
Rapid Prototyping of CBR Applications
with the Open Source Tool myCBR

Armin Stahl1 and Thomas R. Roth-Berghofer2

1 German Research Center for Artificial Intelligence (DFKI) GmbH
Image Understanding and Pattern Recognition Department (IUPR)

Armin.Stahl@dfki.de

2 German Research Center for Artificial Intelligence (DFKI) GmbH
Knowledge Management Department

Trippstadter Straße 122, 67663 Kaiserslautern, Germany
Thomas.Roth-Berghofer@dfki.de

Abstract. Although Case-Based Reasoning (CBR) claims to reduce
the effort required for developing knowledge-based systems substantially
compared with more traditional Artificial Intelligence approaches, the
implementation of a CBR application from scratch is still a time consum-
ing task. In this paper we present a novel, freely available tool for rapid
prototyping of CBR applications that focuses on the similarity-based re-
trieval step, like for example case-based product recommender systems.
By providing easy to use model generation, data import, similarity mod-
eling, explanation, and testing functionality together with comfortable
graphical user interfaces, the tool enables even CBR novices to rapidly
create their first CBR applications. Nevertheless, at the same time it
ensures enough flexibility to enable expert users to implement advanced
CBR applications.

1 Introduction

The development of a quite simple Case-Based Reasoning application already
involves a number of steps, such as collecting case and background knowledge,
modeling a suitable case representation, defining an accurate similarity measure,
implementing retrieval functionality, and implementing user interfaces. Com-
pared with other AI approaches, CBR allows to reduce the effort required for
knowledge acquisition and representation significantly, which is certainly one of
the major reasons for the commercial success of CBR applications. Nevertheless,
implementing a CBR application from scratch remains a time consuming soft-
ware engineering process and requires a lot of specific experience beyond pure
programming skills.

Although CBR research has a history of about 20 years now, and in spite of
the broad commercial success of CBR applications in recent years, today only
few CBR software tools for supporting the development process are available.
Software products used for implementing large-scale commercial applications are
typically very complex, consist of various modules, and require quite a long time



2

to get familiar with the various functionalities and configuration possibilities.
Another problem are the high licensing costs of these products and also if the
vendors provide cheap or even free research licences, it is usually impossible
to just download the software without carrying out an annoying registration
procedure. This makes these products little attractive for research, teaching,
small commercial projects, or first feasibility studies.

For these purposes, more easily available and less complex CBR tools are
required. Unfortunately, such solutions are nearly missing today at all. One
exception is the Open Source JColibri1 system, which provides a framework for
building CBR systems based on state-of-the-art Software Engineering techniques
[1]. The key idea of the system is to combine software reuse with the more general
AI paradigm of separating the reasoning algorithms from the domain model.

In this paper we present the novel Open Source CBR tool myCBR2 developed
at the German Research Center for Artificial Intelligence (DFKI). The key mo-
tivation for implementing myCBR was the need for a compact and easy-to-use
tool for building prototype CBR applications in teaching, research, and small
industrial projects with minimal effort. Moreover, the tool should be easily ex-
tendable in order to facilitate the experimental evaluation of novel algorithms
and research results. Many ideas for the implementation of myCBR came from
the old CBR-Works system3 [2] but which is not available any more.

The current version of myCBR still focuses on the similarity-based retrieval
step of the CBR cycle [3], because that is still the core functionality of most
CBR applications. A popular example of such retrieval-only systems are case-
based product recommender systems [4]. While the first CBR systems were often
based on simple distance metrics, today many CBR applications make use of
highly sophisticated, knowledge-intensive similarity measures [5]. On the one
hand, such extremely domain specific similarity measures enable to improve the
retrieval quality substantially. However, on the other hand, they increase the
development effort significantly.

The major goal of myCBR is to minimize the effort for building CBR applica-
tions that require knowledge-intensive similarity measures. Therefore, it provides
comfortable graphical user interfaces for modeling various kinds of attribute-
specific similarity measures and for evaluating the resulting retrieval quality. In
order to reduce also the effort of the preceding step of defining an appropri-
ate case representation, it includes tools for generating the case representation
automatically from existing raw data.

In the next Section we give an overview of the basic concept and system
architecture of myCBR. In Section 3 and 4 we then describe the technical
approaches, how rapid prototyping of CBR applications is supported by myCBR.
In Section 5 we conclude with a summary and an outlook on future plans for
improving and extending myCBR.

1 http://gaia.fdi.ucm.es/projects/jcolibri
2 http://www.mycbr-project.net
3 CBR-Works has been developed at the University of Kaiserslautern in cooperation

with empolis knowledge management GmbH, former tecinno GmbH.



3

2 The myCBR Architecture

From its conception, myCBR was designed with improved communication be-
tween the system and the user—knowledge engineer and end-user—in mind. The
novice as well as the expert knowledge engineer is supported during the devel-
opment phase of a myCBR project through intelligent support approaches and
advanced GUI functionality.

The foundation of every CBR system are certain knowledge representation
formalisms required to describe the content of the individual CBR knowledge
containers, namely the vocabulary, the similarity measure, the adaptation knowl-
edge, and the case knowledge [6]. Since knowledge representation is a key issue for
most Artificial Intelligence (AI) Systems, various software tools for supporting
knowledge engineering tasks are already existing today.

One of the most popular and widely used systems is certainly the Java-
based Open Source ontology editor Protégé4 [7]. A major reason for the success
of Protégé is its flexible extensibility by providing a plug-and-play environment
that enables users to add and distribute new modules easily. This makes Protégé
a flexible base for rapid prototyping and application development in various
application domains.

In order to avoid a reinvention of the wheel, we have chosen Protégé as the
modeling platform for myCBR. In our point of view, the use of Protégé brings
two main advantages: First, the effort for implementing data structures and user
interfaces for representing the vocabulary and the case knowledge can be saved.
Second, it allows to add CBR functionality to existing Protégé applications with
minimal effort. Due to the large community of Protégé developers and users, in
the long term this may help to spread the use of CBR technology in other AI
communities.

The basic architecture of myCBR is illustrated in Figure 1. During the devel-
opment phase of an CBR application, myCBR runs as a plug-in within Protégé.
This plug-in consists of the following modules:

Modelling tools: These tools extend the existing functionality of Protégé for
creating domain models and case instances and add the missing functionality
for defining similarity measures.

Retrieval GUI: The retrieval GUI provides powerful features for analyzing the
quality of the defined similarity measures. Moreover, it can also serve as the
user interface of first prototypical CBR applications.

Retrieval engines: For executing the similarity-based retrieval, different re-
trieval engines are provided.

Explainer: A dedicated explanation component provides modelling support in-
formation as well as explanations of retrieval results for quicker roundtrips
of designing and testing (see also Section 4).

After installing and activating the myCBR plug-in, the user interface of
Protégé is extended with additional tabs to access the myCBR modules. Fig-
ure 2 shows, for example, how the myCBR editor for configuring class specific
4 http://protege.stanford.edu/



4

Development
phase

Application
phase

Protégé

Retrieval GUI

(Web) application

Modelling tools

Retrieval
engines Explainer

Retrieval
engines Explainer

XML
files

Fig. 1. The system architecture of myCBR

similarity measures integrates into the Protégé environment consisting of class
and slot browsers.

As a result of the modeling and development phase, the complete domain
and similarity model together with the case base can be exported to XML files.

Although the myCBR Protégé plug-in already allows to create a full and
running application, in many projects custom-made user interfaces and an in-
tegration of the CBR system into existing infrastructure is required. For this
purpose, after developing a CBR application using the Protégé plug-in, myCBR
can also be used as a stand-alone Java module, to be integrated in arbitrary ap-
plications, for example, JSP5-based web applications. In this application phase,
the retrieval engines of myCBR just read the XML files generated during the
previous development phase and perform the similarity-based retrieval.

End-users of the final myCBR-enhanced application can be further supported
by providing explanations about the retrieval process.

3 Developing CBR applications with myCBR

In this section we describe in more detail how myCBR supports rapid prototyp-
ing of CBR applications. This includes the generation of case representations, the
definition of similarity measures, the testing of retrieval and use of explanation
functionality, and finally the implementation of stand-alone applications.

5 Java Server Pages



5

Fig. 2. The myCBR Protégé plug-in

3.1 CSV Data Import and Automatic Model Generation

The starting point of many CBR projects is the collection of initial case data. The
existence of at least some case examples is usually a precondition for modeling
an accurate case representation and corresponding similarity measures.

myCBR is mainly intended for structural CBR applications that make use
of rich attribute-value based or object-oriented case representations. Of course,
since attribute values may also contain large parts of pure text, textual CBR
applications are also supported by myCBR, but are not the main focus of the
system. Although Protégé provides powerful graphical user interfaces for mod-
eling attribute-value based and object-oriented representations, their manual
definition remains a time consuming task. It includes the definition of classes
and attributes (called “slots” in Protégé) and the specification of accurate value
ranges required for a meaningful similarity assessment.

In order to facilitate the definition of case representations, myCBR provides
a powerful CSV6 data import module (see Figure 3). CSV files are widely used
to store attribute-value based raw data in pure ASCII format. For example, in
the Machine Learning community example data sets are usually exchanged by
using CSV files7. Using the CSV importer, the user has the choice to import
data instances into an existing Protégé data model, or to create a new model
automatically based on the raw data. In the latter case, myCBR generates a

6 Comma Separated Values
7 See, for example, http://archive.ics.uci.edu/ml/



6

Fig. 3. The CVS data importer

Protégé slot for each data column of the CSV file automatically. In order to
achieve maximal flexibility, the CSV importer provides the following features:

Slot creation: The importer analyzes the whole CSV data in order to deter-
mine accurate value ranges for the slots automatically. For textual data, the
user can specify a threshold on the number of unique values, in order to
control the generation of symbol and string slots. If a data column contains
less unique values than specified, the slot becomes symbolic (with all found
values as allowed symbols), otherwise it will be specified as a string slot.

Model Update: If a domain model is already existing, the CSV importer may
update the model according to the data in the given CSV file. Then missing
slots are created and value ranges of existing slots are updated once the
data contains values that do not fit into the predefined ranges. This can also
be done in a semi-automatic manner in order to investigate the differences
between the data and the existing model in more detail.

Creation of Instances: The user can choose whether he wants to import the
data by creating corresponding Protégé data instances or whether he wants
to create the domain model only.

Specification of Column Separators: Since the use of column separators
(comma, semicolon, etc.) is not standardized in CSV files, the user can spec-
ify the used separator prior to the import. By supporting a second level
separator, myCBR is also able to import set attributes (attributes with mul-
tiple values).



7

After the CSV data has been imported, the user may further modify the
generated case model (e.g. extend it to an object-oriented representation) in
order to meet the application specific needs. The final case model together with
the case base is stored by myCBR in XML files.

3.2 Modeling Similarity Measures

After having generated the case representation either by hand or by using the
CSV importer, the main task for creating a CBR application with myCBR is
the definition of an appropriate similarity measure. Here, myCBR follows the
local-global approach which divides the similarity definition into a set of local
similarity measures for each attribute, a set of attribute weights, and a global
similarity measure for calculating the final similarity value. This means, for an
attribute-value based case representation consisting of n attributes, the similarity
between a query q and a case c may be calculated as follows:

Sim(q, c) =
n∑

i=1

wi · simi(qi, ci)

Here, simi and wi denote the local similarity measure and the weight of attribute
i, and Sim represents the global similarity measure. myCBR is also able to deal
with more structured, object-oriented representations and supports suited global
similarity measures as described in [8].

The editor for specifying global similarity measures was already shown in
Figure 2. Besides the use of a weighted sum, the user can also choose another
amalgamation function, i.e. the Euclidean distance. However, the most similar-
ity knowledge is encoded in the attribute specific local similarity measures. For
testing purposes and to ensure high flexibility, for both global and local simi-
larity measures the user can define and manage a set of different measures. The
measures that are currently marked as active are finally used for the retrieval.

In the following sections we give an overview of the various approaches for
modeling local similarity measures depending on the value type of the underlying
attribute.

Similarity Editors for Numeric Attributes. For numerical attributes, the
similarity computation is typically based on a mapping between the distance of
the two values to be compared and the desired similarity value:

simi(qi, ci) = f(d(qi, ci))

This means, the similarity modeling focuses on the definition of an accurate
mapping function f for a given distance function d [5]. For d, myCBR provides
two alternatives, either the absolute difference d(qi, ci) = ci − qi or the quotient
d(qi, ci) = ci

qi
of the two values. The latter one allows to model similarities

depending on a kind of relative distance, however, its application is restricted to
strict positive value ranges.



8

For modeling the mapping function f , myCBR provides two editing modes.
In the standard mode, the user can choose between some typical and adjustable
functions (e.g. step or asymptotic decreasing functions). In the advanced mode,
arbitrary mapping functions can be linearly approximated by specifying a set of
sampling points. These sampling points can be easily generated and manipulated
by using drag and drop functionality in a graphical editor (see Figure 4).

Fig. 4. The advanced similarity editor for numerical attributes

Similarity Editors for Symbolic Attributes. For symbolic attributes, sev-
eral possibilities to model the similarity are supported. The most general and
flexible way is the definition of a similarity table where all pairwise value combi-
nations together with their similarities are enumerated explicitly (see Figure 5a).
In order to make the editing as comfortable as possible, myCBR performs sim-
ilarity highlighting (similarity values are visualized by different cell colors) and
supports multiple cell selection.

However, for larger value sets the definition of similarity tables remains a
time consuming and annoying task. Therefore, myCBR supports more comfort-
able approaches for defining similarities on symbolic values. The first one is the
definition of a total order on symbols which allows to model the similarity like
for numerical values by just using their position in the order. The second and
more sophisticated approach is the arrangement of symbols in a taxonomy by
using comfortable drag and drop functionality (see Figure 5b). Once the tax-
onomy and its application specific meaning is specified, it can be deployed to
perform automatic similarity calculations (for details of this approach see [9]).

The user may start with the order or taxonomy approach to obtain a first
similarity measure very quickly. In order to ensure maximal flexibility, myCBR
supports the refinement of the similarity measure by switching to the table mode.



9

Now the user may change some of the precalculated similarity values for consid-
ering his application specific needs.

b)b)

a)

Fig. 5. Similarity editors for symbolic attributes: similarity table (a) and taxonomy
editor (b)

Similarity Editors for String Attributes. Although textual CBR is not the
main focus of the myCBR system, it provides flexible similarity measures for
string processing. First, the user may choose between word or character-based
processing modes. Depending on the selected mode, various approaches and con-
figurations to specify the actual similarity calculation are provided, e.g. exact
and partial matches, trigram matching, or regular expression based comparisons.

Similarity Editors for Set Attributes. Attributes that allow multiple values
(either numerical or symbolic) are a powerful concept for representing weakly
structured knowledge. However, the similarity calculation for such set attributes
is much more complex compared with single values. This concerns the compu-
tation complexity as well as conceptional issues. In general, the semantic of the
comparison of set values is extremely application specific. For example, a set of
values may have a kind of “and” or a kind of “or” semantic. Moreover, the size
of the query and case sets may have different influences on the similarity.

myCBR provides various options to configure similarity measures for set
attributes. Depending on the chosen settings, the mapping between query val-
ues and case values is calculated differently. For example, one might want to



10

match each query value with be best suited case values or vice versa. Moreover,
query/case values that could not be matched to a case/query value (e.g. because
the query contains more values than the case) may have a different impact on
the final similarity. Once the desired mapping is determined, the final similarity
computation is based on the basic similarity measures defined for the atomic
values of the sets. Depending on the data type, here the previously described
editors can be used.

Script-based and external Similarity Measures. In order to obtain max-
imal flexibility, for all kind of data types two additional similarity modes are
provided:

Script: myCBR includes a Jython8 binding and corresponding editors that al-
low the user to write own similarity measures in an easy to learn scripting
language.

External: This similarity mode allows the user to call external programs (e.g.
written in C/C++) for calculating similarities. This can be in particular
useful, if computation intensive calculations are required or if data types not
supported by Protégé are involved (e.g. images). In this case, the underlying
attribute in the case representation may provide an URL to the external
data source used by the external program to access the data.

Dealing with Missing Values. Missing attribute values (either in the query
or in the cases) are always a crucial issue during the similarity computation
because they prevent the computation of regular local similarities. Depending
on the application domain, missing values can have quite different meanings. For
example, in a product recommender system missing query attributes typically
represent “don’t care” statements of the customer, while missing case attributes
correspond to unknown or not existing properties of the products.

In myCBR missing values are always represented as special values. The de-
fault special value is “ undefined ”, however, the user is able to specify own
special values additionally. In order to cover the application specific require-
ments, the influence of each special value on the similarity computation can be
configured individually.

3.3 Testing of Retrieval Functionality

The definition of an optimal similarity measure is often a difficult and tricky
task which requires repeatedly testing and fine tuning. For this purpose, myCBR
includes a comfortable graphical user interface for performing retrievals and for
analyzing the corresponding results in detail (see Figure 6). On the right hand
side of the window an overview of the entire retrieval result is shown. In the
8 Jython is a Java-based scripting language with the same syntax than Python; for

details see http://www.jython.org/Project/index.html



11

center part of the GUI the query is opposed to a configurable number of retrieved
cases. By providing similarity highlighting and explanation functionality (cf.
Section 4), myCBR supports the efficient analysis of the outcome of the similarity
computation.

Fig. 6. Retrieval result with attribute values sorted in descending order of similarity
values. Note the decreasing highlighting of cells corresponding to local similarity.

The current version of myCBR provides two retrieval algorithms, a simple
sequential retrieval and a basic case retrieval net [10].

3.4 Building a Stand-Alone Application

After having created and tested the CBR functionality using the myCBR Protégé
plug-in, one may want to deploy that functionality in the scope of a particular
application without relying on the Protégé framework. A typical use case for
CBR systems are web-based applications, for example, to implement recommen-
dation functionality in e-Commerce applications.

myCBR provides a Java API which allows easy integration of the retrieval
functionality into arbitrary Java applications without requiring a Protégé in-
stallation. Using JSP a few lines of code are sufficient to implement a simple
web-based CBR application with custom-made user interfaces. An example of
such a web-based application is shown in Figure 7.

During the stand-alone operation of myCBR the XML files generated by the
Protégé plug-in serve as source for obtaining the similarity model, the configura-
tion options, and the case base. If certain maintenance operations are necessary,



12

Fig. 7. A myCBR web demo application (see also http://www.myCBR-project.net)

the XML files may be updated by using the Protégé plug-in again, or application
specific modules may change the XML files directly, for example, to store new
or to delete obsolete cases.

4 Explanation Functionality

Ease-of-use as well as approachability of any software system is improved by
increasing its understandability, which in turn can be supported by appropriate
explanation capabilities [11]. We follow Schank [12] in considering explanations
the most common method used by humans to support understanding and their
decision making. In everyday human-human interactions explanations are an
important vehicle to convey information in order to understand one another.
Explanations enhance the knowledge of the communication partners in such a
way that they accept certain statements. They understand more, allowing them
to make informed decisions.

This communication-oriented view leads to the following explanation scenario
comprising three participants (Figure 8). First, the originator that is a system
or an agent that provides something to be explained, e.g., the solution to some
problem, a technical device, a plan, a decision etc. In our case, the originator
comprises the modelling tools and the retrieval engines of myCBR. Second, the
user who is the addressee of the explanation. Third, the explainer who presents
the explanation to the user. This agent is interested in transferring the intention
of the originator to the user as correct as possible. The explainer chooses the
kind of the explanation [13] and is responsible for the computational aspects



13

as well as for organising a dialog if needed. Originator and explainer need to
work together rather tightly to improve the communication with the user. The
originator needs to provide the appropriate information in order to allow the
explainer constructing appropriate explanations.

In order to support the communication scenario described above, myCBR
provides two general kinds of explanations: forward and backward explanations.
Forward explanations explain indirectly, presenting different ways of optimizing
a given result and opening up possibilities for the exploratory use of a device or
application. Backward explanations explain the results of a process and how they
were generated. Details and technical aspects of how the explanation component
works are available in [14].

In order to increase transparency of and trust in the retrieval process [15],
myCBR creates an explanation object for each case during similarity calculation.
This tree-like data structure stores global and local similarity values as comments
for each attribute. These retrieval details are presented to the user in the retrieval
GUI (Figure 6) either as tool tips or in abbreviated form along with the case’s
attribute value, e.g., the price of car offer 455 (26,899) is 88% similar to the
requested car price (25,000). Another valuable feature is the option to find the
most similar cases with respect to a single attribute by simply clicking on the
attribute name (row head). In attribute rich cases one might also want to sort
the local similarity values of one case in ascending or descending order. This can
simply be achieved by clicking on the respective case name (column head).

While developing a CBR system an important question is whether a similarity
measure leads to the appropriate cases for a given query. Forward explanations
(not depicted in the screenshots) help predicting the behavior of the system
during modeling time and explain the interdependencies between the similarity
measure and the case base. For this, a central explanation component analyzes
the case base and gathers statistical information. The distribution of values in
the case base can already be quite helpful and may reveal parts of similarity
measures that are in fact never used (assuming that the case base covers most
of possible queries). Or they reveal missing border cases, which is important for
exception treatment.

User
Originator

Explainer

Fig. 8. Participants in explanation scenario



14

5 Conclusion and Outlook

In this paper we have presented a novel, freely available CBR tool that supports
rapid prototyping of advanced retrieval-based CBR applications. By providing
powerful but still easy-to-use model generation, data import, similarity modeling,
explanation, and testing functionality, myCBR enables even CBR novices to
rapidly create their first CBR applications.

Nevertheless, at the same time the support of object-oriented case represen-
tations, advanced similarity editors, various configuration options, integration of
a scripting language, and the possibility to call custom-made external modules
ensures very high flexibility in order to fit also the requirements of expert users
and complex application domains.

In focusing on the similarity-based retrieval step, myCBR differs from the
JColibri system which aims to cover the entire CBR cycle in a flexible way. How-
ever, JColibri does not provide comparable graphical user interfaces for defining
knowledge-intensive similarity measures but requires to program them by hand.
In the future, an integration of both Open Source systems in order to benefit of
the advantages of both might be worth to be considered.

myCBR is still an ongoing project and several extensions of the system are
already planned or are even already under development. In order to facilitate the
work with more structured, object-oriented case representations and to improve
the interoperability with existing IT infrastructure, one of the next steps is the
implementation of an interface for accessing relational database management
systems. This interface will provide an advanced data importer which enables
automatic generation of object-oriented case representations similar to the CSV
importer. Moreover, this interface will allow to retrieve cases directly from a
database instead of relying on XML files for storing case bases.

Another planned extension is the implementation of a rule engine for pro-
viding adaptation and completion rules [16]. This would make myCBR to a full-
fledged CBR system beyond pure similarity-based retrieval. Last but not least,
we plan to integrate our approaches to automatically learn similarity measures
based on given user/application feedback [17].

We also encourage other researchers to try out myCBR in their own research
and teaching projects and to contribute to the further development by imple-
menting their own extensions and experimental modules.

Acknowledgements

The authors would like to thank Daniel Bahls, Andreas Rumpf, and Laura Zilles
for their great implementation work and all the valuable discussions during the
development of the myCBR system. This work was partially funded by the fed-
eral state Rhineland-Palatinate under the project ADIB (Adaptive Provision of
Information).



15

References

1. Bello-Tomás, J., González-Calero, P.A., Dı́az-Agudo, B.: JColibri: An Object-
Oriented Framework for Building CBR Systems. In: Proceedings of the 7th Euro-
pean Conference on Case-Based Reasoning, Springer (2004)

2. Schulz, S.: CBR-Works - A State-of-the-Art Shell for Case-Based Application
Building. In: Proceedings of the 7th German Workshop on Case-Based Reasoning
(GWCBR’99). (1999)

3. Aamodt, A., Plaza, E.: Case-based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches. AI Communications 7(1) (1994) 39–59

4. Bridge, D., Göker, M.H., McGinty, L., Smyth, B.: Case-based recommender sys-
tems. Knowledge Engineering Review 20(3) (2006)

5. Stahl, A.: Learning of Knowledge-Intensive Similarity Measures in Case-Based
Reasoning. Volume 986. dissertation.de (2004)

6. Richter, M.M.: The Knowledge Contained in Similarity Measures. Invited Talk at
ICCBR’95 (1995)

7. Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriks-
son, H., Noy, N.F., Tu, S.W.: The evolution of Protégé an environment for
knowledge-based systems development. Int. J. Hum.-Comput. Stud. 58(1) (2003)
89–123

8. Bergmann, R., Stahl, A.: Similarity Measures for Object-Oriented Case Represen-
tations. In: Proceedings of the 4th European Workshop on Case-Based Reasoning
(EWCBR’98), Springer (1998)

9. Bergmann, R.: On the Use of Taxonomies for Representing Case Features and
Local Similarity Measures. In: Proceedings of the 6th German Workshop on Case-
Based Reasoning (GWCBR’98). (1998)

10. Lenz, M.: Case Retrieval Nets as a Model for Building Flexible Information Sys-
tems. Ph.D. Thesis, Humboldt University Berlin (1999)

11. Roth-Berghofer, T.R.: Explanations and Case-Based Reasoning: Foundational is-
sues. In Funk, P., González-Calero, P.A., eds.: Advances in Case-Based Reasoning,
Springer-Verlag (2004) 389–403

12. Schank, R.C.: Explanation Patterns: Understanding Mechanically and Creatively.
Lawrence Erlbaum Associates, Hillsdale, NJ (1986)

13. Roth-Berghofer, T., Cassens, J., Sørmo, F.: Goals and kinds of explanations in
case-based reasoning. In Althoff, K.D., Dengel, A., Bergmann, R., Nick, M.,
Roth-Berghofer, T., eds.: WM 2005: Professional Knowledge Management, Kaisers-
lautern, Germany, DFKI GmbH (2005) 264–268

14. Bahls, D.: Explanation support for the case-based reasoning tool mycbr. Project
thesis, University of Kaiserslautern (2008)

15. Roth-Berghofer, T.R., Cassens, J.: Mapping goals and kinds of explanations to
the knowledge containers of case-based reasoning systems. In Muñoz-Avila, H.,
Ricci, F., eds.: Case-Based Reasoning Research and Development, 6th International
Conference on Case-Based Reasoning, ICCBR 2005, Chicago, IL, USA, August
2005, Proceedings. Number 3620 in Lecture Notes in Artificial Intelligence LNAI,
Heidelberg, Springer Verlag (2005) 451–464

16. Bergmann, R., Wilke, W., Vollrath, I., Wess, S.: Integrating General Knowledge
with Object-Oriented Case Representation and Reasoning. In: Proceedings of the
4th German Workshop on Case-Based Reasoning (GWCBR’96). (1996)

17. Stahl, A., Gabel, T.: Using Evolution Programs to Learn Local Similarity Mea-
sures. In: Proceedings of the 5th International Conference on CBR, Springer (2003)


