

Anomaly Detection by Combining Decision Trees and Parametric Densities

Matthias Reif^1 , Markus $\mathsf{Goldstein}^1$, Armin Stahl^1 , $\mathsf{Thomas}\;\mathsf{M}.\;\mathsf{Breuel}^2$

¹German Research Center for Artificial Intelligence (DFKI), Kaiserslautern ²Technical University of Kaiserslautern

Introduction

- Anomalies are very different from normal data points and occur only rarely
- One class missing at training
- Classify unusual instances as anomaly
- Different approaches: statistical, distance or model based, profiling methods
- Generating counter-example to represent missing class at training

Our Approach

- Extension for standard decision tree algorithms
- -Able to deal with symbolic and continuous features
- -Instead of artificial counter-examples, use a parametric distribution for the anomaly
- Avoids trade-off between precision of sampling and the priors of the classes
- → More accurate split points
- → Faster training due to fewer samples

Decision Tree

- Node divides feature space from its parent into two or more disjoint ranges
- Algorithm selects split according to an impurity measure of node t, e.g.

$$i(t) = -\sum_{c \in C} \frac{N_c(t)}{N(t)} \log_2 \left(\frac{N_c(t)}{N(t)}\right) \tag{1}$$

-Best split s has highest decrease of impurity:

$$\Delta i(s,t) = i(t) - \frac{N(t_L)}{N(t)}i(t_L) - \frac{N(t_R)}{N(t)}i(t_R)$$
 (2)

- $-N_c(t)$ is number of instances of a class c at node t
- No samples of anomaly class c_A that can be count
- ightarrow Use density distribution to estimate N_{c_A}
- –We use uniform distribution with a defined prior probability $P(c_A)$
- ightarrow anomaly distribution comparatively small in areas with many given samples but dominates regions without regular instances

Uniform Distribution of Anomaly Class

Symbolic features → discrete uniform distribution

- Defined over a finite set S of possible values, all equally probable: $\frac{1}{|S|}$
- -probability that a feature has a value out of a set $M \subset S$: $P(X \in M) = \frac{|M|}{|S|}$

Continuous features → continuous uniform distribution

-constant probability density over a finite interval $[r^{min}, r^{max}]$:

$$f(x) = \begin{cases} \frac{1}{r^{max} - r^{min}} & x \in [r^{min}, r^{max}] \\ 0 & \text{otherwise} \end{cases}$$
 (3)

-probability that a data point is located inside a specific interval $[a,b] \subset [r^{min},r^{max}]$:

$$P(X \in [a, b]) = \int_{a}^{b} f(x)dx = \frac{b - a}{r^{max} - r^{min}}$$
 (4)

 $-r^{min}$ and r^{max} have to be defined before the training with $P(X \in [r^{min}, r^{max}]) = 1$

Joint Distribution

- -testing a split requires the number of instances which fall into the resulting subspaces
- -a subspace Q is defined by:
- -intervals $[a_i,b_i]\subset [r_i^{min},r_i^{max}]$ for all k_c continuous features
- -subsets $M_i \subset S_i$ of all k_s symbolic features
- -probability that a instance falls into ${\cal Q}$ is the joint probability:

$$P(X \in Q) = \prod_{i=1}^{k_c} P(X_i \in [a_i, b_i]) \prod_{j=k_c+1}^{k_c+k_s} P(X_j \in M_j)$$
 (5)

-expected number of instances within subspace Q_t of node t:

$$N_{c_A}(t) = N_{c_A} P(X \in Q_t) = \frac{P(c_A)}{1 - P(c_A)} N_n P(X \in Q_t)$$
(6)

 $-P(c_A)$ is the prior of the anomalous class and controls the trade-off between detection rate and false alarm rate

Methodology

Use Equation 6 when number of instances of the anomaly class is needed

→ no major changes in procedure of finding the best split

Suitable Split Points

- No changes for symbolic features required
- But mean of two successive values for continuous features does not work since it would lead to splits between known classes only
 - → cannot delimit regular classes from areas without training samples
- grid search over feature space too time intensive
- → test split points close to given samples

probable split points before and after redefinition of possible split points

Stopping Criterion

- Typical way of creating the tree recursively until training error is zero not possible since classifying a region as "known" causes always an error
- \to we have to define an error limit $\epsilon>0$ w.r.t. $P(c_A)$ in relation to the dimensionality of the data
- $-P(c_A)$ small, dimensionality rather high: \rightarrow use smaller ϵ to force cuts closer to the samples and increase detection rate

Use smaller ϵ to cut off smaller regions

Pruning

- most pruning techniques still applicable
- lower effect on methods dividing the training set because dividing the anomaly class makes no difference

Experiments and Evaluation

Synthetic Example

- two-dimensional space
- 1000 normally distributed data points
- -illustrates trade-off between detection rate and false alarm rate

(a) lower prior $P(c_A)$ (b) higher prior $P(c_A)$ Different prior probabilities of anomaly class (filled: regular; hatched = anomaly; brightness indicates confidence)

Real Life Data Sets

- three different Datasets from the UCI
 Machine Learning Repository
- training only on most common class
- at testing also one of the rare classes
- compared to other approaches [1][2][3]

ROC curves of KDD-Cup 99 data for Active Outlier, Bagging, and this paper

Dataset	Regular	Anomaly	Active	Bagging	Feature	Boosting	LOF	This
	Class	Class	Outlier		Bagging			Paper
Ann-thyroid	3	1	0.97	0.98	0.869	0.64	0.869	0.993
Ann-thyroid	3	2	0.89	0.96	0.769	0.54	0.761	0.977
Shuttle (avg.)	1	2,3,5,6,7	0.999	0.985	0.839	0.784	0.825	0.994
KDD-Cup 99	normal	U2R	0.935	0.611	0.74	0.510	0.61	0.946

References

- [1] Naoki Abe, Bianca Zadrozny, and John Langford. Outlier detection by active learning. In KDD '06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, New York, NY, USA, 2006. ACM Press.
- [2] Edwin M. Knorr and Raymond T. Ng. Algorithms for mining distance-based outliers in large datasets. In *Proc. 24th Int. Conf. Very Large Data Bases, VLDB*, 1998.
- [3] Aleksandar Lazarevic and Vipin Kumar. Feature bagging for outlier detection. In *KDD*. ACM, 2005.