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Abstract

This paper describes our participation of the
Recognizing Textual Entailment challenge this
year. Based on our promising results in the
RTE-3 challenge last year (66.9% of accuracy)
using a precision-oriented puristic syntactic
approach (puristic in the sense that we only
performed dependency parsing), we explored
further extensions of this perspective. By
extension, we developed more specialized
RTE-modules to tackle more cases (i.e.,
entailment pairs) while trying to keep high
accuracy.

1 Introduction

In (Wang and Neumann, 2007a) we developed a
puristic syntactic approach to the problem of
Recognizing Textual Entailment (RTE) by only
performing a syntactic dependency analysis on
corresponding text pairs. With 66.9% accuracy,
we achieved quite promising results on the test
data of the RTE-3 challenge, which ranked us
among the 5th best systems, cf. (Giampiccolo et
al., 2007). In order to test the application
potential of our approach, we also utilized the
system as a core engine and integrated it with
other linguistic processing modules for the
Answer Validation Exercise1 at the Cross
Language Evaluation Forum2 (AVE@CLEF) and
obtained the best result for English (Wang and
Neumann, 2007b; Wang and Neumann, 2008)
and for German (Wang and Neumann, 2008).

Our puristic approach actually gives us a high
syntactic-oriented baseline. This is achieved by
constructing structural features from the abstract
tree descriptions, which are automatically
extracted from syntactic dependency trees. These
features are then applied by a subsequence-

1 http://nlp.uned.es/clef-qa/ave/
2 http://www.clef-campaign.org/

kernel-based classifier that learns to decide
whether the entailment relation holds between
two texts. Note that the classifier is actually only
applied on those pairs <T,H>, for which the
(binary) dependency tree ofH can be identified
as a subtree ofT. In order to further explore this
line of research, we are interesting in
investigating new RTE-technology on top of this
approach through the integration of lexical-
semantic features, such that a finer-grained
control on the subtree relationship can be
captured.

In particularly, we have developed a new
divide-and-conquer architecture for RTE. The
core idea is to provide a set of specific RTE
methods and to combine them with a voting
mechanism. Each RTE-specialist considers only
a specific kind of RTE problem, so that the
expected accuracy can be maximized. In the
current version, we have developed and
implemented three RTE-specialists:

• Temporal anchored pairs

Extract temporal expressions and
corresponding events from the dependency trees,
and apply entailment rules between extracted
time event pairs;

• Named entity pairs

Extract other Named Entities (NE) and
corresponding events, and apply entailment rules
between extracted entity-event pairs;

• Noun phrase anchored pairs

For pairs with no NEs but two consisting NPs,
determine the subtree alignment, and apply a
kernel-based classifier.

The latter case corresponds to the
subsequence-kernel-based approach mentioned
above, and has been enumerated here in order to
demonstrate the parallel and independent status
of the different RTE-specialists. In addition to



the accuracy-oriented RTE-modules, we also
consider two robust but not necessarily precise
backup strategies that deal with those cases
which cannot be covered by any specialist.

In the rest of the paper, we will introduce the
architecture of our system (Section 2), and
describe in detail each specialized RTE-modules
in Section 3. The experimental results will be
shown in Section 4 and followed by a discussion
in Section 5. The last section will conclude the
paper.

2 Architecture

Figure 1 shows the architecture of the whole
system, which contains a preprocessing module,
a voting module and several Precision-Oriented
(PO) RTE modules. For preprocessing, we utilize
several linguistic processing components, such as
a POS tagger, a dependency parser3, and a
named-entity (NE) recognizer4 to annotate the
original plain texts from the RTE corpus. We
then apply several specialized PO RTE-modules,
each of which is responsible for a subset of the
whole data set. Since all the modules aim at high
precision, they do not necessarily cover all the
entailment pairs. The cases which cannot be
covered by any specialized RTE-module will be
passed to the high-coverage, but probably less
accurate backup modules. In the final stage, we
join the results of all specialized RTE-modules

3 We used Minipar (Lin, 1998) for both POS tagging and
dependency parsing.
4 We used the Stanford NE recognition system (Finkel et al.,
2005).

and backup modules together. By doing so,
different confidence values are assigned to the
different RTE-modules according to the
performances on training data. In order to deal
with possible overlapping cases (i.e. entailment
pairs that are covered by more than one module),
a voting mechanism is applied that takes into
account the confidence values.

3 Specialized Modules and Backup
Modules

Based on the architecture we proposed in the
previous section, we can easily add or remove
specialized RTE-modules and backup modules.
In this paper, we consider three specialized PO
RTE-modules and two backup modules.

3.1 The TACTE Module (TAC-M)

The TACTE (Time Anchoring Component for
Textual Entailment) module was proposed by
Wang and Zhang (2008). The basic process
consists of three main steps: 1) extracting and
anchoring temporal expressions; 2) using
temporal expressions as starting points to and
corresponding events in the dependency structure;
and 3) applying lexical resources and entailment
rules between temporal expressions to detect the
entailment relationship.

For example, we have aText-Hypothesis (T-H)
pair as follows,
T: Released in 1995, Tyson
returned to boxing, winning
the World Boxing Council
title in 1996. The same year,

Figure 1 Architecture of the system



however, he lost to Evander
Holyfield, and in a 1997
rematch bit Holyfield's ear,
for which he was temporarily
banned from boxing.
H: In 1996 Mike Tyson bit
Holyfield's ear.

In the first step, we extract temporal
expressions, e.g.1995, 1996, and 1997. The
TAC (Time Anchoring Component) can deal
with both absolute temporal expressions and
relative temporal expressions. In the above
example, these are all the former ones. Examples
for the latter case will beyesterday, the next year,
etc. Provided with a reference date (given by the
context or predefined manually), the relative
temporal expressions can be normalized into
corresponding absolute ones.

There are two other issues concerning the
temporal expressions, the granularity and the
types. We use the following granularity order to
normalize all the temporal expressions, and we
also simplify all the temporal expressions into
two categories, the time point (on 6th of May,
1983) and the interval (from Wednesday to
Saturday).

second < minute < hour <
pofd < dofw < day <
weeknumber < pofm < month <
pofy < year 5

In the second step, we locate the temporal
expressions in the dependency tree and then
traverse the nodes on the tree to find the nearest
verb or noun6. Since in most cases, the temporal
expression is either a modifier of a noun phrase
or a part of a verb phrase modifier (usually the
latter is realized as a prepositional phrase). The
goal of this procedure is to find the
corresponding nouns or verbs which the temporal
expressions modify. The dependency structure of
this example is shown partially in Figure 2,

Figure 2 Partial dependency trees of the example

5 pofd: part-of-day, dofw: day-of-week, pofm: part-of-
month, pofy: part-of-year.
6 In this paper, we assume that anevent can be either
represented by a noun (including nominalizations) or by a
verb.

After applying the second step, the following
events could be extracted,

T: 1995: released (verb);
1996: winning
(nominalization); 1997:
rematch (noun), bit (verb)
H: 1996: bit (verb)

In the last step, we derive a new feature
representation from the input textual pairs.
Instead of computing the surface string similarity,
we now compare two pairs of temporal
expressions and their corresponding events. Such
pairs are defined asEventTimePairs (ETPs), and
each of them consists of a noun or a verb
denoting the event and the corresponding
temporal expression. In order to resolve the
relation between two ETPs, we need to
separately resolve the relation between events
and between temporal expressions, and combine
the results afterwards. For the former, we make
use of lexical resources, e.g. WordNet (Miller et
al., 1993), VerbOcean (Chklovski and Pantel,
2004) to discover the relationship between two
events (i.e. nouns or verbs); and for the latter, we
manually define entailment rules shown in the
following table7,

Table 1 Entailment rules between temporal
expressions

Finally, we combine the results together.
Either the entailment between temporal
expressions or between events does not hold, the
entailment between the two ETPs does not hold;
otherwise, in principle, it is unknown, since other
information might negate the answer.
Consequently, only if all the ETPs inH cannot
be entailed by the ETPs inT, the final answer to
that T-H pair is NO; otherwise, it is unknown.
The results for the above example are,

• <release, 1995>, <bit, 1996>: NO

• <win8, 1996>, <bit, 1996>: NO

• <rematch, 1997>, <bit, 1996>: NO

• <bit, 1997>, <bit, 1996>: NO

Therefore, the final answer isNO. Notice that
TAC-M can be only applied on those pairs,

7 P refers to time points, D refers to duration, F and C refer
to fine and coarse granularity respectively. NO means no
entailment; otherwise, the entailment holds.
8 After applying lexical resources to change the
nominalization back into the original verb form.



which both T and H contain temporal
expressions.

3.2 The NE-Oriented Module (NE-M)

We also extended the approach described above
to other NE types, i.e. personnames (PNs),
location names (LNs), and organization names
(ONs). The process is quite similar to TAC-M,
replacing the temporal expressions by other NEs.
Therefore, the ETP can be extended into the
following Event structure,

<Event, Time, Location,
List< Participants>>

Event can be either a noun or a verb;Time is a
normalized temporal expression;Location is an
LN; a Participant can be either a PN or an ON.
In particular, after referring several geographic
taxonomies (Geonames9, WorldGazetteer10, etc.),
we construct a geographic ontology using
geographic terms and two relations. The
backbone taxonomy of the ontology is shown in
Figure 3. The structure consists of geographic
terms referring different granularities of areas.
Inside each Country, we have two categories of
fine-grained places, i.e. artificial divisions and
natural places. The basic relation in-between is
the directional part-of relation, which means the
geographic area on the left side contains the area
on the right side.

9 Geonames geo coding web service:
http://www.geonames.org/
10 WorldGazetteer: http://www.world-gazetteer.com

In addition, extra geographic areas are
connected with these basic terms using the same
part-of relation. For example, the following
geographic areas consist of the basic terms above,

Subcontinent: the Indian
subcontinent, the Persian
Gulf, etc.
Subcountry: Lower Saxony,
the Western USA, etc.

An additional equal relation is utilized for
synonyms and abbreviations of the same
geographic area, e.g.the United Kingdom, the
UK, Great Britain, etc.

Consequently, the entailment rules between
Events also have more dimensions. However, in
one word, all the information contained inH
must be fully entailed byT; otherwise, it isNO.

3.3 The Tree Skeleton Module (TS-M)

This module implements the main approach
proposed by Wang and Neumann (2007a). The
main idea is to extract a new sentence
representation calledTree Skeleton (TS) based
on the dependency parse trees, and then use a
kernel-based machine learning method to make
the prediction of the entailment relation.

The TS structure can be viewed as an
extended version of the predicate-argument
structure. Since it contains not only the predicate
and its arguments, but also the dependency paths
in-between, it captures the essential part of the
sentence. Following their algorithm, we first
select overlapping topic words (i.e. nouns) inT

Figure4 An exampleof thetreeskeleton(in bold)

Figure3 Thebasicstructureof thegeographicontology



andH (we use fuzzy match at the substring level
instead of full match). Starting with these nouns,
we traverse the dependency tree to identify the
lowest common ancestor node (named asroot
node). This sub-tree without the inner yield is
defined as aTree Skeleton. Figure 3 shows the
TS of T in the followingT-H pair,

T: For their discovery of
ulcer-causing bacteria,
Australian doctors Robin
Warren and Barry Marshall
have received the 2005 Nobel
Prize in Physiology or
Medicine.
H: Robin Warren was awarded
a Nobel Prize.

The current version of the TS only deals with
T-H pairs which contain two dependency paths.
In experiments, tree skeletons can be
successfully extracted from more than 30% of
the previous RTE data sets.

The extracted TSs ofT andH for this example
will be as follows,

T: Robin_Warren:N <PERSON>
doctor:N <SUBJ> receive:V
<OBJ> Nobel_prize:N
H: Robin_Warren:N <OBJ1>
award:V <OBJ2> Nobel_prize:N

After generalization of the dependency labels
and also deletion of the word forms, we utilized
subsequence kernel (Bunescu and Mooney, 2005)
to represent the differences between the two TSs.
Please refer Wang and Neumann (2007a) for
more details.

3.4 The Backup Modules

Chief requirements for the backup strategy are
robustness and simplicity. Therefore, we
considered two backup modules, the Triple
backup (Tri-BM) and the Bag-of-Words (BoW)
backup (BoW-BM) (Wang and Neumann,
2007a). The former one is based on the Triple
similarity function which operates on two triple
(dependency structure represented in the form of
<head, relation, modifier>) sets and determines
how many triples ofH are contained inT. The
core assumption here is that the higher the
number of matching triple elements, the more
similar both sets are, and the more likely it is that
T entails H. The function uses an approximate
matching function. Different cases (i.e. ignoring
either the parent node or the child node, or the
relation between nodes) might provide different
indications for the similarity ofT and H. We
then sum them up using different weights and

divide the result by the cardinality ofH for
normalization.

The BoW-BM is based on BoW similarity
score, which is calculated by dividing the
number of overlapping words betweenT and H
by the total number of words inH after a simple
tokenization according to the space between
words.

4 Experimental Results

For the participation of the challenge, we
submitted three runs for each TAC RTE task,
which differ in assignment of different
confidence values to the used RTE-modules. The
configurations of the three submissions for the
two-way task and the results are as follows,

• Run1: TAC-M, TS-M, and Tri-BM

• Run2: TAC-M, TS-M, and BoW-BM

• Run3: TAC-M, TS-M, NE-M, and Tri-
BM, BoW-BM

According to the performances of the modules
on the development sets, the voting model is
simply taking the results from the module which
has highest accuracy. Those pairs, which are not
covered by any specialized modules, will be
passed to backup modules, since they always
have answers.

Compared to our best result in RTE-3
challenge, there is an improvement of 3.7% of
accuracy. In particular, the TAC-M has the
highest accuracy, though the coverage is the
lowest. The performance of TS-M is higher than
the average accuracy, showing the advantage of
the tree skeleton structure. NE-M does not have a
good accuracy, which is contradictive to what we
aimed at. The lower performance of the NE
recognition (compared with temporal expressions)
might be a cause.

The configurations of the three submissions
for the three-way task and the results are,

• Run1: TAC-M, TS-M, and Tri-BM,
BoW-BM

• Run2: TAC-M, TS-M, NE-M (partial),
and Tri-BM, BoW-BM

• Run3: TAC-M, TS-M, NE-M, and Tri-
BM, BoW-BM

Since our modules were not specially designed
for recognizing three-way entailment, we take a
strategy to combine results from different
modules. For specialized modules, we keepYES
as ENTAILMENT, but change NO into



UNKNOWN. For the backup modules, we take
the following rules,

• If BoW-BM=YES & Tri-BM= NO then
CONTRADICTION

• If BoW-BM=YES & Tri-BM= YES then
ENTAILMENT

• OthersUNKNOWN

Comparing the two-way task and the three-
way task, we find thatCONTRADICTION cases
are not trivial to capture (only around 40% of
accuracy), whose difficulty and importance are
also discussed by de Marneffe et al. (2008).

To sum up, not only the results are quite
satisfactory, but also we obtain good indicators
for deciding which entailment cases can be more
reliably handled by which RTE-module. The
latter is a very promising direction to be further
explored in the future.

5 Discussion

Though we have not done a detailed error
analysis yet, the preliminary observations already
show some interesting issues. Our results on the
TAC-M and NE-M modules are consistent with
Herrera et al. (2005) and Vanderwende et al.
(2006), which showed the effectiveness of NE
features. They actually encode the NE
information as feature values, which makes it
difficult to check the explicit contribution of NE
information. Our approach is much more
transparent to this, because we explicitly select a
NE subset for which we can demonstrate its
benefits.

Bobrow et al. (2007) also propose a precision-
oriented approach, however we a much lower
coverage on the whole data set. MacCartney amd
Manning (2007) applied natural logic to the RTE
task, and also dealt with specific cases of
entailment pairs, e.g. quantifiers. Many other
approaches also explore the limitation of
coverage, e.g. using lexical-syntactic rules (Bar-
Haim et al., 2007). It seems the RTE task cannot
easily be solved by using only a single generic
method (ako generic problem solver), but might
benefit from the the combination of different
approaches.

In fact, many researchers have been focusing
on the integration of different approaches. Bos
and Markert (2005) combined a rigid logic
inference system with shallow lexical features to
gain from both sides. MacCartney amd Manning
(2007) also applied a shallow system in order to
achieve the full coverage of the data set, which is
similar to our backup modules. Our particular
contribution is the ranking of different modules
based on their confidence values, so that a high
precision could be maximally preserved.

6 Conclusion

In this paper, we have described our system for
this year's RTE challenge at TAC 2008. The
main idea is to advocate a divide-and-conquer
strategy to utilize specialized RTE-modules to
deal with specific entailment cases. The key
requirement for these modules is high precision,
while the coverage need not necessarily be high.
In order to combine all modules' results, we rank
the modules on basis of confidence values that
have been automatically derived from a

Table2 Resultsof all modulesandsubmissionsfor thetwo-wayRTEtask

Table 3 Results of all submissions for both the two-way and three-way RTE tasks



performance analysis using training data. Our
result is quite consistent with other researcher's
work, and it seems to indicate an effective way
of handling this challenging task.
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