of the lessons of the Blizzard Challenge 2006 for us was
the importance of pre-selecting the material, to make sure that
automatically predicted pronunciation matches the spoken ut-
terances.

We used the MARY system to identify unknown words;
these were either added manually to the pronounciation lexicon,
or the respective sentences were discarded.

1030 words were unknown to the MARY pronounciation
lexicon. These included 590 foreign words (mostly Japanese
and Spanish), stemming from 521 sentences, which were dis-
carded from the set. The remaining 540 unknown words and
their transcriptions generated by the letter-to-sound rules were
inspected by a trained phonetician; for 151 of them, the tran-
scription was manually corrected and added to the pronouncia-
tion lexicon, including some abbreviations which had not been
expanded by the MARY text normalisation component; the re-
maining unknown words were judged to be appropriately tran-
scribed by the letter-to-sound rules.

A custom sub-corpus was selected from the full set as the
data for voice C (see Section 4 for details).

3.2. Applying the MARY voice preparation tools

The MARY voice preparation tools described above were ap-
plied to the respective subsets of utterances for the creation of
the voices A, B and C.

The data was automatically labelled with the phonemes pre-
dicted from text by the MARY phonemisation component after
transcriptions for unknown words had been added. Sphinxtrain
was used to force-align this phoneme chain with the recording
files. No verification of the labelling quality was done at this
stage, but some outliers were removed in the pruning stage after
building pre-selection trees. This is a potential area of improve-
ment (see Conclusion below).

Pitch marks and pitch-synchronous MFCC vectors were
computed with Praat and the Edinburgh Speech Tools (EST),
respectively. Linguistic feature vectors were predicted with
the MARY system; acoustic unit features (Fy and duration)
were added based on pitchmarks and on automatically labelled
phoneme boundaries. Join cost features (¥ and MFCCs) were
measured at the first and last frame of each halfphone unit.

Pre-selection trees for halfphone units were created in a
two-step procedure. We first specified a “top-level” tree by
hand, which organises all units into “top-level leaves” according
to phonetic properties such as phoneme identity, stress status,
voicing etc. This resulted in a top-level tree with about 1000
leaves of up to 3400 units each. Larger top-level leaves were
avoided because we observed an extreme increase in process-
ing time needed for automatically growing classification trees
from larger unit sets.

Second, we applied the EST tool wagon in an automatic
tree-growing procedure for each of the top-level leaves, us-
ing acoustic distance between units as the impurity measure.
The acoustic distance between two units was measured as the
weighted sum of differences in duration, FO, and spectral differ-
ence computed as the Mahalanobis distance of MFCC vectors.
The mapping of frames from the two units for computing the
spectral distance was performed using linear time scaling.

Regression models for Fy and duration were computed
from phone models, using wagon with default settings from the
Festvox documentation.



3.3. Pruning

As one measure to reduce the effect of wrong labelling, we have
introduced a first pruning algorithm into the voice building pro-
cess, looking for outliers in the classification tree used for pre-
selecting candidate units. Outliers were identified for each leaf
based on a number of criteria, including the likelihood of each
unit computed by wagon as well as the energy. For example,
units labelled as silence but with a high energy are considered
outliers and removed.

Due to the preliminary stage of this processing component,
conservative settings were chosen. Only the pre-selection tree
of the full voice (voice A) was pruned; in total, 1% of the units
were removed.

3.4. Tuning of weights

Despite early publications reporting on attempts to determine
the weights for target and join costs based on objective criteria
[13], it seems to be common practice to tune weights by hand.
This seems to be due to the difficulty to find acoustic measures
that reflect perceptual impression. While we intend to investi-
gate the question in the future, in the current system we also
tuned weights manually. In a trial-and-error procedure, weights
were tuned such that acoustic target costs have a slightly higher
weight than linguistic target costs, and join costs have a slightly
higher weight than total target costs.

4. Selection of a custom sub-corpus

The corpus of Voice C was selected with a greedy algorithm.
That means, at each step the sentence that gets the highest score
according to some criteria is selected to be added to the cover
set. The algorithm stops when the duration of all sentences in
the cover reach the maximum duration of 2914 seconds (the
total speech duration of the Arctic set). The major parameters
of the algorithm are the coverage definition and the sentence
score.

4.1. Coverage definition

The definition of coverage determines which units are wanted
in the final set. It depends on the definition of the units.

Units are represented as vectors consisting of four features.
For each phone, there is one feature vector. The four features
are phonetic identity, phonetic identity of the next phone, phone
class of the next phone and prosodic characteristics of the cur-
rent phone.

The English phoneset that was used defines 42 different
phones. Thus, there are 42 x 42 = 1764 different possible
diphones.

The concept of phone classes was introduced to reduce the
number of possible diphones. The idea behind this is that the
transitions in the middle of two diphones are similar if the sec-
ond parts of the diphones are similar phones. For example, the
transitions from a vowel to alveolar consonants will be similar,
no matter which alveolar consonant it is. But they will be dis-
tinct from the transitions of that vowel to a velar consonant. For
the consonants, the place of articulation is more important for
the transitions than the manner. The same is true for the vowels:
for example, [i] and [y] have the same place of articulation and
hence will have the same transitions leading to them. In this
manner, 21 phone classes were defined, which thus reduces the
number of possible diphones from 1764 to 42 x 21 = 882.

For the prosodic characteristics of a phone, six different

full Arctic voice C
Number of sentences 5879 1028 836
simple diphones 81.65% | 77.12% | 76.66%
simple diphones & prosody 53.50% | 34.71% | 44.66%
clustered diphones 86.30% | 81.77% | 86.30%
clustered diphones & prosody | 60.65% | 41.54% | 59.39%

Table 1: Distribution statistics of the three corpora

prosodic types were defined: unstressed, stressed, pre-nuclear
accent, nuclear accent, phrase final high and phrase final low.
The accents and phrase final tones were computed on the basis
of ToBI predictions from text.

With this we have two different definitions of coverage:

e simple diphones: the cover consists of all combinations
of phone, next phone and prosodic type.

e clustered diphones: the cover consists of all combina-
tions of phone, phone class of next phone and prosodic

type.

4.2. Sentence score

For each unit, a score determines how “useful” the unit is for
the selected set. For each sentence, the score is the normalized
sum of the scores of the units.

The score of a unit is basically the product of two differ-
ent weights: frequency weight and “wanted” weight. The fre-
quency weight reflects the frequency of the unit in the corpus.
The “wanted” weight reflects how much a unit is “wanted” in
the cover: If there is already an instance of this unit in the cover,
the wanted weight will be lower than if there is no instance in
the cover. The wanted weight can have a different setting on the
three levels phone, next phone/next phone class and prosody.
This way the wanted weight also determines what is more use-
ful: new phones, new diphones or new prosodic types.

For the frequency weight, three settings are considered:
1 (which means no consideration of frequency), relative fre-
quency (which gives a preference for the more common units)
or the inverse of the relative frequency (which gives a prefer-
ence to the rarest units).

An additional dimension is added by the setting for the de-
crease of the wanted weight: Each time a unit is selected for the
cover set, the wanted weight for this unit is divided by a certain
number, to reflect the fact that we already have this unit and
do not necessarily want another instance of it. The higher this
number is, the less useful new units that are already in the cover
will be.

4.3. The Voice

The algorithm was run several times with different settings. The
most important setting variation was the definition of coverage:
simple or clustered diphones. Another variation was the setting
of the frequency weight to the three possible settings. The set-
ting of the wanted weight was varied between 100, 10 and 1,
and the number by which the weight is divided was varied be-
tween 10000, 1000, 100 and 10. Additionally, there were tests
with restricting the sentence length.

The results indicated that, in general, using the simple di-
phone coverage definition maximizes both simple and clustered
coverage, but using the clustered diphone coverage definition
only maximizes clustered coverage. Also, the use of the in-
verse frequency generally led to better results than the normal



frequency. Generally, the restriction of sentence length did not
lead to good results in the test.

The selected sentences with the best distributions were cho-
sen to build three different voices. Of these, the best voice was
selected on the basis of informal listening tests. For this final
voice the settings were: clustered coverage definition, inverse
frequency, wanted weight of 1 on all levels, divided by 100, and
no restriction on the length of the sentences.

Table 1 shows the diphone distribution of the corpus of the
final voice (voice C) in comparison with the distributions of the
corpora of the other two voices that were submitted. It can be
seen that, on the one hand, voice C has fewer sentences than the
Arctic voice and also a slightly lower simple diphone coverage.
But on the other hand, the percentage of prosodic variations of
both simple and clustered diphones is higher for voice C than
for the Arctic voice, and clustered diphone coverage is as high
as for the full corpus.

5. Results

Our goal in this year’s challenge was to make progress towards
being perceived as good as the average of all systems, given
that we were a bit below average (at 2.5 MOS and 25% WER)
last year. Our goal has been surpassed — our system performed
better than average on both MOS and WER with all three voices
(see Figs. 2, 3, 4).

The box plot in Figure 2 shows the median and quartiles of
MOS ratings by all listeners for voice A across systems. Sys-
tems are ordered on the X axis according to their mean MOS
for voice A; the DFKI entry is system C.

Figure 3 shows a simplified view of the same data for all
three voices, comparing the DFKI entry with the average of all
participating systems. It can be seen that all three voices are
rated better than the average of all participating systems. It is
also visible that our voice C has a better rating than our voice
B.

Figure 4 shows Word Error Rate (WER), for native speak-
ers of English only. Figures for non-native listeners were very
high (close to 50% for most systems), indicating that the task
may have been too difficult for non-native listeners to provide
informative differences between systems. For this reason, we
consider only WER for native English listeners. It can be seen
that the intelligibility of the DFKI voices is considerably better
than the average of all systems; the WER for our full voice is
only half as high as for our two small voices.

6. Discussion

Given the similarity in procedures and data, it seems justifiable
to compare the MOS and WER figures from the Blizzard Chal-
lenge 2006 and 2007, at least informally. Such a comparison
can lead to qualitative rather than quantitative insights: con-
cretely, we would like to know if our system has become better
by the modifications we made to it since last year.

The average MOS across all systems is nearly unchanged
(2.9 for the full voice, both this year and last year). The rat-
ing of our full voice (3.2) is considerably higher than last year
(2.5), indicating that the changes we made to the system led to
a substantial improvement of perceived naturalness.

Figures for WER for native speakers this year may best be
compared to the “undergraduate” figures of the Blizzard Chal-
lenge 2006, because the undergraduates were native speakers
of English. This comparison shows nearly no change for the
average of all systems (WER for the full voice: 22% in 2006,
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Figure 2: Mean Opinion Scores (MOS) of all systems, for the
full voice (voice A). The DFKI entry is system C.
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Figure 3: Mean MOS for the three DFKI voices, compared to
the average of all participating systems. Higher scores are bet-
ter.
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Figure 4: Mean Word Error Rate (WER) of native English lis-
teners, for the three DFKI voices, compared to the average of
all participating systems. Lower scores are better.



23% in 2007). However, the WER for the DFKI system marks
a sharp decrease (from 25% in 2006 to 10% in 2007, for the
full voice). Again, these figures may not be fully comparable
in a quantitative way, due to the fact that voices were built from
a similar but not identical data set, and that the basis for as-
sessing WER was not the same (modified rhyme test and se-
mantically unpredictable sentences in 2006, only semantically
unpredictable sentences in 2007). Nevertheless, the qualitative
observation that the WER is markedly lower in 2007 confirms
that our system modifications improved intelligibility.

These observations seem to indicate that the modifications
made (using diphone units and acoustic target costs, and avoid-
ing pitch smoothing) have increased the naturalness and the in-
telligibility of the DFKI system considerably.

Comparing voices A, B and C, it can be seen that the use
of only about 10% of the speech data (477 minutes for voice
A, 49 minutes for voices B and C) had a large effect on the
intelligibility of our voice, visible in a doubling of the WER
(Figure 4). The naturalness rating is also affected, but not as
drastically (Figure 3).

Comparing our voice C to the default Arctic voice B, it can
be noted that the WER is the same for both voices, but that the
MOS score is a bit better for voice C. This may be the result of
our selection strategy, aiming for prosodic richness rather than
the best possible diphone coverage. It would be interesting to
compare the perceptual effects of various selection strategies,
in order to verify whether any systematic correlations exist, e.g.
between diphone coverage and WER or between prosodic rich-
ness and MOS.

7. Conclusion

The results for DFKI in this year’s Blizzard challenge are con-
siderably improved compared to the first participation in 2006.
This difference is most probably due to the modifications made
to the system between the two tests: the use of diphone units
rather than phone units; the use of acoustic target costs based
on regression trees for Fy and duration; and the avoidance of
pitch smoothing.

The test results were better than the average of all partici-
pating systems, for both MOS and WER for all three types of
voices (A, B, and C). This confirms that the MARY system can
now be considered to be a state-of-the-art unit selection system
in its own right. We conclude that the MARY system is now a
suitable baseline system for our research on expressive speech
synthesis.

Nevertheless, many ideas for improvement remain to be
explored. This includes the automatic assessment of qual-
ity — heuristics may help find likely problems in the auto-
matic phoneme labelling, which can then either be discarded
or presented to a human labeller for inspection. Prosody mod-
els should be computed in a normalised representation (e.g.,
z scores), to become independent from concrete Hz and ms
values, which will make the models reusable for different
voices. Alternatively, it may be worth considering model-based
prosody prediction (e.g., [14], [15]) rather than purely statistical
regression trees. Finally, various approaches to prosody modi-
fication will need to be carefully investigated — the observation
that results improved when not using the one method we tried
should not be generalised too quickly. We will compare various
approaches, and assess their effects through listening tests. In
parallel, we will continue to investigate HMM-based synthesis,
which has inherent properties beneficial for expressivity con-
trol.
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