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Introduction

— Anomalies are very different from normal data points and occur only rarely
—One class missing at training

— Classify unusual instances as anomaly

— Different approaches: statistical, distance or model based, profiling methods

— Generating counter-example to represent missing class at training

Our Approach
— Extension for standard decision tree algorithms
— Able to deal with symbolic and continuous features

—Instead of artificial counter-examples, use a parametric distribution for
the anomaly
— Avoids trade-off between precision of sampling and the priors of the classes
— More accurate split points
— Faster training due to fewer samples

Decision Tree
—Node divides feature space from its parent into two or more disjoint ranges

— Algorithm selects split according to an impurity measure of node t, e.g.
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— Best split s has highest decrease of impurity:

Ni(s,1) = i(t) ]X](éf))i(tL) it (2)

— N,(t) is number of instances of a class ¢ at node ¢

—No samples of anomaly class c4 that can be count
— Use density distribution to estimate /N,

—We use uniform distribution with a defined prior probability P(c4)
— anomaly distribution comparatively small in areas with many given samples but
dominates regions without regular instances

Methodology

Use Equation 6 when number of instances of the anomaly class is needed
— no major changes in procedure of finding the best split

Suitable Split Points
—No changes for symbolic features required

— But mean of two successive values for continuous features does not work since it would
lead to splits between known classes only
— cannot delimit regular classes from areas without training samples

—grid search over feature space too time intensive
— test split points close to given samples
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probable split points before and after redefinition of possible split points

Stopping Criterion

— Typical way of creating the tree recursively until training error is zero not possible
since classifying a region as “known" causes always an error
— we have to define an error limit € > 0 w.r.t. P(c4) in relation to the dimensionality
of the data

— P(c4) small, dimensionality rather high:
— use smaller € to force cuts closer to the

samples and increase detection rate |
Use smaller € to cut off smaller regions

Pruning
—most pruning techniques still applicable

—lower effect on methods dividing the training set because dividing the anomaly class
makes no difference

Uniform Distribution of Anomaly Class

Symbolic features — discrete uniform distribution

— Defined over a finite set S of possible values, all equally probable: ‘—é’

— probability that a feature has a value out of aset M C S: P(X € M) = %

Continuous features — continuous uniform distribution

— constant probability density over a finite interval [r™" r%]:

(3)

— probability that a data point is located inside a specific interval [a, b] C [r™", r™]:
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0 otherwise

P(X €lab) = [ ' f () = Tmb:im (4)

— 7™ and ™% have to be defined before the training with P(X € [r™", ™)) = |

Joint Distribution

—testing a split requires the number of instances which fall into the resulting subspaces

—a subspace () is defined by:
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. ] for all k. continuous features

—intervals |a;, b;] C [r"" r

—subsets M; C .S of all ks symbolic features
— probability that a instance falls into () is the joint probability:

P(X & Q) — ]f)[P(AXZ & [CLZ,bZ]) ﬁs P(X] & M]) (5)

—expected number of instances within subspace (); of node ¢:

P(ca)
1 — P(CA)

N. (t)= N, P(X € Q) = N,P(X € Q) (6)

— P(cy4) is the prior of the anomalous class and controls the trade-off between detection
rate and false alarm rate

Experiments and Evaluation

Real Life Data Sets

—three different Datasets from the UCI
Machine Learning Repository

Synthetic Example
—two-dimensional space
—1000 normally distributed data points

—illustrates trade-off between detection —training only on most common class

rate and false alarm rate —at testing also one of the rare classes

— compared to other approaches [1][2][3]
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confidence) ROC curves of KDD-Cup 99 data for

Active Outlier, Bagging, and this paper

Dataset Regular |Anomaly | Active Bagging |Feature |Boosting |LOF This
Class Class Outlier Bagging Paper
Ann-thyroid |3 1 0.97 0.98 0.869 0.64 0.869 0.993
Ann-thyroid |3 2 0.89 0.96 0.769 0.54 0.761 0.977
Shuttle (avg.)|1 2,3,5,6,7 10.999 |0.985 0.839 0.784 0.825 0.994
KDD-Cup 99 |normal U2R 0.935 0.611 0.74 0.510 0.61 0.946

References

[1] Naoki Abe, Bianca Zadrozny, and John Langford. Outlier detection by active learning.

In KDD '06: Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, New York, NY, USA, 2006. ACM Press.

[2] Edwin M. Knorr and Raymond T. Ng. Algorithms for mining distance-based outliers
in large datasets. In Proc. 24th Int. Conf. Very Large Data Bases, VLDB, 1998.

[3] Aleksandar Lazarevic and Vipin Kumar. Feature bagging for outlier detection. In

KDD. ACM, 2005.




