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Abstract
In this paper we propose a partial parsing model which achieves robust parsing with a large HPSG grammar. Constraint-based precision
grammars, like the HPSG grammar we are using for the experiments reported in this paper, typically lack robustness, especially when
applied to real world texts. To maximally recover the linguistic knowledge from an unsuccessful parse, a proper selection model must
be used. Also, the efficiency challenges usually presented by the selection model must be answered. Building on the work reported in
Zhang et al. (2007a), we further propose a new partial parsing model that splits the parsing process into two stages, both of which use
the bottom-up chart-based parsing algorithm. The algorithm is implemented and a preliminary experiment shows promising results.

1. Introduction
Linguistically motivated precision grammars are highly
valuable language resources which provide in-depth model-
ing of complex language phenomena. Based on sound lin-
guistic theoretical backgrounds and rigid mathematical for-
malisations, such approaches to natural language process-
ing are capable of delivering highly accurate analyses when
compared to shallower NLP systems. As pivotal central
parts of continuous efforts on grammar engineering over
the last decade, several of such grammars have achieved
broad coverage on various linguistic phenomena in recent
years, and have been successfully integrated in several NLP
applications including information extraction, question an-
swering, grammar checking, machine translation, and intel-
ligent information retrieval, among others.
However, being highly restricted rule systems, these gram-
mars are typically vulnerable to noisy inputs, and perform
badly in terms of robustness. This is one of the major
reasons why, despite being highly valuable language re-
sources, precision grammars have been very much under-
used in real world applications in the past decades. Baldwin
et al. (2004) reported that the jun-04 version of the English
Resource Grammar (ERG; Flickinger (2002)) achieves full
lexical span1 over a mere 32% of a random sample of 20K
BNC strings. Among these inputs, 57% receive at least one
analysis. Through a series of parsing coverage tests, Zhang
and Kordoni (2006) also showed that, at least for grammars
similar to the ERG, incomplete lexicon is one of the ma-
jor sources of parsing failures, with the other major source
being missing grammar constructions.
Targeting the missing lexical coverage in hand-crafted lex-
ica of manually developed linguistically motivated preci-
sion grammars, like the ones mentioned above, several
deep lexical acquisition approaches have been proposed
(cf., Baldwin (2005), Zhang and Kordoni (2006)). The gen-
eral idea shared among such approaches is to use available
language resources (either derived from the grammar out-

1A sentence which has a full lexical span from a grammar con-
tains only words already licensed by the lexicon of the aforemen-
tioned grammar.

puts themselvers – the so called in vivo deep lexical acqui-
sition approaches –, or from external language resources –
the so called in vitro lexical acquisition approaches) in or-
der to automatically acquire the required linguistic knowl-
edge and extend the lexicon. While the lexical coverage has
been proven to largely improve with statistical lexical type
prediction models like the one proposed in Zhang and Kor-
doni (2006), for instance, the missing constructions present
a more serious coverage gap, as also briefly mentioned
above. More specifically, in (Zhang, 2007), a coverage test
run with chronologically different versions of the ERG has
shown that, with the increased efforts invested into gram-
mar engineering, the coverage of the specific grammar has
shown a very promising improvement over the years. How-
ever, it is still unlikely for the specific precision large-scale
grammar to achieve full coverage on unseen data without
extra robust processing techniques. Also, the cost of manu-
ally extending the grammar would be too high to be easily
acceptable for other precision grammar-based parsing sys-
tems.
In (Zhang et al., 2007a), we have pointed out that most
applications are only interested in certain aspects of pars-
ing results. Full analyses are preferable, but not always
necessary. In fact, most of the contemporary deep pars-
ing systems provide as outputs either semantic representa-
tions that reflect the “meaning” of the input, or rather ab-
stract syntactic structures. Full representations with all de-
tailed linguistic features (e.g., typed feature structures in
HPSG) are almost never used either as output format or in
real applications. Take the DELPH-IN HPSG grammars,
for instance: Minimal Recursion Semantics (MRS, Copes-
take et al. (2005)) is used as the semantic representation in
these grammars. For recording syntactic structures, deriva-
tion trees are usually used. Based on this fact, (Zhang et
al., 2007a) have proposed to use partial parsing models to
recover the most useful fragment analyses from the inter-
mediate parsing results in cases of unsuccessful parses. To
this effect, two statistical partial parse selection models are
formulated, implemented, and evaluated.
Along the lines of the analysis presented in (Zhang et al.,
2007a), in this paper we propose a more elaborated par-



tial parsing model, in order to further simplify the training
procedure, so that full parse disambiguation models can be
reused in partial parsing. Moreover, this new model en-
ables us to obtain complete derivation trees, instead of a set
of subtrees. Furthermore, with robust semantic composi-
tion rules, the fragment semantic representations can be put
together in a robust, yet informative way.
The rest of the paper is structured as follows. Section 2.
provides background knowledge about the DELPH-IN
HPSG grammars, the semantic and syntactic representa-
tions, and the partial parsing model presented in Kasper et
al. (1999) and Zhang et al. (2007a). Section 3. presents the
new proposed two-stage robust parsing model. Section 4.
further elaborates on the implementation details of the two-
stage parsing model, including a detailed presentation of
the efficient processing techniques. Section 5. presents a
preliminary evaluation with the ERG using the PARC 700
Dependency Treebank (King et al. (2003)) sentences. In
Section 6. we discuss the advantages of our model, as well
as the remaining questions for future work. Section 7. con-
cludes the paper.

2. Background
Head-driven Phrase Structure Grammar (HPSG, Pollard
and Sag (1994)) is a well-known constraint-based gram-
mar formalism. Being a highly consistent grammar frame-
work, HPSG is a linguistic theory formulated purely with
Typed Feature Structures (TFSes, cf., Carpenter (1992)).
Due to its rigid mathematical foundation, HPSG has been
widely adopted in the development of linguistically mo-
tivated large-scale precision grammars for different lan-
guages.
Head-driven Phrase Structure Grammar is also at the heart
of DELPH-IN, a community effort on deep linguistic pro-
cessing with HPSG, which has delivered the most promis-
ing multilingual parallel grammar development with HPSG
to date. With a complete software tool-chain, ranging
from a grammar engineering platform, the LKB system (cf.,
Copestake (2002)), to performance profiling and teebank-
ing systems, the [incr tsdb()] platform (cf., Oepen (2001)),
an efficient parser, PET (Callmeier, 2001), and a hybrid
processing middle-ware, the HoG architecture (Callmeier
et al., 2004), linguists and computer scientists are able to
work together to develop language resources and applica-
tions with profound linguistic knowledge.
One of the most well-developed grammars in DELPH-IN
(also among hand-crafted grammars in any other frame-
work) is the English Resource Grammar (ERG, Flickinger
(2002)). The grammar achieves broad coverage on vari-
ous linguistic phenomena, but still remains rather restricted.
Therefore, it is not only used for parsing, but also for text
generation tasks.
On the semantic level, the English Resource Grammar out-
puts representations in the form of Minimal Recursion Se-
mantics (MRS, Copestake et al. (2005)), a representation
framework for computational semantics. The main as-
sumption behind MRS is that the interesting linguistic units
for computational semantics are the elementary predica-
tions (EPs), which are single relations with associated ar-
guments. The flat (non-recursive) structure of MRS is es-

pecially suitable for situations where semantic composition
is desired. Moreover, it can be easily integrated with the
HPSG grammar by embedding the MRS structure into the
typed feature structures.
On the syntactic level, on the other hand, a complete typed
feature structure should be used, in principle. However, this
is not necessary, for most of the features in the TFS are
considered internal to the grammar, and not suitable as out-
put format.2 In practice, the derivation trees are used. For
the DELPH-IN grammars, a derivation tree is composed
of leaf notes, each of which corresponds to a lexical en-
try, and intermediate nodes, each of which corresponds to
a grammar rule. Given an input and a grammar, a deriva-
tion tree records how an analysis is derived. By applying
grammar rules on the lexical entries in the way indicated by
a derivation tree, one can easily recreate the whole typed
feature structure. For this reason, the DELPH-IN tree-
banks (Oepen et al., 2002; Bond et al., 2004) only record
derivation trees.
Theoretically, the computational complexity in unification-
based parsing is exponential to the length of the input.
Given large-scale grammars like the ERG, it is crucial to
have an efficient parser that can discover analyses licensed
by the grammar. With continuous development in recent
years, the PET (Callmeier, 2001) parser has grown to be
one of the central components in the DELPH-IN software
tool-chain. PET is based on a bottom-up chart-based al-
gorithm, equipped with various efficient processing tech-
niques, including quick-check, ambiguity packing and se-
lective unpacking, among others. The robust parsing model
proposed in this paper has been implemented as an exten-
sion to the PET parser.
We should point out that this is not the first work to propose
a partial parsing model in order to improve the robustness
of a hand-crafted grammar. Although the idea is usually
to construct meaningful output structures from intermedi-
ate unsuccessful parsing results, the definition of a partial
parse is not consentaneous. It is largely dependent on the
paradigm of the parsing model. For instance, with bottom-
up chart-based parsing, Kasper et al. (1999) proposed to de-
fine a partial parse as a set of consecutive non-overlapping
passive parsing edges that together cover the entire input. In
cases where a multiple partial parse exists, a selection cri-
terion is required to decide which one is more preferable.
In other words, a partial parse selection model is required.
One of the simplest and most commonly used criterion is
to prefer the partial parses which contain an edge that cov-
ers the largest fragment of the input. However, there is no
strong motivation that makes this a good selection model.
An alternative selection model proposed by Kasper et al.
(1999) is to consider the parsing chart as a directed graph,
with vertex being all the positions between input tokens,
and arcs being passive parsing edges on the chart. Then a
best partial parse (as a set of arcs in the graph) connects

2We do not attempt to define here which representation is more
suitable as a parser output in a cross-framework context. In fact,
it is especially difficult to determine how syntactic information
should be presented as parser output. Therefore, the choice of
representation here is specific to the grammar in question, i.e., the
ERG.



the shortest path from the beginning to the end of the in-
put. Kasper et al. (1999) pointed out that the weights of
the arcs can be assigned by an estimation function in order
to indicate the preference over different fragment analyses.
The discovery of such a path can be done in linear time
(O(|V |+|E|)) with the DAG-shortest-path algorithm (Cor-
men et al., 1990). However, it is not clear (apart from some
simple heuristics) how the estimation function can be ac-
quired. Moreover, by its additive nature, the shortest-path,
such a model makes an implicit independence assumption
of the estimation function in different edge contexts.
Based on a similar definition of partial parse, Zhang et al.
(2007a) formulated the following statistical model:

log P (Φ|w) ≈ log P (Ω|w) +
k∑

i=1

log P (ti|wi) (1)

The above model contains two probabilistic components:
i) P (Ω|w) is the conditional probability of a segmenta-
tion Ω given the input sequence w; and ii) P (ti|wi) is the
conditional probability of an analysis ti for a given sub-
sequence wi in the segmentation. The empirical results
have shown that this selection model significantly outper-
forms the shortest-path based baseline selection model pro-
posed by Kasper et al. (1999). The evaluation was done
using multiple metrics. While there is no gold-standard
corpus for the purpose of partial parse evaluation, Zhang et
al. (2007a) manually compared the parser’s partial deriva-
tion trees with the Penn Treebank annotation for syntac-
tic similarity. Furthermore, Zhang et al. (2007a) evaluated
the fragment semantic outputs based on a practical estima-
tion of RMRS similarities described by Dridan and Bond
(2006). The semantic outputs of different partial parse se-
lection models were compared to the RMRS outputs from
the RASP system (Briscoe et al., 2006). If taken compar-
atively, all the results suggested that the model in (2.) per-
formed much better than the baseline. But they failed to tell
a clear story about the quality of the partial parse selection
model.
Unfortunately, the model is approximate because of the in-
dependence assumption between the two components (for
simplification). Also, due to the lack of training data, the
parameters of the two components were estimated over dif-
ferent data sets in the experiment, which has added further
doubt on the consistency of the resulting model. Moreover,
it is generally not desirable to have different statistical mod-
els for full and partial parse selection. Ideally, a uniform
disambiguation model should be used in both cases.

3. A Two-stage Robust Parsing Model
One common shortcoming of the partial parsing models
proposed in both (Kasper et al., 1999) and (Zhang et al.,
2007a) is that the results of partial parsing are sets of dis-
joint sub-analyses, either in the form of derivation sub-
trees, or in the form of MRS fragments. It is not informa-
tive enough to show the interconnection across the fragment
boundaries. It is not enough, either, to tell why a full anal-
ysis is not derived for the given input.
Ideally, the partial parsing model should not only tell us
which are good sub-analyses, but also predict what the

missing parts from a full analysis are, should the input be li-
censed by the grammar. In a bottom-up chart-based parser,
when a full analysis is not derived, the parser stops at a
stage where no more grammar rule can be applied to either
combine or create new edges on the chart. At this stage, all
the passive edges on the parsing chart represent a licensed
local analysis for the tokens within its span. Typically, for a
broad coverage precision grammar with a well-formed in-
put, certain rules fail to apply because some constraints are
too strict. By relaxing the constraints in grammar rules,
more robustness can be achieved.
The basic idea of the robust parsing model we propose in
this paper is to use a set of less restrictive grammar rules
to continue parsing with the passive parsing edges created
with HPSG rules and lexical entries during the unsuccessful
parse. To differentiate these less restrictive grammar rules
from the original HPSG rules, we call them robust rules.
Several different ways of acquiring robust rules exist. In
this paper, we use a context-free backbone grammar to sim-
ulate the behaviour of original HPSG rules. By choosing the
CFG backbone, we will ignore the constraints encoded as
typed feature structures. This allow us to generalise the ap-
proach beyond the specific grammar. Also, the robust pars-
ing model we are concerned with in this paper focuses on
improving constructional coverage. Therefore, only syntac-
tic phrase structure rules are extracted. The missing lexical
entries, together with the lexical rules should be captured
through the lexical acquisition process. Figure 1 gives an
example HPSG derivation tree and the corresponding CFG
backbone.
Using these rules, together with the passive parsing edges
create with HPSG rules in the first parsing stage, we are
likely to be able to build larger analysis trees during the
second parsing stage when the TFS unification-based pars-
ing is substituted by CFG parsing. All the TFSes created are
ignored (but still kept along with the passive edges created
during the fist stage). Only the rules symbols are used as the
category of the edge. Since the CFG backbone grammar
uses the HPSG grammar rules names for its non-terminal
nodes, the resulting parse trees are very similar to the HPSG
derivation trees. The only difference is that a valid TFS
cannot be recreated for those nodes constructed with CFG
rules. We call such trees pseudo-derivation trees.

the

det_the_le plur_noun

Lakers

wins

third_sg_fin_verb

v_unerg_le

subjh

hspec

STAGE 1

STAGE 2

Figure 2: An example of pseudo-derivation tree in a two-
stage robust parsing model

Figure 2 gives an example of a pseudo-derivation tree for
the input the Lakers wins. Suppose the HPSG lexicon does



subjh

hspec

det the le

the

sing noun

n intr le

dog

third sg fin verb

v unerg le

barks

subjh → hspec third sg fin verb

hspec → det the le sing noun

Figure 1: An example HPSG derivation tree and its corresponding CFG backbone. Note that the lexical rules (unary
projections from pre-terminal nodes) are not included in the CFG backbone.

not have a proper noun entry for Lakers, this will be falsely
analysed as a plur noun during the first parsing stage. The
first parsing stage stalls at the point where the HPSG head-
subject fails to apply because of the disagreement on the
number of the subject and the head phrase. With the CFG
rule:

subjh → hspec third sg fin verb

a CFG passive edge subj is constructed during the second
parsing stage; this covers the entire input, and completes
the pseudo-derivation tree.
Constructing pseudo-derivation trees does not only predict
the structure of full analyses, but it also helps simplify the
partial parse disambiguation process. In recent years, the
log-linear model shown in (3.) has been widely used in
many parsing systems. Toutanova et al. (2002) proposed
an inventory of features that perform well in HPSG parse
selection.

P (t|w) =
exp

∑n
j=1 λjfj(t, w)∑

t′∈T exp
∑n

j=1 λjfj(t′, w)
(2)

For the DELPH-IN grammars, the best performing features
comprise the depth-one sub-trees (or portions of these) with
grammar rule names as node labels, plus optionally a chain
of one or more dominating nodes (i.e., levels of grandpar-
ents). All these feature can be gathered from the derivation
trees without consulting the TFSes. Therefore, the same
discriminative model can be also applied to rank pseudo-
derivation trees.
One potential risk of reusing the full parse disambiguation
model is that the model P (t|w) is conditional. Depend-
ing on the difference on the possible analyses (T ) licensed
by the grammar, the model is not guaranteed to be consis-
tent when trained on a HPSG treebank and applied on CFG-
based pseudo-derivation trees (a similar issue pointed out
by Abney (1997)). A potential solution for this is discussed
in Section 6.. However, we find that the full parse disam-
biguation model works very well in practice, for the CFG
backbone extracted from the HPSG treebank closely mim-
ics the behaviour of HPSG rules. In the experiment of this

paper, a full parse disambiguation model trained on HPSG
treebanks is directly used for partial parse ranking.

4. Some Notes on Implementation
The two-stage robust parsing model is implemented as an
extension to the PET parser working with the jul-07 version
of the ERG.
The modified parser starts parsing with HPSG rules and
TFS unification as usual. The second parsing starts when
there is no full analysis found during the first stage. At
the beginning of the second parsing stage, a new parsing
chart is initiated with all passive parsing edges copied from
the chart in the first stage. CFG rules are used to combine
the passive edges and create new ones using an agenda-
driven bottom-up algorithm. Extra checking must guaran-
tee that new edges will not duplicate the existing passive
edges (with same daughters and rule name) in the old chart.
For efficiency considerations, the PET parser uses
subsumption-based ambiguity packing to effectively repre-
sent the local ambiguities. During the second parsing stage,
there is no TFS for CFG passive edges; we use equivalence-
based packing (i.e., two edges are packed together if they
have the same span and share the same rule name). Dur-
ing unpacking, we use the selective unpacking algorithm
proposed by Carroll and Oepen (2005) and Zhang et al.
(2007b) to efficiently extract the most probable pseudo-
derivation trees. The unpacking algorithm is slightly mod-
ified so that it will not try to instantiate the TFS for CFG
edges. The rest parts of the unpacking algorithm remain
the same, and extraction of exact n-best readings is guaran-
teed.
The CFG backbone grammar for ERG is extracted from the
LOGON treebank (Oepen et al., 2004). We only extract syn-
tactic rules that occur at least 5 times in the treebank. This
gives us a CFG backbone grammar with about 2.5K unary
and binary rules. For unary rules, we further filter out those
that may lead to infinite recursion. We should point out
that the decision of which CFG rules to extract is still an
open question. Currently we only extract frequent rules, for
they are more likely to be used in the ERG derivation trees.
Moreover, by reducing the number of CFG rules, the sec-
ond parsing stage becomes much more efficient. For parse



disambiguation, we use the model trained on the LOGON
treebank with depth-one tree features with up to 3 levels of
grandparents, which has so far worked reasonably well in
different application scenarios.

5. Evaluation
As Zhang et al. (2007a) have also pointed out, the evalua-
tion of a partial parser is a very difficult task as such, due to
the lack of gold-standard annotation for sentences that are
not fully analysed by the grammar. For the purpose of eval-
uation, Zhang et al. (2007a) compared the partial deriva-
tion tree to the Penn Treebank bracketing, and partial RMRS
fragments to the RASP RMRS outputs. Although the results
have shown that the proposed partial parsing model per-
forms comparatively better than the baseline model, it is not
convincing in relation i) to how informative it is to compare
HPSG derivations with Penn Treebank bracketings; and ii)
to whether RASP RMRS output should be considered for
evaluation comparison in the first place at all.
For these reasons, a manual evaluation has been carried out
for the new proposed partial parsing model in this paper.
For the experiment, we selected a subset of 267 sentences
from the PARC 700 Dependency Bank (King et al., 2003),
which have full lexical span licensed by the ERG. Among
these sentences, 213 are parsed out of the box. For the re-
maining 54 sentences, the two-stage partial parsing model
built pseudo-derivation trees for 41 of them. The remain-
ing sentences are either not well-formed (exhibiting among
them, for instance, garbage strings, incomplete utterances,
etc.), or the parser is missing appropriate lexical entries.
Among those sentences for which pseudo-derivation trees
could be constructed, 13 of them are completely correct,
and another 18 have no more than 2 cross-bracketings. In
about half of the cases where the pseudo-derivation tree is
wrong, there is a key lexical entry missing in the grammar
lexicon. This indicates that an automatic lexical acquisi-
tion model should be used in combination with the partial
parsing model. Some errors in the pseudo-derivation trees
indicate that the rule names symbols (as used in the deriva-
tion trees) are not informative enough for the CFG parser in
the second stage in order for good predictions to be made.

6. Discussion
Although the evaluation shows promising improvement on
the grammar coverage, it is noticed that the type of the ro-
bust rules in use plays a significant role in our robust pars-
ing model. As pointed out in Section 3., the choice of ro-
bust rules is not limited to context-free grammars directly
extracted from derivation trees. The flexibility allows us
to achieve different levels of robustness, while maintain-
ing the desired accuracy. In extreme cases, the robust rule
may allow any sub-structures to be combined. But then it
merely has any prediction power, and is practically equiv-
alent to the shortest-path model. A context-free backbone
grammar seems to be a reasonable choice, for it can be eas-
ily acquired from parser outputs, and can be used for effi-
cient parsing. With rule symbols as CFG non-terminals, it
appears to be too abstracted in some cases, and may lead
to overgeneration. One solution to this would be to modify

the CFG rules symbols with phrase categories (i.e., NP, VP,
AP, PP, etc).
In Section 3. we have also mentioned that the parse dis-
ambiguation model trained on HPSG treebanks is not guar-
anteed to be consistent when used for pseudo-derivation
tree disambiguation. The main reason is that some of the
pseudo-derivation trees produced by the CFG are not li-
censed by the HPSG rules. It can be expected that with a
set of relative strict robust rules the discrepancy would be
relatively small. For rule sets which are much more relaxed
than the HPSG rules, one could update the disambiguation
model by extending the training HPSG treebank with the
extra trees licensed by the robust rules.
Another interesting topic that we have not discussed so far
is that the two-stage parsing model opens the possibility
of achieving robust semantic composition. In HPSG, the
semantic compositions are carried out simultaneously with
the syntactic analyses. However, most of the composition
can be done without the lexicalised syntactic information.
By encoding the general semantic composition rules into
the robust parsing rules, the fragment semantic representa-
tions can be connected.
Although this paper focuses on the robustness issue in re-
lation to constructions, the fact that HPSG is a highly lexi-
calised framework entails that the lack of robustness in the
lexicon may also lead to parsing failures (cf., Figure 2). If
we think of the two-stage parsing model as a top-down ap-
proach to predict the upper part of a parse tree, then the
automatic lexical acquisition model will serve as a bottom-
up predictor that fills in the knowledge gaps about words.
Exploring the interconnection between the two prediction
models would be another interesting topic for our future
work.

7. Conclusion
In this paper, we have proposed a two-stage model for ro-
bust parsing with a large HPSG grammar. The model uses
a less restrictive grammar derived from the HPSG parser
outputs to continue parsing based on the fragment analyses
produced by the HPSG rules. With the pseudo-derivation
trees constructed by the partial parsing model, the full parse
disambiguation model is applied in partial parse selection.
The approach also opens the possibility of achieving robust
semantic composition which remains to be explored in the
future work.
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