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Abstract. The extraction of a parametric global motion from a motion
field is a task with several applications in video processing. We present
two probabilistic formulations of the problem and carry out optimization
using the RAST algorithm, a geometric matching method novel to mo-
tion estimation in video. RAST uses an exhaustive and adaptive search
of transformation space and thus gives – in contrast to local sampling
optimization techniques used in the past – a globally optimal solution.
Among other applications, our framework can thus be used as a source
of ground truth for benchmarking motion estimation algorithms.
Our main contributions are: first, the novel combination of a state-of-
the-art MAP criterion for dominant motion estimation with a search
procedure that guarantees global optimality. Second, experimental re-
sults that illustrate the superior performance of our approach on syn-
thetic flow fields as well as real-world video streams. Third, a significant
speedup of the search achieved by extending the model with an additional
smoothness prior.

1 Introduction

We address the estimation of the dominant parametric motion from a sequence
of video frames. Such dominant motion is usually equated with background mo-
tion, and its precise and robust estimation is required for several applications
in the context of video analysis, like motion-based segmentation or motion com-
pensation (which again serves as a building block in modern video encoders, or
in video mosaicing).

Like most practical video processing systems, we estimate a global paramet-
ric motion from a field of local motion probes – a problem that is difficult due
to measurement noise, inaccuracies of the previous motion estimation step, and
deviant foreground motion. In terms of dominant motion estimation, such fore-
ground motion probes are “outliers” that have to be recognized and discarded
during the fitting process.



We view the problem from a parameter estimation perspective and propose
two Bayesian formulations, one of them including a smoothness prior. The result-
ing optimization problems are solved using the RAST algorithm [3]. While other
methods are based on a local sampling of search space and do not guarantee op-
timal solutions, RAST performs an adaptive, but exhaustive branch-and-bound
search and finds the global optimum. This fact is proven by experimental results
on synthetic motion fields as well as real-world video data.

Our main contributions are: first, the novel combination of a state-of-the-art
MAP criterion with a search procedure that guarantees global optimality up to
any accuracy desired. Second, experimental results that illustrate the superior
performance of our approach on synthetic flow fields as well as real-world video
streams. Third, a novel extension to the RAST algorithm with a smoothness
prior that leads to a better search strategy with a significant speedup.

2 Related Work

Motion interpretation has often been called a “chicken-egg” problem: motion
estimation is inaccurate without knowledge of motion boundaries due to the
aperture problem [1], while on the other hand motion segmentation requires
local motion estimates.

Methods to solve this problem can be divided into direct and indirect (or
“feature-based” [8]) methods. Approaches from the first category jointly esti-
mate motion and group it into coherent regions. Some estimate a parametric
motion over image regions – like regression [1], mixture models [9], clustering
methods [16], or formulations imposing additional shape priors [4]. Other direct
methods are nonparametric and assume piecewise smoothness of the motion
field, which leads to formulations related to Markov Random Fields [12, 17].

In contrast to this, indirect methods are two-step procedures: first, a motion
field is estimated using correlation-based techniques [15], feature tracking [14],
or optical flow. The result forms the input to a segmentation step, which must
cope with local outliers and inaccuracies due to noise in the measurement pro-
cess, error-prone motion estimation, and foreground objects in motion. For this,
greedy local search procedures have been used in the past, like robust least
squares, RANSAC [5], least median of squares, or least trimmed squares [10].

Since local errors in the motion estimation step cannot be undone, indirect
methods do not reach the robustness of direct ones. Nevertheless, they offer
simple and fast alternatives that are more popular in practice, and are applied
to several video processing tasks, like in state-of-the-art video codecs or video
mosaicing [13]. Our approach belongs to this second category. More precisely, we
assume a motion field is given and focus on the motion interpretation step.

3 Statistical Framework

We assume that a motion field D = {(x1, v1), .., (xn, vn)} of 2D positions xi
associated with 2D motion vectors vi is given. These probes can correspond to
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a dense optical flow field, or to sparse probes obtained from block matching or
tracked point features.

The task is now to extract a parametric motion vθ : R2 → R2 that fits
D “well”, i.e. vi ≈ vθ(xi). Such parameterized motion has proven a simple and
often sufficiently accurate approximation to projected 3D scene motion. From
the parameterizations proposed in the literature [8, 13], we choose the similar-
ity transform consisting of a rotation by an angle α, a scaling s (e.g., due to
zooming), and a translation (dx, dy)T .

As an optimality criterion, we use a statistical formulation of the problem,
i.e. we choose the global motion θ̂ = (ŝ, α̂, d̂x, d̂y) that maximizes the posterior:

θ̂ = arg max
θ

P (θ|D) = arg max
θ

P (D|θ) · P (θ) (1)

3.1 Criterion Q1: Local Independence

For our first formulation, we assume a uniform prior P (θ) and independent
motion probes drawn from a distribution p(vi|θ). If we also neglect competitive
foreground motion and use isotropic Gaussian noise to model inaccuracies of
motion estimation and of the capturing process, p(vi|θ) is a Gaussian distribution
with mean vθ(xi) and diagonal covariance σ2I. In practical flow fields, however,
outliers occur – again, due to inaccuracies of the motion estimation process, but
also due to foreground objects moving in a different direction. Since we do not
have prior knowledge about the motion of such objects, we assume a uniform
distribution p(vi|θ) = c of foreground motion. This gives a more realistic scenario
including outliers:

p(vi|θ) ∝ max
(
N (vi; vθ(xi), σ2I), c

)
(2)

We insert this term into the overall likelihood and obtain

p(D|θ) =
∏
i

p(vi|θ). (3)

Maximizing this is equivalent to maximizing the following quality function de-
rived from the log-likelihood (for a detailed derivation, see [18]):

Q1(θ) =
∑
i

max
(

1− (vi − vθ(xi))2

ε2
, 0
)

=:
∑
i

q(vi, θ). (4)

The only free parameter of this ML criterion, ε, determines the allowed deviation
of a background motion sample from the parametric motion vθ. Note that Q1

consists of local contributions q(vi, θ) from the single flow samples, which are
in the following referred to as the support of a local flow probe vi for a global
motion θ. This support is zero exactly if vi deviates by ε or more from the model
motion vθ(xi) (i.e. if vi is regarded as an outlier). Thus, the evaluation of Q1

provides a segmentation of the motion field into background and foreground.
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3.2 Criterion Q2: Spatial Coherence Prior

The optimality criterion Q1 introduced in Equation (4) is derived from the like-
lihood and neglects the spatial coherence with which motion occurs in real-world
videos. Like other researchers before, we use this fact by formulating an addi-
tional prior related to formulations in Markov Random Fields [1, 6, 17].

For this, we first introduce a segmentation as a labeling of the motion vec-
tors L : {x1, .., xn} → {0, 1} such that L(xi) = Li = 1 iff vi belongs to the
background (which is the case exactly if q(vi, θ) > 0). Note that – given such
a labeling – we can automatically compute a motion θ(L) as a least squares
solution over the motion probes in the background region L−1(1). This is why –
instead of searching for a motion θ – we instead search for an optimal labeling
by maximizing the posterior:

P (L|D) ∝ P (D|L) · P (L) = P (D|θ(L)) · P (L) (5)

The first term corresponds to the likelihood criterion from Equation (3). For the
prior P (L), we define a neighborhood structure over the motion field sites {xi}
(for example, 4-connectedness on a regular grid of sites xi), which again induces
cliques of neighbor sites (all pairs of sites (xi, xj) which are adjacent). Let C
denote the set of all such cliques. Then we define P (L) as:

P (L) ∝
∏

(xi,xj)∈C

e−U(i,j) (6)

with U(i, j) = LiLj · c1 + (1− LiLj) · c2. This leads to the overall posterior

P (L|D) ∝
∏
i

p(vi|θ) ·
∏

(xi,xj)∈C

e−U(i,j) (7)

maximizing which is again equivalent to maximizing a simpler quality criterion
(a detailed derivation is again given in [18]):

Q2(θ) = Q1(θ) + γ
∑

(xi,xj)∈C

LiLj (8)

where Q1 is the quality from Equation (4). The free parameter γ > 0 determines
the weight of spatial coherence relative to the goodness-of-fit term Q1. It depends
on c, c1, and c2, and is set manually in practice.

3.3 Optimization using RAST

Both criteria Q1 and Q2 can be highly non-convex for motion fields in practice
such that techniques based on a sparse sampling of the space of possible motions
may get caught in local minima. We present an alternative based on a full search
of parameter space. Though more time-consuming, it is made feasible using an
adaptive search strategy. Our approach is called RAST (Recognition by Adaptive
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Search of Transformation space) [3]4. It has been applied in the domain of ge-
ometric matching before, but is novel to dominant motion estimation in video.
RAST is based on a branch-and-bound strategy: starting with the full parameter
space, a parameter subset is iteratively chosen and subdivided into two parts by
splitting along one parameter. We obtain subsequently finer subsets until fin-
ishing with a sufficiently small region corresponding to our estimate θ̂ (the user
can define the accuracy of the solution via this stopping criterion). The search
is guided into promising regions of parameter space by managing subsets in a
priority queue, i.e. for each subset an upper bound U of the quality is computed
and used to reinsert the subset into the priority queue.

The key part of the search is the computation of U . For Q1, the associated
bound is U1 =

∑
i ui, i.e. for each motion probe we find out (e.g., using interval

arithmetic [2]) if it can contribute to any global motion in the subset. For Q2,
U2 = U1 + γ ·

∑
(i,j)∈C uij with uij = 0 if ui = uj = 0 and uij = 1 otherwise.

i.e. after computing U1, an additional linear sweep through the motion probes is
required to increment the bound for each pair of adjacent potential background
sites.

4 Experiments

The most important capability of our approach is its optimality: the combination
of our statistical framework and the RAST optimization guarantees an optimal
solution up to any accuracy desired given a state-of-the-art statistical model –
a fact that is proven by quantitative experiments on synthetic motion fields,
which provide a controlled framework for evaluation with a well-known known
ground truth segmentation and ground truth motion. To validate that our model
is adequate in practice, we also present results for real-world video data.

4.1 General Setup

All input motion fields – synthetic or extracted from video – are defined at
16 × 16 macroblock positions (though our approach is not restricted to this
setup). For video streams, motion is estimated using the MPEG-4 video codec
XViD5 [15]. Global motion is parameterized using a similarity transform. The
following methods are tested:

1. Our Framework: We test our framework for both quality functions Q1 and Q2

(ε = 2.3, γ = 1). The 4-dimensional similarity transform space searched by
RAST should contain all reasonable motion between adjacent video frames.
We choose: σ ∈ [0.9, 1.1], α ∈ [−0.1, 0.1], (dx, dy) ∈ [−40, 40]2 . Search is
stopped if the evaluated subset has dimensions smaller than (0.0002)2 ×
(0.1)2. This means, the solution is determined with an accuracy of 0.1 pixels
for the translation, 0.0002 rad for the rotation, and 0.0002 for the scale.

4open source implementation at http://www.iupr.org/˜chl/multirast.tar.gz
5www.xvid.org
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(a) (b) (c)

Fig. 1: (a) A synthetic motion field with three blobs each moving in different directions.
(b) and (c) Motion estimation results on synthetic blob data. (b) shows the average
segmentation error (depending on the fraction of the screen occupied by competitive
foreground motion), (b) the squared error of the estimated x translation relative to the
ground truth.

2. Least Squares: standard least squares regression is equivalent to maximizing
a quality function similar to Q1, but with a pure Gaussian motion vector
density instead of a truncated Gaussian one. It is thus expected to perform
poorly when competitive foreground motion occurs and serves as a baseline.

3. Robust Least Squares: this method alternately computes least squares motion
estimates and discards motion samples from D that deviate further than an
outlier threshold σ. Our implementation generates a sequence of solutions
by decreasing σ according to the schedule σk+1 = 0.95 · σk until σ < 2.3.

4. RANSAC: Random Sample Consensus (RANSAC) [5] is a popular Monte
Carlo procedure with excellent robustness to outliers and noise [7, 11]. It
is based on an iterated random subsampling of D. The probability of fail-
ure decreases with the number of iterations, but never reaches 0, such that
optimality is not guaranteed. RANSAC is tested for both Q1 and Q2.

5. XViD Dominant Motion Estimation: this is the dominant motion estimation
component that the XViD codec uses for compression purposes. The imple-
mentation is comparable to robust least squares, but with a more greedy
outlier rejection strategy.

4.2 Synthetic Flow Fields

In a first experiment, we use synthetic flow fields of blob regions moving in front
of a moving background with the purpose of simulating the phenomena of noise
and spatial coherence in real-world video frames.

Like the example illustrated in Figure 1(a), all motion fields are derived from
a dominant motion and three foreground motions. The background motion is
randomly drawn from [−0.05, 0.05]× [0.95, 1.05]× [10, 10]2. Also, three blobs are
initialized with a random motion from {0} × {1} × [−16, 16]2. All blobs are of
the same size such that they – when non-overlapping – occupy a certain fraction
f ∈ {0.4, 0.6, 0.7} of the field. Also, isotropic Gaussian noise with standard
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(a) (b) (c)

Fig. 2: (a) A frame from the mobile sequence. (b) and (c) Motion segmentation (red
vectors belong to the background, white ones to the foreground) and difference between
motion-compensated frames for XViD (b) and RAST (c). For XViD, a wrong estimate
leads to a poor motion compensation on the upper left part of the frame.

deviation σ ∈ {1.0, 1.3, 1.6, 2.0, 2.3} is added to each motion vector, obtaining a
total of 1000 motion fields.

Numerical results for all test methods except the XViD codec (which we apply
to real-world videos only) and least squares (which performed much worse than
all other methods) are given in Figures 1(b) and 1(c). In Figure 1(b), the average
segmentation error is plotted against the fraction f occupied by the foreground,
reaching from 0.4 to 0.7. Note that some intrinsic segmentation error results
from outliers due to noise. The rate of such outliers – and thus the segmentation
error – constantly drops with f . Our framework gives lower segmentation error
rates than all other methods. The robust least squares method tends to break
at high foreground fractions. Between RAST and RANSAC (100 iterations), a
difference of about 1 % in segmentation error can be observed.

In Figure 1(c), we plot the average error of the estimated motion (more
precisely, for the x-translation parameter) for the noise level σ = 2.0 against the
foreground fraction f . Again, our framework shows the best performance. The
average mean squared error remains below 0.2 pixels. Also, it can be observed
that Q1 and Q2 give a similar performance.

4.3 Test Sequences “Mobile” and “Snooker”

To validate its performance on real-world video data, we first apply our frame-
work to MPEG-4 motion vectors derived from the “mobile and calendar” test
sequence6. The sequence shows a textured background behind three foreground
objects, each moving in a different direction approximately perpendicular to the
optical axis. We subsampled the sequence in the temporal domain at 1 fps, ob-
taining 11 frames 22 × 18 macroblocks each. One frame is shown in Figure 2
together with motion estimates for XViD and RAST. The motion visualization
is layed over a motion-compensated difference image. For the RAST result, the
difference is low except for foreground regions. For the XViD result, it can be

6http://www.m4if.org/resources.php
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(a) (b)

Fig. 3: Motion support results for (a) the mobile test sequence (11 frames) and (b) the
snooker test sequence (90 frames).

seen that parts of the background (on the upper left) have been classified as
foreground and have thus been poorly compensated for.

Figure 3(a) illustrates the motion supportQ1 for several test methods, plotted
over the frames of the mobile test sequence. For RANSAC and RAST, the ML
formulation was used.

We also compared the average processing time of RAST for both criteria Q1

(2.85 sec./frame, 1.6 Ghz Pentium M) and Q2 (1.07 sec./frame). Interestingly,
the spatial prior – though demanding an extra sweep through all motion samples
for the evaluation of a subset – leads to a significant speedup (62 %) that can be
observed throughout all of our experiments. Obviously, spatial coherence helps
to discard bad motion hypotheses early that are scattered over the field, and to
guide search into promising regions of transformation space. This insight might
be interesting in the geometric matching domain where RAST was developed.

Comparable results can be observed for our second test sequence “snooker”
captured from a TV sports broadcast (90 frames), showing a snooker player
tracked by a camera with a strong translation. The support Q1 for the sequence
is plotted in Figure 3(b) (for RANSAC, 20 iterations were used). Again, XViD
and least squares give relatively poor results. RANSAC and robust least squares
perform comparable to our method, but fail occasionally.

For both sequences, the support for our approach serves as an upper bound
for the performance of other methods.

4.4 Test Sequence “Foreman”

In this experiment, we test the performance of our approach for motion segmen-
tation on a subsampled version of the MPEG-4 test video sequence “foreman”
(80 frames) that comes with a ground truth segmentation mask. The sequence
shows strong, chaotic camera motion and a highly non-planar background.

Again, we tested several methods, for RAST and RANSAC (100 iterations)
including the spatial prior (Q2). Segmentation results are compared to the ground
truth on block basis (mixed blocks showing more than 5 % of both foreground
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method segmentation
error rate

RAST 0.24

RANSAC 0.25

Robust LQ 0.26

XViD 0.33

LQ 0.41

(a) (b) (c)

Fig. 4: (a) Average segmentation error rates for the foreman sequence. (b) A frame from
the foreman sequence, and (c) a typical segmentation result evaluated using MPEG-4
ground truth segmentation masks. Blue blocks are ignored, red blocks are misclassified.

and background pixels are ignored). The resulting error rates are given in Fig-
ure 4 (a), a sample segmentation is illustrated in Figure 4 (b) and (c). Our
method gives the best results, followed by RANSAC and robust least squares. A
high intrinsic error occurs due to two reasons (besides inaccuracies in the motion
estimation step): first, the object stands still in some frames and is missed by
motion segmentation. Second, the 4D motion model implicitly assumes a pla-
nar background surface perpendicular to the optical axis. Since this assumption
is heavily violated in the foreman sequence, the optimal motion fit cannot be
determined in some frames.

5 Discussion

We have presented a framework for the indirect estimation of a global motion
from a given motion field. Our method is based on two alternative probabilistic
formulations of the problem: an ML criterion assuming independence of motion
samples, and an extension with a spatial coherence prior enforcing piecewise-
smooth motion. The optimization of the resulting quality functions is done using
RAST, an approach novel to dominant motion estimation in video.

The most important capability of our framework is that our method – in
contrast to local search procedures used in the past – guarantees an optimal
solution up to any user-defined accuracy. We demonstrate this superior per-
formance on synthetic motion data showing blobs moving in front of a noisy
background motion, as well as on several real-world video sequences. Though
greedy search procedures may be fast, attractive solutions for online processing,
they do not guarantee global optimality. In this context, our framework might
provide ground truth for benchmarking global motion estimation in video.

Another novelty we present is the combination of RAST optimization with a
spatial prior formulation. In our experiments, we measured a significant speed-
up using this extension. Obviously, this approach helps to guide the adaptive
search into more promising regions of parameter space – an insight that might
be interesting for RAST applications in the area of geometric matching and
object recognition.
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