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Abstract

The basic idea of augmented reality is to augment the view of a user or camera with virtual
objects. Real-time camera tracking is an enabling technology for augmented reality. Besides
the high estimation precision that is needed to allow for pixel accurate augmentations, mobile
augmented reality applications impose further requirements on the tracking method. One im-
portant aspect is robustness in the presence of quick and erratic camera motions, which are
typical for a handheld or head-mounted camera.

This thesis investigates robustness and accuracy of real-time markerless camera tracking
for mobile augmented reality applications considering both known and unknown environments
of different complexity. The major solution strategies are: visual-inertial sensor fusion, decou-
pling of pose and structure estimation and unification of computer vision and recursive filtering
techniques.

First, a model-based camera tracking system that fuses visual and inertial measurements
in the extended Kalman filter is developed. It uses an affine illumination invariant image
processing method that exploits the pose prediction obtained from the sensor fusion algorithm
and a textured CAD model of the environment to predict the appearances of corner features
in the camera images. In several experiments, the system is demonstrated to work robustly in
realistic environments of different complexity, under varying light conditions, fast and erratic
camera motions and even short periods without visible features. Compared to vision-only
tracking, the system shows less jitter and the computational costs are reduced both due to
an accurate prediction of the feature appearances and locations in the images and a reduced
demand on features in general.

Tracking in partially known environments is addressed by developing a vision-only sys-
tem, which requires minimal pre-knowledge about the structure of the target scene and derives
3D information online. The system combines robust and efficient sequential structure from
motion methods with a simplified stochastic model and recursive localisation of 3D point fea-
tures. It scales with the size of the map, since pose and structure estimation are decoupled.
Compared to an ordinary sequential structure from motion system, the developed method pro-
vides higher accuracy in both camera and feature localisation and significantly less drift. This
is demonstrated in different experiments based on simulated data and in realistic mid-scale
environments.

Based on these results, a conceptual solution for visual-inertial simultaneous localisation
and mapping in large-scale environments is developed. The idea is to combine the marginalised
particle filter for visual-inertial pose estimation with undelayed feature initialisation and local-
isation on a per-particle basis. The essential algorithms for pose and structure estimation are
developed and a proof-of-concept implementation is evaluated in a simple test environment,
demonstrating that the novel tracking strategy unifies and enhances the previous developments.

v





Acknowledgments

During my work with this thesis I have been supported, in one way or another, by many
wonderful people. Some of the most important ones I want to mention here (in chronological
order). I am very grateful towards Prof. Stefan Müller (University Koblenz), who paved the
way for me to become a member of the Department for Virtual and Augmented Reality in
Darmstadt, one of the greatest groups ever! The head of this department has been the most
important person on my way. I want to express my deep thankfulness towards Prof. Didier
Stricker, who has been my adviser during the past five years (starting with my diploma thesis).
He has given me the opportunity to work in an excellent research environment and is a never-
ending source of inspiration. Didier, thanks for always taking time for a discussion and for
giving me invaluable advices, in business as well as in private life. In short: Thanks for
encouraging me and bringing the best out of me! I am very grateful to all my colleagues, who
have been cooperative, motivating, simply great, more than words can say. An explicit thank
you to Mario and Yulian, for the shared debugging sessions to find the (rare) bugs in my code
and for trying to teach me how to stay cool (not that I ever managed), to Harald — in my
view the effortless superiority in person — for the fruitful discussions and common research
projects, and to Renate, for her motherly manner, the pleasant talks in the morning and the
support, when I found life tough!

During my work with this thesis, I have been involved in the European research project
MATRIS and I would like to thank the partners, Linköping University, BBC R&D, Christian-
Albrechts University and Xsens Technologies B.V. for the interesting discussions and com-
mon work. Most importantly among those, I want to thank the Automatic Control group in
Linköping, where I had the pleasure to spend three month (thanks Thomas!). In the first place,
I am very grateful that I met Prof. Fredrik Gustafsson, who co-advised my thesis, Dr. Thomas
Schön and Jeroen Hol in the MATRIS project. They introduced me into their area of expertise,
which turned out to be a watershed in my research and resulted in an important part of my the-
sis. Thank you for patiently answering all my questions, for listening to my ideas and sharing
your ideas with me! I appreciate our collaboration and hope we can continue! Moreover, I
want to thank my office and flat mate Jesica and all members of the Automatic Control group
for making my stay in Linköping a very pleasant one and for really making me feel at home.
The time there not only provided me with many interesting experiences, it also let me grow as
a person. A special thank you to Dr. Gustaf Hendeby, who was a great support during finalising
my thesis. Thank you for all the constructive discussions, for proof-reading my thesis and for
helping me out in any situation, ranging from LATEX problems to the preparation of my viva! I
am looking forward to welcome you as a colleague in Germany!

Finally I want to express my deep gratitude towards my family and friends, most impor-
tantly, my love Christian, my parents Marlies and Karl-Heinz, my “second parents” Agnes and
Winfried and my best friend Steffi. Thank you for the great support and understanding during
the past years, for being sources of calm and for gently bringing me back to real life, when I
was caught in augmented reality (at least for trying!). I couldn’t have done it without you!

vii





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem Formulation and Approach . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9
2.1 Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Camera Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.1.1 Normalised Pinhole Camera Model . . . . . . . . . . . . . 10
2.1.1.2 Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1.3 Intrinsic Camera Parameters . . . . . . . . . . . . . . . . . 12
2.1.1.4 Extrinsic Camera Parameters . . . . . . . . . . . . . . . . 13
2.1.1.5 From World to Pixel Coordinates . . . . . . . . . . . . . . 14

2.1.2 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Geometric Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3.1 Collinearity Constraint . . . . . . . . . . . . . . . . . . . 16
2.1.3.2 Epipolar Constraint . . . . . . . . . . . . . . . . . . . . . 17

2.1.4 Camera Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.4.1 Feature Matching . . . . . . . . . . . . . . . . . . . . . . 20
2.1.4.2 Feature Tracking . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Camera IMU Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Inertial Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1.1 Gyroscopes . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1.2 Accelerometers . . . . . . . . . . . . . . . . . . . . . . . 22

ix



x Contents

2.2.1.3 Strapdown Inertial Navigation . . . . . . . . . . . . . . . . 23
2.2.2 Combining Cameras and Inertial Sensors . . . . . . . . . . . . . . . 23

2.2.2.1 Hand-Eye Calibration . . . . . . . . . . . . . . . . . . . . 26
2.2.2.2 Direction of Gravity . . . . . . . . . . . . . . . . . . . . . 26
2.2.2.3 Metric Scale . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2.4 Relative Orientation . . . . . . . . . . . . . . . . . . . . . 27

2.3 Computer Vision Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Camera Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1.1 Estimation from 2D/3D Correspondences . . . . . . . . . . 28
2.3.1.2 Estimation from 2D/2D Correspondences . . . . . . . . . . 29

2.3.2 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.3 Random Sampling Consensus . . . . . . . . . . . . . . . . . . . . . 30
2.3.4 Structure From Motion . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.5 Model-Based Camera Tracking . . . . . . . . . . . . . . . . . . . . 32

2.4 Recursive Filtering Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.1 State-Space Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1.1 Nonlinear Model . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.1.2 Linear Gaussian Model . . . . . . . . . . . . . . . . . . . 34
2.4.1.3 Nonlinear Model with Linear Gaussian Substructure . . . . 34

2.4.2 Filtering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.2.1 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.2.2 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . 37
2.4.2.3 Marginalised Particle Filter . . . . . . . . . . . . . . . . . 38

2.4.3 SLAM and Localisation . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.3.1 EKF-Localisation . . . . . . . . . . . . . . . . . . . . . . 42
2.4.3.2 EKF-SLAM . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.3.3 FastSLAM . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.3.4 MPF-SLAM . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Model-based Visual-Inertial Tracking 47
3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 System Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Semi-Automatic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.3 Fully Automatic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Top Down Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 Iterative Patch Registration . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 Feature Management . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.1 Tracking Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



xi

3.4.1.1 Gyro Model . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.1.2 Gravity Model . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.1.3 Acceleration Model . . . . . . . . . . . . . . . . . . . . . 60
3.4.1.4 Acceleration Input Model . . . . . . . . . . . . . . . . . . 60

3.4.2 Outlier Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.3 Divergence Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Offline Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.1 CamIMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.2 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Experimental Setup and Results . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6.1 Test Case: Desktop . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6.2 Test Case: Room . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.6.3 Test Case: Foyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Visual SLAM 79
4.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 3D Geometry Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 Robust Feature Triangulation . . . . . . . . . . . . . . . . . . . . . . 84
4.2.2 Robust Feature Refinement . . . . . . . . . . . . . . . . . . . . . . . 87
4.2.3 Robust Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.3.1 Estimation from 2D/3D Correspondences . . . . . . . . . . 88
4.2.3.2 Refinement Adding Epipolar Constraints . . . . . . . . . . 90

4.3 Feature Quality and Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4 Experimental Setup and Results . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.1 Test Case: Room . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.2 Test Case: Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4.3 Test Case: Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Towards Visual-Inertial SLAM 105
5.1 Real-Time Visual-Inertial Pose Estimation using MPF . . . . . . . . . . . . . 108

5.1.1 State-Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.1.2 Enhanced MPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1.2.1 Automatic Model-Switching and Improved Orientation Pro-
posals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1.2.2 Adaptive Process Noise . . . . . . . . . . . . . . . . . . . 114
5.1.2.3 Mixture Proposal . . . . . . . . . . . . . . . . . . . . . . 114
5.1.2.4 Final Algorithm . . . . . . . . . . . . . . . . . . . . . . . 115

5.1.3 Experimental Setup and Results . . . . . . . . . . . . . . . . . . . . 115
5.1.3.1 Comparison to EKF . . . . . . . . . . . . . . . . . . . . . 117
5.1.3.2 Comparison to PF . . . . . . . . . . . . . . . . . . . . . . 119



xii Contents

5.1.3.3 Comparison to Complex MPF . . . . . . . . . . . . . . . . 122
5.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Per-Particle Feature Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2.1 Inverse Depth Measurement Model . . . . . . . . . . . . . . . . . . 126

5.2.1.1 Feature Initialisation . . . . . . . . . . . . . . . . . . . . . 128
5.2.1.2 Feature Estimation . . . . . . . . . . . . . . . . . . . . . . 128
5.2.1.3 Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2.2 Experimental Setup and Results . . . . . . . . . . . . . . . . . . . . 129
5.2.2.1 Feature Initialisation and Estimation . . . . . . . . . . . . 130
5.2.2.2 Representation of Uncertainty . . . . . . . . . . . . . . . . 133
5.2.2.3 Camera Pose Estimation . . . . . . . . . . . . . . . . . . . 135

5.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Concluding Remarks 139
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A Notation 145
A.1 Abbreviations and Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . 145
A.2 Symbols and Mathematical Notation . . . . . . . . . . . . . . . . . . . . . . 146

B Transformations and Kinematics 149
B.1 Representation of Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
B.2 Rotation Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
B.3 Angular Velocities and Unit Quaternions . . . . . . . . . . . . . . . . . . . . 152

List of Figures 155

List of Tables 159

Bibliography 161



1
Introduction

Augmented reality is a growing field with many diverse applications ranging from TV and
film production to industrial maintenance, medicine, education, prototyping, entertainment and
immersive games. The basic idea is to insert virtual objects (augmentations) into a scene, either
by displaying them in a see-through head-mounted display, or by superimposing them on an
image captured by the camera. This is illustrated in Figure 1.1. Depending on the application,
the inserted objects might be virtual characters in a TV or film production, instructions on
how to repair a machine, or a reconstruction of an archaeological site. These and further

Figure 1.1: Maintenance with augmented reality assistance: The user wears a head-
mounted display with a camera attached. The picture on the right side shows what the
user sees. Virtual arrows and tools are superimposed on the camera image to instruct the
user while repairing the machine.

1



2 1 Introduction

(a) Maintenance. (b) Tied-to-pitch graphics for sport.

(c) Cultural heritage. (d) Design review.

(e) Virtual broadcasting studio. (f) Variance analysis.

Figure 1.2: Augmented Reality applications.

examples are illustrated in Figure 1.2. For the effects to be believable, the virtual objects must
fit seamlessly into the real scene or the image of the scene. One important part in achieving this
is to show them in the correct perspective, which depends on how the camera or user is viewing
the scene. As the view is changing with each movement, it requires efficient algorithms to
recalculate it constantly. This process is referred to as real-time camera tracking.
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1.1 Motivation

Real-time camera tracking, i.e. the accurate estimation of the camera position and orientation
in real-time, is an enabling technology for augmented reality. Deriving the camera pose from
its images is referred to as vision-based or visual tracking. If no special infrastructure is needed
in the environment, the method is called markerless. Hybrid tracking systems are those that
exploit information from additional sensors in order to improve their performance. Besides the
high estimation precision that is needed to allow for pixel accurate augmentations in real-time,
mobile augmented reality applications put further requirements on the tracking method. Two
important areas are:

Portability: The hardware setup needs to be portable, i.e. consist of a small camera, if appli-
cable, small additional sensors and a mobile computer.

Robustness: In a mobile application, the camera is either head-mounted or handheld. Both
implies erratic motions, which need to be handled by the tracking method. Moreover,
the light conditions are basically uncontrolled. This must be taken into account when
analysing the camera images.

Depending on how much information about the target environment is available, a camera
tracking system — as modelled in this thesis — consists of up to three major building blocks:
One building block, image processing, is concerned with searching the camera images for
known structures in the environment. A second building block, pose estimation, is responsible
for determining the camera pose from the established correspondences. Assuming that a 3D
model of the target scene is known, these two building blocks make up a model-based camera
tracking system. If no or not enough information about the target scene is available, a third
building block, structure estimation, is required to derive additional 3D structure online. The
scene structure is represented by a sparse 3D point cloud, which is the most common repre-
sentation used in computer vision. A hybrid tracking system emerges when using additional
sensors for pose estimation. In this thesis, visual-inertial sensor fusion is investigated. The
small and low cost inertial sensors that are nowadays available are easily attached to a camera
and thus provide a portable tracking setup. Moreover, inertial sensors offer complementary
properties to the camera sensor, which allow for beneficial sensor fusion. Figure 1.3 gives a
simplified conceptual illustration of a camera tracking system as it is modelled in this thesis.
Note that pose and structure estimation are decoupled in this illustration.

Both the simultaneous estimation of pose and structure and the subproblem of pose esti-
mation relative to a known scene model, are prominent research topics in two different com-
munities: computer vision and robotics. The computer vision terms structure from motion
and model-based tracking denote basically the same problem as localisation and simultane-
ous localisation and mapping (SLAM) in robotics. However, both communities have different
strategies of posing and solving these estimation problems.

Computer vision methods are traditionally vision-only, i.e. they use the camera as single
sensor. Moreover, they accentuate robustness — with respect to incorrect correspondences
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Camera
Structure

estimation

Image processing Scene model

Inertial sensors Pose estimation Camera pose

Figure 1.3: Conceptual illustration of different occurrences of a camera tracking system
as they appear in this thesis: Hardware and data are separated from the building blocks
by rounded corners. The two building blocks image processing and pose estimation make
up a model-based tracking system, implying that the scene model is given completely. By
adding a third building block, structure estimation, the scene model can be learned online.
Inertial sensors can be used to aid the vision-based pose estimation.

— and accuracy. Structure from motion methods traditionally aim at obtaining an accurate
estimate of the complete camera trajectory and scene structure. This is typically achieved by
performing an offline batch optimisation, called bundle adjustment. Today, real-time capable
sequential approaches are encountered in literature, too.

In robotics, measurements are typically combined from a number of sensors mounted to
a robot, and recursive filters are used to perform sensor fusion. In a recursive scheme, rather
than aiming at an accurate estimate of the complete trajectory, the goal is to obtain an estimate
of the momentary pose — in case of SLAM along with the map — and a representation of
the confidence in this estimate. Recursive techniques are typically less accurate and robust.
However, they offer the possibility to improve the current estimate with additional information,
without the need to store or reprocess previous estimates or measurements. The classical
solution to SLAM is to estimate the trajectory and the map jointly in one extended Kalman
filter (EKF). Since pose and structure estimation are performed at the same time, this solution
does not fit into the conceptual illustration given in Figure 1.3. Another more recent approach
to SLAM that scales with the size of the map and decouples pose and structure estimation in
the fashion of sequential structure from motion is called FastSLAM. In FastSLAM, the pose
is represented in a particle cloud and the map is estimated on a per-particle basis.

Nowadays, the computer vision and the robotics community are closing in on each other.
The use of cameras is widespread in robotics and recursive filters and sensor fusion are fre-
quently exploited concepts in computer vision. This thesis bridges a gap between both com-
munities by pointing out the benefits of unifying their concepts.
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1.2 Problem Formulation and Approach

The aim of this thesis is to develop solutions for real-time markerless camera tracking that:

• meet the requirements of mobile augmented reality applications as described in Sec-
tion 1.1. In particular, some fundamental limitations of vision-only camera tracking are
addressed: missing support for erratic and quick camera motions, missing robustness
against occlusion, high demand on camera measurements (correspondences) and com-
putational intensity of markerless image processing.

• address both known and unknown or partially known target scenes. In particular, the
problem of drift, i.e. an accumulating error in the camera and structure registration,
which is a notorious problem of sequential structure from motion, is addressed.

• have potentiality for large-scale environments. In the context of simultaneous estimation
of pose and structure, this requires methods that scale with the size of the map, which is
allowed for by decoupling both estimation processes as in Figure 1.3.

In order to achieve this, suitable algorithms for the three major building blocks shown in Fig-
ure 1.3 are developed. The major solution strategy is to unify concepts of computer vision,
i.e. robust and precise estimation, decoupling of pose and structure estimation and marker-
less image processing, and robotics, i.e. visual-inertial sensor fusion, recursive filtering and
confidence measures.

1.3 Contributions

The main contributions of this thesis are:

• A model-based real-time camera tracking system that fuses vision-based and inertial
measurements in the extended Kalman filter to overcome some fundamental limitations
of vision-only camera tracking, and the testing of this system in realistic environments
of different complexity. Within this:

– The derivation of an affine illumination invariant image processing approach based
on the analysis-by-synthesis technique that can exploit an accurate pose prediction
for increased computational efficiency.

– The derivation of different nonlinear state-space models for position and orienta-
tion estimation based on camera and inertial measurements and the experimental
evaluation of these models in the developed system under controlled conditions. In
particular, the incorporation of accelerometer measurements is investigated.

The presentation is based on the journal paper:
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G. Bleser and D. Stricker. Advanced tracking through efficient image process-
ing and visual-inertial sensor fusion. Computer & Graphics, 2008. accepted.

and the conference papers:

G. Bleser and D. Stricker. Advanced tracking through efficient image pro-
cessing and visual-inertial sensor fusion. In IEEE Virtual Reality Conference
(VR), Reno, Nevada, March 2008.

G. Bleser, C. Wohleber, and D. Stricker. Fast and Stable Tracking for AR
fusing Video and Inertial Sensor Data. In International Conference in Central
Europe on Computer Graphics, Visualization and Computer Vision (WSCG),
pages 109–115, Plzen, CZ, February 2006.

J. Chandaria, G. Thomas, B. Bartczak, K. Koeser, R. Koch, M. Becker, G. Bleser,
D. Stricker, C. Wohlleber, M. Felsberg, J. Hol, T. Schön, J. Skoglund, P. Sly-
cke, and S. Smeitz. Real-time Camera Tracking in the Matris Project. In
International Broadcasting Convention (IBC), pages 321–328, Amsterdam,
Netherlands, September 2006.

G. Bleser, Y. Pastarmov, and D. Stricker. Real-time 3D Camera Tracking for
Industrial Augmented Reality Applications. In International Conference in
Central Europe on Computer Graphics, Visualization and Computer Vision
(WSCG), pages 47–54, Plzen, CZ, February 2005.

• A vision-only system for real-time simultaneous localisation and mapping that unifies
robust computer vision techniques and recursive filtering in order to reduce the drift
in the camera pose and structure registration, and the experimental evaluation of this
system on simulated data and in realistic environments of medium complexity. Within
this:

– A robust pose estimation technique that incorporates both correspondences be-
tween the scene model and the image and across images, and the uncertainties
in these measurements.

– Robust methods for the initialisation and recursive estimation of 3D point land-
marks (features).

– A measure of feature quality.

These results are based on the journal paper:

G. Bleser, M. Becker, and D. Stricker. Real-time vision-based tracking and
reconstruction. Journal of Real-Time Image Processing, 2(2–3):161–175,
November 2007.
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and the conference papers:

G. Bleser, H. Wuest, and D. Stricker. Online Camera Pose Estimation in Par-
tially Known and Dynamic Scenes. In International Symposium on Mixed
and Augmented Reality (ISMAR), pages 56–65, Santa Barabara, CA, Octo-
ber 2006.

M. Becker, G. Bleser, A. Pagani, Y. Pastarmov, D. Stricker, F. Vial, J. Weiden-
hausen, C. Wohlleber, and H. Wuest. Visual Tracking for Augmented Reality:
No Universal Solution but Many Powerful Building Blocks. In Virtuelle und
Erweiterte Realität: 2. Workshop der GI-Fachgruppe VR/AR, pages 107–118,
2005.

M. Zoellner, D. Stricker, G. Bleser, and Y. Pastarmov. iTACITUS — Novel
Interaction and Tracking Paradigms for Mobile AR. In International Sympo-
sium on Virtual Reality, Archaeology and Cultural Heritage (VAST), pages
110–117, Brighton, UK, October 2007.

M. Becker, G. Bleser, A. Pagani, D. Stricker, and H. Wuest. An Architecture
for Prototyping and Application Development of Visual Tracking Systems.
In IEEE 3DTV-Conference: Capture, Transmission and Display of 3D Video,
2007.

• A conceptual solution for a visual-inertial SLAM system with increased potentiality for
large-scale environments, a proof-of-concept demonstration in a simple test setup and a
comparison with the previously developed visual SLAM system. Within this:

– The derivation of a nonlinear state-space model with linear Gaussian substructure
for position and orientation estimation based on camera and inertial measurements.

– A novel marginalised particle filter algorithm for real-time visual-inertial pose es-
timation with increased robustness against erratic camera motions.

– An experimental evaluation of this algorithm in a simple test setup and a compar-
ison with other visual-inertial fusion strategies based upon the extended Kalman
filter, the particle filter and the regular marginalised particle filter.

The presentation is based on the conference paper:

G. Bleser and D. Stricker. Using the Marginalised Particle Filter for Real-
Time Visual-Inertial Sensor Fusion. In International Symposium on Mixed
and Augmented Reality (ISMAR), Cambridge, UK, September 2008.

Previously unpublished results are:

– Undelayed initialisation and recursive estimation of 3D point landmarks on a per-
particle basis.
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1.4 Thesis Outline

This thesis is organised in the following way: Chapter 2 introduces the notation and gives the
background for understanding this thesis. It first introduces the operating principles, math-
ematical models and measurements of cameras and inertial sensors and then proceeds with
the fundamental estimation techniques in the area of computer vision and recursive filtering
providing a brief review of the literature.

Chapter 3 is devoted to the development and experimental evaluation of a hybrid model-
based camera tracking system, which fuses measurements from a camera and low cost inertial
sensors in real-time. Efficient markerless image processing and visual-inertial sensor fusion in
the extended Kalman filter are addressed.

Chapters 4 and 5 investigate camera tracking in partially known environments. Chapter 4
treats the development and experimental evaluation of a vision-only sequential structure from
motion system. It addresses accurate and robust pose and structure estimation in a simplified
stochastic framework.

Chapter 5 combines and extends the results of Chapters 3 and 4. It presents a conceptual
solution for a visual-inertial SLAM system with increased potentiality for large-scale envi-
ronments. Real-time visual-inertial pose estimation in the marginalised particle filter and per-
particle structure estimation with undelayed feature initialisation are addressed. Moreover, a
proof-of-concept is demonstrated in a simple test setup.

Finally, Chapter 6 concludes the thesis and gives suggestions for future work.



2
Background

This chapter introduces the notation used in this thesis and gives the background for under-
standing it. Sections 2.1 and 2.2 are devoted to sensors. The operating principles, mathe-
matical models and measurements of cameras and camera IMU (inertial measurement unit)
systems are discussed. Sections 2.3 and 2.4 introduce fundamental estimation techniques in
the area of computer vision and recursive filtering that play an important role in this thesis.

2.1 Cameras

A digital camera consists of two functional parts: an optical system (objective, lens system)
and an image sensor, either using CCD (charge-coupled device) or CMOS (complementary
metal oxide semiconductor) technology.

The optical system projects incoming light onto the surface of the image sensor. Several
types of lenses exist, for instance perspective lenses, macro lenses, telecentric lenses and fish-
eye lenses. This thesis uses standard perspective lenses, which are the most commonly used
in computer vision. From a physical point of view, the functionality of a lens system is ex-
tremely complex. However, ignoring effects such as focus and lens thickness, the refraction of
light can be modelled as an ideal perspective projection — given by the pinhole camera model
[12, 13] — combined with a distortion in the image plane.

The image sensor converts the incident light to a digital image (digitalisation). Digital
images are typically indexed in terms of pixels. The relationship between the metric coor-
dinate system of the image sensor and the pixel array is defined by the sensor geometry and
its sampling characteristics. This information is contained in the intrinsic camera parameters.
The distortion coefficients and intrinsic camera parameters are fixed for a given camera. The
process of estimating those parameters is called camera calibration.

The extrinsic camera parameters describe the position and orientation of the camera in a

9
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Figure 2.1: From camera to pixel coordinates: (a) illustrates the normalised pinhole
camera model with focal length f = 1. Note that the image plane is placed in front of
the camera. (b) outlines the relation between the normalised image frame n and the pixel
frame p with non-square and non-rectangular pixels. As distortions are neglected here
i = n.

fixed reference frame. These parameters change, when the camera moves, and the purpose of
camera tracking or camera pose estimation is to estimate them.

Section 2.1.1 formalises the image formation process as described above. The camera cal-
ibration procedure is outlined in Section 2.1.2. Section 2.1.3 introduces geometric constraints
that can be used to reconstruct 3D geometry from the camera images and Section 2.1.4 is
concerned with the image processing aspects of this problem.

2.1.1 Camera Geometry

This section introduces the coordinate systems and transformations needed to obtain a mathe-
matical model of the image formation process. As conclusion, the complete chain of transfor-
mations that allows for predicting the pixel location of each 3D point in space is summarised
in Section 2.1.1.5.

2.1.1.1 Normalised Pinhole Camera Model

An illustration of the normalised pinhole camera model is given in Figure 2.1(a). Under the
pinhole model, the camera is represented by a 2D image plane and a 3D point called the centre
of projection or the optical centre. The shortest distance between the optical centre and the
image plane is the focal length of the camera denoted f . The focal length is specified in
terms of metric units. A point in 3D space is projected onto the image plane by drawing a ray
from the 3D point towards the centre of projection. The intersection between this ray and the
image plane represents the image of the 3D point. To obtain a mathematical representation, a
3D coordinate system, the camera coordinate system c, is introduced. Its origin, the camera
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centre, coincides with the optical centre and its z-axis, also known as the optical axis or the
principal axis, is orthogonal to the image plane. The principal axis meets the image plane in the
principal point h, which is the origin of the image coordinate system i. Under the normalised
pinhole model, with focal length f = 1, the image frame coincides with the normalised image
coordinate system n. The mapping of a point mc = [xc, yc, zc]

T , expressed in the camera
frame, to a point mn = [xn, yn]T , expressed in the normalised image frame, is:[

xn
yn

]
=

1

zc

[
xc
yc

]
. (2.1a)

By introducing homogeneous coordinates, (2.1a) can be written as a matrix multiplication:

xnyn
1

 ∝ zc

xnyn
1

 =

1 0 0 0
0 1 0 0
0 0 1 0



xc
yc
zc
1

 . (2.1b)

Equations (2.1a) and (2.1b) denote the normalised pinhole projection.

2.1.1.2 Distortion

The normalised pinhole projection is an ideal projection. However, real — especially low-cost
and wide-angle — objectives introduce distortion. This is most visible at the border of the
images. An example is shown in Figure 2.2(a). Several distortion models are encountered in
literature. In this thesis, the distortion model of [14] is used. It accounts for radial and tangen-
tial (decentering) distortion. The distorted image coordinates md = [xd, yd]

T are expressed as
a function of the normalised image coordinates mn = [xn, yn]T , the distance to the principal
point r = ‖mn‖ and the polynomial coefficients κ1, . . . , κ5:[

xd
yd

]
= (1 + κ1r

2 + κ2r
4 + κ3r

6)

[
xn
yn

]
︸ ︷︷ ︸

radial distortion

+

[
2κ4xnyn + κ5(r

2 + 2x2
n)

κ4(r
2 + 2y2

n) + 2κ5xnyn

]
︸ ︷︷ ︸

tangential distortion

. (2.2)

Typical distortions are dominated by the coefficients κ1 and κ2. The appropriate number of
coefficients depends on the camera objective and the accuracy required by the practical appli-
cation. In many cases κ3, . . . , κ5 are assumed zero.

Equation (2.2) can be used to undistort a whole image by sampling in the ideal image
domain, computing the distorted coordinates and interpolating in the distorted image domain
(resampling). An example is shown in Figure 2.2(b). In order to undistort single coordinates,
the inverse function of (2.2) is needed. An analytical solution exists only, if κ2, . . . , κ5 are
all assumed zero [15]. However, the inverse mapping of (2.2) can be found numerically by
applying Newton-Raphson iterations with the distorted coordinates as initial guess.
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(a) Distorted image. (b) Corrected image.

Figure 2.2: Image Distortion: as can be seen from the curved edges, (a) suffers from
severe distortions. This image originates from a wide-angle firewire camera with focal
length f = 2.1 mm. The polynomial coefficients for this camera are κ1 = −0.24, κ2 =
0.06 and κ3 = −0.01. The tangential distortion coefficients are assumed zero. (b) shows
the undistorted image using (2.2) with the given coefficients. Note that the field of view
is narrowed by the resampling.

2.1.1.3 Intrinsic Camera Parameters

The coordinates of a digital image are typically specified in pixels indexed from the top left
corner (cf. Figure 2.1). In order to describe a projected point in the pixel coordinate system p,
the intrinsic or internal camera parameters, as illustrated in Figure 2.1(b), have to be account
for: dx and dy denote the width and height, respectively, of a sensor pixel in metric units.
fx = f/dx and fy = f/dy describe the focal length in x- and y-direction, respectively, in
pixels per metric unit. h = [hx, hy]

T denotes the principal point in pixels. sα = fx tanα
accounts for non-rectangular sensor pixels. The angle α describes the skew of the sensor axis
in terms of the deviation from the right angle. sα is also specified in pixels per metric unit. The
intrinsic parameters are used to compose the affine transformation matrix K, which describes
the mapping from the distorted image coordinate system d to the pixel coordinate system p:

xpyp
1

 =

fx sα hx
0 fy hy
0 0 1


︸ ︷︷ ︸

K

xdyd
1

 . (2.3a)
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Figure 2.3: Relation between the camera and the world coordinate system.

In practical applications it is common to assume that α = 0. The inverse mapping of (2.3a) is:
xd

yd

1

 =


1
fx

−sα
fxfy

−cxfy+cysα
fxfy

0 1
fy

−cy
fy

0 0 1


︸ ︷︷ ︸

K−1


xp

yp

1

 . (2.3b)

This can be used to normalise the pixel coordinates, once the camera is calibrated (cf. Sec-
tion 2.1.2).

2.1.1.4 Extrinsic Camera Parameters

3D points are in general not expressed in the moving camera frame c but in a fixed reference
frame, the object or world coordinate systemw. The relation between those coordinate systems
is given by a rigid transformation consisting of a rotation Rcw and a translation cw called the
extrinsic camera parameters or the camera pose. This is illustrated in Figure 2.3. The rotation
RT
cw can be interpreted as the camera orientation and the translation cw as the position of the

camera in the world frame. The mapping of a point mw expressed in the world frame to a point
mc expressed in the camera frame is:

mc = Rcw(mw − cw). (2.4a)

This equation can be restated to another commonly used form:

mc = Rcwmw −Rcwcw = Rcwmw + wc, (2.4b)

where the rotation is applied first and where wc = −Rcwcw is the origin of the world coor-
dinate system in the camera frame. By introducing homogeneous coordinates, (2.4b) can be
expressed as a linear operation: 

xc
yc
zc
1

 =

[
Rcw wc

0T3 1

]
xw
yw
zw
1

 . (2.4c)
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The inverse mapping of (2.4a) and (2.4b), respectively, is:

mw = RT
cwmc + cw (2.4d)

= RT
cw(mc −wc). (2.4e)

The camera orientation is here given as a rotation matrix R, as matrices have the power to
transform vectors from one coordinate frame to another. However, a rotation matrix has nine
parameters, whereat a 3D rotation has only three degrees of freedom (DOF). Many alternative
ways exist to represent a 3D rotation with less parameters, each suitable for special applica-
tions. In this thesis, three different representations are used: rotation matrices R, axis angles r
and unit quaternions q. These are defined in Appendix B.1.

Varying the representation of the rotation and the order of the rigid transformations results
in different parametrisations, s, of the camera pose. Two representations are used explicitly
in this thesis: the seven-dimensional vector sq = [qTcw, c

T
w]T comprises the camera orientation

qcw in the quaternion form, with Rcw = rot(qcw), and the position cw, as used in (2.4a). The
six-dimensional vector sr = [rTcw,w

T
c ]T comprises the camera orientation rcw in the axis angle

form, withRcw = rot(rcw), and the position wc, as used in (2.4b). Note the difference between
c, c and s: c is used to name a camera, a camera pose or a camera coordinate system, while
c denotes the optical centre of c, that is the 3D point that coincides with the origin of this
coordinate system. In general, ab is used to denote the origin of coordinate system a expressed
in coordinate system b. Finally, s denotes a vector that contains the camera pose parameters
and can be used, for instance, as argument to a cost function.

2.1.1.5 From World to Pixel Coordinates

By combining the forward transformations given in (2.1)–(2.4) to a single function P , the
expected pixel location mp can be computed for each point mw:

mp = P(mw) = (K ◦ D ◦ Pn ◦ T )(mw). (2.5a)

Here, mc = T (mw) denotes the mapping from the world to the camera frame given in (2.4a)
and (2.4b), mn = Pn(mc) maps mc from the camera to the normalised image frame according
to (2.1a), md = D(mn) corresponds to the distortion function (2.2) and mp = K(md) denotes
the affine transformation from the distorted frame to the pixel frame as in (2.3a).

By using homogeneous coordinates and assuming an ideal normalised pinhole projection,
that is D = I, P can be written as a 3× 4 matrix P :xpyp

1

 ∝ zc

xpyp
1

 =

fx sα hx
0 fy hy
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

[Rcw wc

0T3 1

]
︸ ︷︷ ︸

P


xw
yw
zw
1

 . (2.5b)

The matrix P is called the projection matrix. Note that the functionsK,D andP depend on the
intrinsic camera parameters, the distortion coefficients and the camera pose, respectively. This
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Figure 2.4: Example images of a planar checkerboard pattern used for camera calibration.
The camera is the same as in Figure 2.2.

dependency will be expressed explicitly where required by adding the appropriate parameters,
i.e. T (mw, s), where s denotes the camera pose.

2.1.2 Camera Calibration

The aim of the camera calibration procedure is to find the distortion coefficients and intrinsic
parameters introduced in Section 2.1.1.2 and 2.1.1.3, respectively. The calibration typically
requires images of a calibration object from different distances and angles. Figure 2.4 shows
example images of a planar checkerboard pattern. This is a commonly used calibration object,
as it is simple to detect the corner points j in the images and thus to construct sets of 2D/3D
point correspondences (m

(ij)
p ,m

(i)
w ) for each image i. The calibration requires the extrinsic

camera parameters to be estimated, too.
The procedure consists of several steps. The intrinsic and all the extrinsic camera pa-

rameters are initialised from the homographies between the calibration object plane and its
images by ignoring distortions [16]. The homographies are obtained from (2.5b) by assuming
that zw = 0. The initial solution is then refined by solving the nonlinear least squares (LS)
problem:

x̂ = arg min
x

m∑
i=1

n∑
j=1

r(ij)LS
p = arg min

x

m∑
i=1

n∑
j=1

‖m(ij)
p − P(m(i)

w ,x)‖2, (2.6)

where m is the size of the image set, n is the number of corner points on the calibration
pattern, x comprises the distortion coefficients, the intrinsic and all the extrinsic parameters, x̂
is the estimate of x and P(m

(i)
w ,x) corresponds to (2.5a). The residual r(ij)LS

p is referred to as
the reprojection error and is based on one possible formulation of the collinearity constraint
defined by the 2D/3D correspondence (m

(ij)
p ,m

(i)
w ). The collinearity constraint is treated in



16 2 Background

Section 2.1.3.1. Standard algorithms such as the Levenberg-Marquardt (LM) algorithm [17]
can be used to perform the minimisation of (2.6). Camera calibration is a well-known problem
and many toolboxes are freely available online, see for instance [18] and the links given therein.

Camera measurements (cf. Section 2.1.4), i.e. the observed locations of landmarks in the
images, are initially obtained in terms of pixels. Once the camera is calibrated, it is advan-
tageous to preprocess the data and work in normalised image coordinates mn instead. The
normalisation step simplifies the equations for the geometric constraints induced by the cam-
era measurements (cf. Section 2.1.3.1), as it decouples those from the fixed camera parameters
and the lens model used. In this thesis, the camera is assumed to be calibrated and the camera
measurements are assumed to be given in normalised image coordinates henceforth.

2.1.3 Geometric Constraints

This section describes geometric constraints induced by point correspondences. The collinear-
ity constraint, defined by a 2D/3D correspondence, and the epipolar constraint, defined by a
2D/2D correspondence resulting from two camera views, are introduced.

2.1.3.1 Collinearity Constraint

The collinearity constraint means that a 3D point given in the camera frame, its projection on
the image plane and the optical camera centre are collinear (cf. Figure 2.1(a)). The ray from
the optical centre towards the 3D point is referred to as view ray. This geometric relation is a
necessary condition for a point observed in an image and a world point to represent a real cor-
respondence given the camera pose. The collinearity constraint can be used to either estimate
the camera pose from 2D/3D point correspondences (cf. Section 2.3.1) or to triangulate a 3D
point from 2D image locations and corresponding camera poses (cf. Section 2.3.2). Moreover,
it can be used to validate point correspondences. This process is referred to as outlier rejection
(cf. Section 2.3.3).

Different mathematical formulations of the collinearity constraint are encountered in liter-
ature [19]. In this thesis, two implicit formulations are used. The image collinearity constraint
formulates the error in the (normalised) image space:

02 = dn(mn,mw, s) =

[
xn
yn

]
− 1

zc

[
xc
yc

]
= mn − (Pn ◦ T )(mw, s), (2.7a)

where s denotes an appropriate parametrisation of the camera pose (cf. Section 2.1.1.4). This
constraint is obtained from (2.1a) by subtracting mn from both sides of the equation. The
reprojection error as introduced in (2.6) is based on the image collinearity constraint, however,
given in the pixel coordinate system, as it is used for camera calibration. The homogeneous
collinearity constraint formulates the error in homogeneous space:

02 = dh(mn,mw, s) = zc

[
xn
yn

]
−
[
xc
yc

]
=
[
− I2 mn

]
T (mw, s), (2.7b)
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Figure 2.5: Epipolar geometry: en,t−T and en,t are the epipoles and the lines through mn

and en are the epipolar lines ln. The vector t between the camera positions is called the
baseline.

where I2 is the 2×2 identity matrix. It is obtained from (2.1a) by multiplying both sides of
the equation with zc. From a probabilistic point of view (2.7b) is preferred, as it avoids the
division with zc. The division of two normal variables results in a Cauchy distribution, which
has infinite second and higher order moments [20]. However, the residual dh(mn,mw, s)
depends on zc, implying that distant points produce larger residuals in general. In contrast,
dn(mn,mw, s) is not affected by the distance of the 3D points. Hence, the image collinearity
constraint is preferred as a cost function for nonlinear estimation and outlier rejection.

2.1.3.2 Epipolar Constraint

The epipolar constraint results from the geometry of two camera views that are coupled by
a relative rotation R and translation t, the epipolar geometry. This is shown in Figure 2.5.
The images may be acquired simultaneously. However, in this thesis, they are assumed to be
acquired sequentially as ct−T and ct by one camera moving relative to a 3D point in space mw,
where T denotes its sample time. The epipolar constraint means that mn,t, that is the pro-
jection of mw in one image, defines an epipolar line ln,t−T in the other image, on which the
corresponding projection mn,t−T lies. This geometric relation is a necessary condition for a
2D/2D point correspondence to be valid given the camera poses.

Assume that st−T and st, as before, denote vectors containing the extrinsic parameters Rcw

and wc of both camera views. The mathematical formulation of the epipolar constraint is based
on homogeneous coordinates:

0 = de(mn,t−T ,mn,t, st−T , st) =
[
xn,t yn,t 1

]
S(t)R︸ ︷︷ ︸

E

xn,t−Tyn,t−T
1

 , (2.8a)

where S(t) is given in (B.5) in Appendix B.1 and the relative rotation R and translation t are
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defined as:

R = Rcw,tR
T
cw,t−T (2.8b)

t = Rwc,t−T −wc,t. (2.8c)

The 3× 3 matrix E = S(t)R is called the essential matrix. The epipolar lines are:

ln,t−T = E

xn,tyn,t
1

 (2.9a)

and

ln,t = ET

xn,t−Tyn,t−T
1

 , (2.9b)

respectively. The epipolar constraint can be used to reconstruct the essential matrix E from a
set of 2D/2D correspondences (cf. Section 2.3.1.2). Note that in this application it is required
to parametrise the epipolar constraint de(mn,t−T ,mn,t, E) by E instead of st−T and st.

2.1.4 Camera Measurements

The previous sections describe the mathematical model of the image formation process and the
geometric constraints resulting from this model given point correspondences, either between
the 3D world and one camera image (cf. Section 2.1.3.1) or between two camera images (cf.
Section 2.1.3.2). This section treats the image processing aspects of the correspondence prob-
lem. The correspondence problem can consist in deciding either, which primitive in an image
corresponds to which landmark in 3D space, or, which primitive in one image corresponds to
which primitive in another image in the sense that they are both images of the same landmark
in 3D space.

In the first approaches to camera tracking, artificial landmarks, called markers or fiducials,
have been used. A marker is a pattern that is easily detected in an image and contains a code
for unique identification. Examples of different fiducial designs are shown in Figure 2.6. By
placing markers at measured 3D positions in the world coordinate system, reliable 2D/3D
correspondences can be obtained. Marker-based tracking technology as well as applications
using it are described, for instance, in [21–24]. The freely available software library ARToolKit
[25] is extensively used, especially for building augmented reality applications. Marker-based
commercial tracking systems are, for instance, InterSense VIS-Tracker [26] and BBC FreeD
[27]. Today, markers are still frequently used due to their reliability of detection. In this thesis,
rectangular markers are used for the experimental evaluation of the visual-inertial tracking
method developed in Chapter 5. However, as it is inconvenient and time-consuming to place
special infrastructure in the target scene, in particular in large-scale environments, extensive
research is undertaken in the computer vision community on markerless image processing.
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(a) (b)

Figure 2.6: Different fiducial designs: circular fiducials (a) usually define one 3D point,
given by the centre, while rectangular fiducials (b) define four points, given by the four
corners. The detection of one rectangular marker is sufficient to compute the camera pose
uniquely (cf. Section 2.3.1.1), as it yields four 2D/3D correspondences. The camera pose
can also be estimated uniquely from the contour and code of one circular marker.

Figure 2.7: Corresponding point features in two camera images. Note how the periodic
appearance of the feature marked by the circle and the significant change in the local ap-
pearance of the feature marked by the rectangle complicate the correspondence problem.

The remainder of this section is concerned with this research area and the different approaches
encountered in literature. Figure 2.7 illustrates the correspondence problem in the area of
markerless image processing.

Similar to the scan matching technique in robotics [28], some recent image processing
approaches solve the correspondence problem by performing a global image analysis, see for
instance [29, 30]. However, the approach most commonly used in computer vision is based
on local image analysis and features. A feature is a primitive combined with a descriptor
describing its appearance. It is associated to a natural or synthetic landmark in 3D space.
Features can, for instance, be corners [31–34], regions [35–38], lines [39–42], edges [43–45]
or curves [46, 47]. The descriptor of a corner feature can be as simple as a vector containing
the pixel intensities of a local window centred around the point, or more complex such as an
oriented gradient histogram [48]. The feature-based approach is prone to ambiguities, which



20 2 Background

can result in false correspondences (outliers). However, compared to the global approach, it
is in general less computationally intense and more robust against occlusions. In this thesis,
corner features are used to establish correspondences: they need no special segmentation,
are robust to occlusions and provide distinctive descriptors. Furthermore, they provide point
correspondences that can be used in the geometric constraints.

In order to match corner features across different views, two major approaches exist, both
of which are suited for different applications and assumptions about the camera motion: feature
matching and feature tracking. The properties of these techniques are described in the sequel.

2.1.4.1 Feature Matching

This approach is suitable for establishing correspondences between two images separated by a
wide baseline, as those given in Figure 2.7, where no prior information about the camera pose
is available. This configuration occurs, for instance, during system initialisation [8] or during
loop closing [49]. Features are detected in both images and then matched against each other.
This approach is also referred to as the bottom up approach, as no information is used for
the matching other than the image. An outline and a performance analysis of corner detectors
and descriptors suitable for wide baseline matching are given in [50, 51]. Another solution to
wide baseline matching is to handle the problem as a classification problem, see for instance
[34, 52–54]. The feature matching approach is in general computationally intense and tends to
produce outliers.

2.1.4.2 Feature Tracking

This approach is suited for establishing correspondences within a continuous image sequence,
or when a good prediction of the camera pose is available. Features are detected once and
then tracked directly in subsequent images. This approach is also referred to as the top down
approach, as prior information or assumptions about the camera pose are used to guide the
feature tracking.

Two prominent techniques for solving the feature registration process are encountered in
literature: one group of researchers uses the block matching method, see for instance [55–57].
The other group uses advanced techniques developed upon the well-known Kanade-Lucas
tracker (KLT), the seminal work of Lucas and Kanade in [58]. Important advancements are:
introducing an affine transformation and illumination model [32, 35, 59], detecting outliers
[59], improving the convergence of the registration [60, 61] and minimising the drift in the 2D
feature locations [38]. Drift is a general problem of the feature tracking approach.

A common method to handle larger feature displacements between two images is to gener-
ate image pyramids and to perform the registration recursively, starting at the coarsest pyramid
levels and descending to the finest, the original images, while propagating the respective reg-
istration result as initial guess. This coarse-to-fine strategy can be applied to both registration
techniques mentioned above. An image pyramid is obtained by repeatedly subsampling and
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Figure 2.8: Schematic representation of an image pyramid.

lowpass filtering the image. The idea is shown in Figure 2.8. A pyramidal implementation of
the basic Kanade-Lucas tracker is described in [62].

2.2 Camera IMU Systems

This section introduces the properties, measurement models and processing algorithms of in-
ertial sensors or inertial measurement units and describes the synchronisation and calibration
issues that arise when combining cameras with such sensors. The specific devices used in this
thesis are presented as well.

2.2.1 Inertial Sensors

Inertial sensors measure translational and rotational body kinematics without the need for an
external reference. In this thesis, the inertial measurement unit MT9 from XSens technologies
[63] is used. It combines gyroscopes, accelerometers and magnetometers in a small sensor
package and provides calibrated sensor readings given in physical units as well as a 3D orien-
tation. All local computations are performed in an embedded digital signal processor (DSP).

The sensor readings — 3D angular velocity (rate of turn), 3D linear acceleration and 3D
earth-magnetic field — are expressed in the sensor coordinate system s, which is aligned to
the external housing. The readings are compensated for temperature, 3D misalignment and
cross-sensitivity. However, the small and low cost microelectromechanical systems (MEMS)
provide limited performance in terms of accuracy and bias stability, which is the main reason
for the drift in a strapdown inertial navigation system [64].

The 3D orientation is obtained from the calibrated sensor readings using the accelerometers
and magnetometers to compensate for the drift in the integrated gyroscope data. Note that large
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amounts of ferrous material cause magnetic disturbances that deteriorate the accuracy of the
estimate. The integration of angular velocities to an absolute orientation is given in (B.15) in
Appendix B.3. Such a system is called attitude and heading reference system (AHRS). The
3D orientation Rgs,t is defined as the rotation between the sensor coordinate system s and the
global coordinate system g. The global frame is an inertial reference frame, which is fixed to
earth with the x-axis pointing to local magnetic north and the z-axis pointing opposite gravity.
The IMU can output orientation as unit quaternions, Euler angles and rotation matrices (cf.
Appendix B.1).

The sensor model of the 3D gyroscope and the 3D linear accelerometer as well as the prin-
ciples of strapdown inertial navigation are essential for this thesis and are therefore discussed
in the sequel.

2.2.1.1 Gyroscopes

The 3D gyroscope measures the angular velocities ωgs
s,t expressed in the sensor frame s. The

superscript indicates the direction, that is from the sensor frame s to the global frame g. For the
sake of better readability, the direction is suppressed in Chapter 3 and 5, respectively, where the
notation is unambiguous. The largest error remaining after the calibration is a slowly varying
bias bωs,t. All other errors are modelled as zero mean white noise eωs,t. The calibrated gyroscope
signal yωs,t is:

yωs,t = ωgs
s,t + bωs,t + eωs,t. (2.10)

The bias contains a static part, the startup bias, and a dynamic part, which is in part the result
of calibration errors and unmodelled acceleration dependencies (g-sensitivity). The rate of
change is referred to as the bias stability and it determines the worst case drift when integrating
the gyroscope signal.

2.2.1.2 Accelerometers

The 3D accelerometer measures all linear accelerations affecting the IMU, that is body accel-
eration s̈s,t, sometimes referred to as free acceleration, and acceleration due to gravity (−gs),
both expressed in the sensor frame s. Similar to the gyroscope signal, the calibrated accelerom-
eter signal yas,t is corrupted by a slowly varying bias bas,t and zero mean white noise eas,t:

yas,t = s̈s,t − gs + bas,t + eas,t. (2.11a)

The linear accelerations can be expressed in the global frame g, where the gravity vector gg is
a constant (cf. Figure 2.11 in the sequel):

yas,t = Rsg,t(̈sg,t − gg) + bas,t + eas,t. (2.11b)

The above equations show that once the body acceleration s̈g,t is known, the accelerometer
signal can be used to estimate the direction of gravity, or alternatively, once the orientation
Rsg,t is known, the body acceleration s̈g,t can be estimated.
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Figure 2.9: The workflow of a strapdown inertial navigation system. Note that the sensor
readings are assumed to be ideal, i.e. bias and noise terms are neglected.

2.2.1.3 Strapdown Inertial Navigation

The technique of estimating the orientation and position of a moving body relative to a starting
pose using only gyroscopes and accelerometers is called inertial navigation [64, 65]. In a
strapdown configuration, the sensors are affixed to the body. The orientation of the body with
respect to the inertial reference frame g,Rgs,t, is estimated by integrating the measured angular
velocities yωs,t. The position sg,t is obtained by using Rgs,t to subtract the acceleration due to
gravity from the accelerometer readings and integrating the resulting 3D body acceleration
s̈g,t twice. The workflow of such a system, assuming ideal sensor readings, is outlined in
Figure 2.9.

In practice, the inertial measurements are corrupted by noise and bias terms. These cause
a drift in the calculated orientation and position. For instance, a constant gyroscope bias in-
troduces a linearly growing orientation error. If the initial bias can be measured, the drift rate
is determined by the bias stability. A constant accelerometer bias introduces a position error,
which grows quadratically in time. The predominant error in the position is, however, caused
by the coupling to the orientation. As can be seen in (2.11b), an error in the estimated orienta-
tion Rgs,t results in an imaginary body acceleration, since gravity is not correctly compensated
for. This erroneous body acceleration propagates quadratically into the position. Using small
and low cost MEMS, the accuracy of the orientation and most notable the position estimate
deteriorate quickly.

2.2.2 Combining Cameras and Inertial Sensors

Each physical sensor provides measurements in its own spatial and time reference. In order to
fuse the information from different sensors, their measurements have to be synchronised, both
in space and in time.

For the special case of visual-inertial sensor fusion, an integrated camera IMU device, the
CamIMU, has been developed by XSens technologies [63] in the European project MATRIS
[66]. The first and the most recent generation of the CamIMU are shown in Figure 2.10. These
prototypes have been used during this thesis. The CamIMU integrates a firewire camera and
an IMU — model MT9 as outlined in Section 2.2.1 — in one housing. It provides a time
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(a) (b)

Figure 2.10: The first (a) and the most recent (b) generation of the integrated camera
IMU device, the CamIMU, developed by XSens technologies [63] in the European project
MATRIS [66]. The CamIMU combines a camera and an IMU in one housing and provides
a hardware synchronised stream of images and inertial data. Prototype (a) integrates a
PtGrey DragonFly CCD colour camera and (b) a monochrome PtGrey Firefly MV CMOS
camera.

synchronised stream of images and IMU readings. The sample rate of the IMU is 100 Hz. The
camera can be sampled at 12.5 or at 25 Hz. The spatial relations between both sensors and their
frames of reference are given by rigid transformations and are outlined in the sequel. The 3D
coordinate systems connected to the camera and the IMU have been introduced separately in
Section 2.1.1.4 and 2.2.1, respectively. Figure 2.11 illustrates, how those coordinate systems
are related. It outlines the complete geometric configuration of visual-inertial sensor fusion.
To summarise, the following 3D coordinate systems are used:

World w: the world frame is typically attached to a real object in the target scene and is
therefore often called object frame.

Camera c: the camera frame is fixed to the moving camera. The camera pose — comprising
the rotationRcw,t and the translation cw,t — is estimated with respect to the world frame.

Global g: the global frame is fixed to earth with the x-axis pointing to local magnetic north
and the z-axis pointing opposite gravity.

Sensor s: the sensor frame is fixed to the moving IMU. The calibrated sensor readings as well
as the orientationRgs,t obtained from the IMU are given with respect to the global frame.
The sensor pose, however, is within this thesis assumed to be the rotation Rsw,t and the
translation sw,t with respect to the world frame.

The camera and the sensor frame are rigidly attached. They are related by the hand-eye trans-
formation comprising a hand-eye rotation Rcs and translation cs, where the latter denotes the
origin of the camera frame expressed in the sensor frame. This rigid transformation can be
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Figure 2.11: Illustration of the 3D coordinate systems involved in visual-inertial sensor
fusion and how they are related. The non-rigid transformations are indicated by a time
subscript t. The dashed lines denote the direction of gravity ḡ = g

‖g‖ expressed in the
different coordinate systems. Note that cs is given in the sensor frame, while cw,t and sw,t
are expressed in the world frame. The general notation used in this thesis is: ab denotes
the origin of coordinate system a expressed in coordinate system b.

used to convert the sensor pose to the camera pose:

Rcw,t = RcsRsw,t (2.12a)
cw,t = (sw,t +Rws,tcs) (2.12b)

and vice versa:

Rsw,t = RT
csRcw,t (2.12c)

sw,t = (cw,t −RT
sw,tcs). (2.12d)

By inserting (2.12a) and (2.12b) into (2.4a), the hand-eye transformation can be further used
to express the mapping of points from the world to the camera frame using the sensor instead
of the camera pose:

mc = Rcs

(
Rsw(mw − sw)− cs

)
. (2.13)

This relation is the basis for integrating camera measurements into the visual-inertial tracking
method as developed in Chapter 3. The procedure used to calibrate the hand-eye transforma-
tion is outlined in Section 2.2.2.1.

The world coordinate system is the reference frame of the camera in the same way as the
global coordinate system is the reference frame of the IMU. The world frame and the global
frame are in general not identical. They are assumed to be rigidly coupled. As a visual-
inertial tracking system can use only one frame of reference, typically the world frame, some
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knowledge about this coupling is required. The quantities that have to be accounted for are
treated in Sections 2.2.2.2 through 2.2.2.4.

2.2.2.1 Hand-Eye Calibration

The hand-eye rotation is calculated from a set of gravity vectors expressed in both, the camera
frame and the sensor frame, using a method based on unit quaternions [67]. Let gc,t and gs,t,
with t = 1, . . . , n, be a set of corresponding gravity vectors satisfying gc,t = qcs � gs,t � qsc,
where � denotes the quaternion rotation. The sum of squared residuals:

n∑
t=1

‖gc,t − qcs � gs,t � qsc‖2 (2.14a)

is then minimised by q̂cs = x1, where x1 is the eigenvector corresponding to the largest
eigenvalue λmax of:

A = −
n∑
t=1

(gc,t)
L(gs,t)

R. (2.14b)

The matrices (·)L and (·)R are given in (B.6b) in Appendix B.1. The gravity vectors can
be obtained by reusing the camera calibration setup as described in Section 2.1.2. Provided
that the calibration object is placed on a horizontal surface and that accelerometer readings
yas,t, with t = 1, . . . , n, are recorded for each calibration image while holding the CamIMU
statically, the gravity vectors are given by gc,t = Rcw,tgw, where Rcw,t is a byproduct of the
camera calibration, and gs,t = −yas,t. Note that by placing the calibration object horizontally,
the z-axis of the world frame and the global frame are aligned and gw = gg. The hand-eye
translation cs is computed from the location of the centre of the CCD Chip with respect to the
origin of the sensor coordinate system — this measurement is provided by the manufacturer —
and the internal camera parameters. A recent method for determining the hand-eye translation
automatically as a part of the calibration process above can be found in [68]. In practice, the
hand-eye calibration has to be repeated each time the objective is changed or adjusted, since
this changes the camera coordinate system.

2.2.2.2 Direction of Gravity

In order to use the accelerometer readings yas,t to estimate the body acceleration s̈w,t with
respect to the world frame, (2.11b) can be reformulated as:

yas,t = Rsw,t(̈sw,t − gw) + bas,t + eas,t. (2.15)

This implies that the gravity vector gw is required instead of gg. In other words, the z-axis of
the global coordinate system has to be expressed in the world frame.

As the angular velocities are identical in each point of a rigid body implying that ωgs
s,t =

ωws
s,t , (2.10) can be restated as:

yωs,t = ωws
s,t + bωs,t + eωs,t (2.16)
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and ωws
s,t can be integrated to obtain the sensor orientation Rsw with respect to the world frame.

The relation ωgs
s,t = ωws

s,t is derived in (B.18) in Appendix B.3.

2.2.2.3 Metric Scale

In a vision-only tracking system, the scale of the world frame is arbitrary. This results from
the ambiguity between the size of the target scene and the distance of the camera to the scene:
changing the scale of the target scene results in scaled camera positions. This ambiguity is in-
troduced by the normalised pinhole projection given in (2.1). In an inertial navigation system,
however, the scale of the global frame is relevant, as the accelerometer readings are obtained
in absolute metric units. Thus, in order to apply sensor fusion, the relative scale of the world
frame with respect to the global frame must be known and accounted for. Alternatively, both
coordinate systems can be specified in identical units. The latter is assumed within this thesis,
implying that the camera and IMU poses are obtained in identical units as well.

2.2.2.4 Relative Orientation

In order to utilise the orientationRgs,t provided by the IMU in a visual-inertial tracking system,
knowledge about the relative rotationRgw is required. Assuming that the hand-eye rotationRcs

is already known, this rigid rotation can be calculated directly from a sequence of correspond-
ing camera and IMU orientations Rcw,t and Rgs,t by computing the average of Rgs,tR

T
csRcw,t

[69]. As within this thesis Rgs,t is only used for assisting the initialisation of the visual-inertial
tracking system, the accuracy of Rgw is less critical than the accuracy of the hand-eye rotation
Rcs. However, if both quantities are equally important, e.g. in case Rgs,t is used as a measure-
ment rather than the calibrated sensor readings yωs,t and yas,t, the rotations Rcs and Rgw should
be calibrated simultaneously. Such a method is given, for instance, in [70].

2.3 Computer Vision Techniques

This section introduces elementary computer vision techniques for performing 3D estimation
based on camera measurements, or more specifically, based on point correspondences. Camera
pose estimation and triangulation are treated in Section 2.3.1 and 2.3.2, respectively, and robust
estimation is discussed in Section 2.3.3. As a summary, Sections 2.3.4 and 2.3.5 show, how
these basic algorithms are applied to the fundamental computer vision problems of structure
from motion and model-based camera tracking and give a brief review of the literature in these
areas.

2.3.1 Camera Pose Estimation

If the structure of the target scene is known, the extrinsic camera parameters can be recon-
structed from a set of 2D/3D corresponding points using the collinearity constraint as intro-
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duced in Section 2.1.3.1. Three correspondences give a finite number of solutions. A unique
solution can be obtained from four and more points. If no 3D information about the target
scene is available, the camera pose can be estimated up to an unknown scale from a set of
2D/2D correspondences. In both cases, the common procedure is to compute a linear estimate
and to use this as starting point for a nonlinear optimisation as outlined in the sequel.

2.3.1.1 Estimation from 2D/3D Correspondences

The camera pose has six degrees of freedom (DOF), three rotation angles and three position
coordinates. In order to estimate the parameters, a minimal set of three 2D/3D correspondences
is required. Linear methods based on three points are outlined, for instance, in [71]. Note that
they yield six possible solutions.

A unique solution can be obtained from at least four point correspondences. The iterative
methods based on four points are most relevant in practical applications, see for instance [72].
In this thesis, the POSIT (pose from orthography and scaling with iterations) algorithm [73] is
used. An extension to planar point configurations is provided in [74].

With six or more points the standard direct linear transform (DLT) method can be used. It
formulates a linear equation system Ax = 0 from the observed point correspondences using
(2.5b) and solves this with a singular value decomposition (SVD) [17]. Assuming that n ≥ 6 is
the number of data points,A is a 2n×12 matrix and x = (p11, p12, . . . , p34)

T , where pij denotes
the element in the ith row and j th column of the 3 × 4 matrix P . Since the camera is assumed
to be calibrated, the pose can easily be extracted from the estimate of P by multiplying with
K−1 (2.3b), or, by using normalised point coordinates.

Planar point configurations require special treatment. As outlined in Section 2.1.2, the cam-
era parameters are obtained from the homographies induced by the 2D/3D correspondences.

A solution from one of the methods above can be used as starting point for nonlinear
optimisation. Assume that a set of correspondences (m

(i)
n ,m

(i)
w ) with i = 1, . . . , n ≥ 3 is

given. The formulation of the nonlinear LS problem then becomes:

ŝ = arg min
s

n∑
i=1

r(i)LS
n = arg min

s

n∑
i=1

‖ dn(m(i)
n ,m

(i)
w , s)‖2, (2.17)

where dn corresponds to (2.7a) and s is a minimal parametrisation of the camera pose, e.g. as
sr (cf. Section 2.1.1.4). If the point correspondences are heteroscedastic, that is if they have
different covariances Pn(m

(i)
n ,m

(i)
w ), a nonlinear weighted least squares (WLS) problem can

be formulated:

ŝ = arg min
s

n∑
i=1

r(i)WLS
n =

arg min
s

n∑
i=1

dn(m(i)
n ,m

(i)
w , s)TP−1

n (m(i)
n ,m

(i)
w )dn(m(i)

n ,m
(i)
w , s). (2.18)
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The quantities r(i)WLS
n are also referred to as Mahalanobis distances. The nonlinear optimisa-

tion can be performed using standard methods such as the Levenberg-Marquardt algorithm.
Both the LS and the WLS estimator are sensitive to outliers. Even a single incorrect cor-

respondence can have a large effect on the resulting pose. In order to reduce the influence
of outliers, many different robust estimation techniques have been proposed. The most pop-
ular one is the M-estimation method suggested in [75]. M-estimators minimise the sum of a
function of residuals:

ŝ = arg min
s

n∑
i=1

ρ(r(i)). (2.19)

The derivative of ρ is called the influence function. It appears as a weighting function in the
minimisation. In this thesis, the TUKEY influence function is used. This influence function
is zero for residuals r(i) larger than a threshold. Other, less restrictive, influence functions are
the Cauchy and the Huber influence function, see for instance [76]. M-estimators are suitable,
when there are few outliers. A method that handles much higher outlier rates (� 20%) is the
random sampling consensus (RANSAC) method. This is introduced in Section 2.3.3.

Note that the robust estimation techniques apply not only to the special problem considered
within this section but to nonlinear optimisation in general.

2.3.1.2 Estimation from 2D/2D Correspondences

The epipolar constraint (2.8a) can be used to estimate the essential matrix E = S(t)R from a
set of 2D/2D corresponding points (m

(i)
n,t−T ,m

(i)
n,t) with i = 1, . . . , n ≥ 5. Once E is known,

it can be factorised into R and t and — assuming that one camera frame ct−T = w defines the
world frame — the camera pose parameters st as well as the point mw can be computed except
for an unknown scaling. The geometric relations are illustrated in Figure 2.5.

As E has five DOF and each 2D/2D correspondence yields one equation, a minimum
set of five correspondences is needed. A solution based on five points is described in [12].
However, it yields comparatively unstable results. The well-known eight-point algorithm is
most relevant in practical applications. Analogously to the DLT method, it formulates a linear
equation system Ax = 0 from the observed point correspondences using (2.8a) and solves
this with a singular value decomposition. The matrix A is a n × 9 matrix, with n ≥ 8, and
x = (e11, e12, . . . , e33)

T , where eij denotes the element in the ith row and j th column of the
3× 3 matrix E.

The linear estimate can be used as a starting point for a nonlinear optimisation. Many
different cost functions have been suggested, see for instance [19]. In this thesis, the symmetric
epipolar distance is used. For one 2D/2D correspondence (mn,t−T ,mn,t) this is defined as:

ds(mn,t,mn,t−T , E) =
de(mn,t−T ,mn,t, E)√

(ln,t)2
1 + (ln,t)2

2

+
de(mn,t,mn,t−T , E)√
(ln,t−T )2

1 + (ln,t−T )2
2

, (2.20)

where ln,t−T and ln,t are as in (2.9) and (v)i denotes the ith element of vector v. Assuming n
such correspondences, the formulation of the nonlinear LS problem based on the symmetric
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epipolar distance is:

Ê = arg min
E

n∑
i=1

r(i)LS
s = arg min

E

n∑
i=1

d2
s(m

(i)
n,t,m

(i)
n,t−T , E), (2.21)

where the squared distance can be simplified to:

d2
s(m

(i)
n,t,m

(i)
n,t−T , E) =

d2
e(mn,t−T ,mn,t, E)

(
1

(ln,t)2
1 + (ln,t)2

2

+
1

(ln,t−T )2
1 + (ln,t−T )2

2

)
(2.22)

Note that it is essential to use a minimal parametrisation of E, one is given in [77]. The
nonlinear WLS problem can be formulated analogously to (2.18).

Further details on the estimation of the matrix E, its factorisation into R and t and the
handling of special cases such as planar configurations are given, for instance, in [13].

2.3.2 Triangulation

The triangulation problem is to find the position mw of a point in 3D space given several
camera views. A camera view is here defined as a tuple consisting of the normalised image
coordinate mn,t and the corresponding camera pose st at time t. Many different triangula-
tion methods are encountered in literature. An experimental evaluation of the most popular
techniques can be found in [78].

A linear LS estimate is obtained from the known camera views by formulating a linear
equation system using the homogeneous collinearity constraint (2.7b) and solving it with
pseudo-inverses [17]. As mw has three DOF and each view yields two equations, a minimum
set of two views is needed. Given n ≥ 2 views, A is a 2n × 3 matrix, b is a vector of length
2n and x = mw. The nonlinear LS and the WLS estimate can be formulated analogously to
(2.17) and (2.18) by parametrising mw instead of s.

2.3.3 Random Sampling Consensus

Random sampling consensus (RANSAC) is an iterative technique for rejecting outliers from
a set of observations, where the outlier rate is high (� 20%). The general definition of an
outlier is: an observation that is not consistent with the pattern given by the biggest consistent
subset of observations. In the context of camera tracking, observations are typically corre-
sponding primitives or camera views, the pattern is a mapping or a constraint induced by those
correspondences such as (2.7) or (2.8), and outliers arise from poorly localised or incorrect
correspondences. The standard RANSAC scheme [79] is given in Algorithm 2.1. Several ad-
vanced techniques have been developed upon this original method with improved sampling
algorithms or better cost functions, see for instance [80, 81] and the references therein. The
RANSAC method is a general hypothesise-and-test technique that can be used to increase the
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Algorithm 2.1 RANSAC
Assume that p is the minimal number of observations required to estimate the pattern.

1. Randomly choose m sample sets of p observations.

2. For each sample set:

(a) Estimate the pattern.

(b) Determine the number of observations consistent with this pattern (inliers) by ap-
plying a user-defined outlier threshold.

3. Keep the largest set of consistent correspondences and estimate the pattern.

4. Eliminate all observations, which are not consistent with this pattern.

robustness of the camera pose estimation and triangulation as outlined in Section 2.3.1 and
2.3.2, respectively.

2.3.4 Structure From Motion

The structure from motion (SFM) problem consists in simultaneously estimating the cam-
era trajectory and the scene structure from a continuous image sequence. A SFM system
comprises three major building blocks: the image processing required to establish correspon-
dences, the camera pose estimation and the structure estimation. In this thesis, the scene
structure is represented by a sparse 3D point cloud, which is the most common representation
used in computer vision, implying that a feature tracking approach based on corners can be
used. Standard approaches with respect to all of the three building blocks are outlined in Sec-
tions 2.1.4 through 2.3.2. Robust estimation is an important topic in the context of SFM. The
RANSAC algorithm or advanced hypothesise-and-test frameworks have become the standard
way of handling outliers.

A notorious problem is the accumulating error in the camera and structure registration, the
drift. In an offline system, the drift is typically corrected for by performing a batch optimisa-
tion involving the whole image sequence. This technique is called global bundle adjustment
[82, 83]. Some recent contributions apply bundle adjustment also in a real-time system by
either performing local optimisation, that is by processing only a subset of images [84], or by
applying the optimisation as a parallel background process [57].

However, if real-time operation is required, the recursive techniques are better suited. In
a recursive scheme, rather than aiming at an accurate estimate of the complete camera tra-
jectory, the goal is to obtain an estimate for the current time instance and a representation of
the confidence in this estimate. Recursive SFM, or — in the robotics jargon — simultaneous
localisation and mapping (SLAM) is treated in Section 2.4.3 and in Chapters 4 and 5.
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2.3.5 Model-Based Camera Tracking

Model-based camera tracking denotes the much simpler problem of estimating the camera pose
relative to a known 3D model of the target scene. Different representations of such models have
been proposed in literature, e.g. a database of features [52, 85, 86], a CAD (computer aided
design) model [5, 42, 87] or a set of reference images [30, 31, 37]. Model-based tracking is
nowadays a well-understood technique. A survey of different algorithms can be found, for
instance, in [8].

2.4 Recursive Filtering Techniques

Filtering is the problem of estimating the unknown state of a system from a sequence of noisy
observations or measurements made on the system and a sequence of known control inputs or
input signals that carry information about the change of the system state. In a recursive filtering
approach the observations and controls are processed sequentially rather than as a batch and a
Markov assumption is made, according to which the past and the future data are independent,
if the current state is known. When working with a dynamic system, the distribution of interest
is:

p(xt|Yt,Ut), (2.23)

the probability density function (pdf) of state x at time t given the entire history of measure-
ments Yt = {yi}ti=1 and inputs Ut = {ui}ti=1. The state history is denoted Xt = {xi}ti=0.
The Markov assumption postulates that the current state is a complete summary of the past,
implying that it is not necessary to store the entire data set nor to reprocess existing data, when
a new measurement or input becomes available. The problem of real-time camera tracking fits
perfectly into the recursive filtering framework. In this case the state vector contains informa-
tion related to the pose and the kinematic characteristics of the camera and potentially to the
scene structure as well.

Assuming that the a priori pdf p(x0|−1) is available, the density p(xt|Yt,Ut) is obtained
recursively in two stages: prediction and measurement update. The prediction distribution
follows from marginalisation:

p(xt+T |Yt,Ut+T ) =

∫
p(xt+T |xt,ut+T )p(xt|Yt,Ut) dxt, (2.24a)

where the integration is performed over the entire state space of xt and T is the sample time.
Note that in (2.24a) the Markov assumption p(xt+T |xt,Yt,Ut+T ) = p(xt+T |xt,ut) is used. A
new measurement yt is incorporated into the state estimate using Bayes’ rule:

p(xt|Yt,Ut) =
p(yt|xt)p(xt|Yt−T ,Ut)

p(yt|Yt−T ,Ut)
=

p(yt|xt)p(xt|Yt−T ,Ut)∫
p(yt|xt)p(xt|Yt−T ,Ut) dxt

, (2.24b)

where
∫
p(yt|xt)p(xt|Yt−T ,Ut) dxt is a normalising constant and p(yt|xt) is referred to as

measurement likelihood. The pdf p(xt|Yt,Ut) is referred to as posterior distribution. In
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general, the integrals that are required to propagate the posterior distribution are intractable.
The Kalman filter (KF) [88] is an important exception to this. It provides an optimal analytic
solution to the linear Gaussian problem. In most other cases, deterministic approximations
such as the extended Kalman filter (EKF) or stochastic approximations such as the particle
filter (PF) [89, 90] are required.

The state-space approach is the most commonly used method to model a dynamic system.
A state-space model consists of two components: a model describing the evolution of the state
with time and subject to control inputs, the system or process model, and a model relating
the noisy measurements to the state, the measurement or observation model. The state vector
contains all relevant information required to describe the system under investigation. The
most general model is the nonlinear state-space model. However, many applications allow for
special cases.

An outline of the state-space forms and filtering methods used in this thesis is given in
Section 2.4.1 and 2.4.2, respectively. Section 2.4.3 shows, how recursive filters are applied to
the fundamental problems of camera localisation and mapping providing a brief review of the
literature in this area as well.

2.4.1 State-Space Models

This section introduces the most general form of the nonlinear state-space model and two im-
portant special cases: the linear Gaussian model and the nonlinear model with linear Gaussian
substructure. The models are given in discrete-time. Though not stated explicitly in the sequel,
it should be noted that the measurement model can comprise a number of equations, one for
each specific sensor, thus providing a natural interface for sensor fusion.

2.4.1.1 Nonlinear Model

In its most general form, the system model is described by the relation:

xt+T = f(xt,ut+T ,vt), (2.25a)

where ut+T is the known input to the system and vt is an unknown unpredictable input mod-
elled as a stochastic process and referred to as process noise. The measurement model is
described by the implicit relation:

0 = h(xt,yt, et), (2.25b)

where yt denotes the observation made on the system at time t and et denotes the measure-
ment noise, an unpredictable disturbance modelled as a stochastic process. Model (2.25) is
very general. Many practical problems can be modelled with additive noise and an explicit
measurement relation resulting in:

xt+T = f(xt,ut+T ) + vt (2.26a)
yt = h(xt) + et. (2.26b)
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Model (2.26) can be stated in terms of the probabilities required in (2.24) using:

p(xt+T |xt,ut+T ) = pvt(xt+T − f(xt,ut+T )|xt,ut+T ) (2.27a)
p(yt|xt) = pet(yt − h(xt)|xt), (2.27b)

where pvt and pet denote the pdf of et and vt, respectively.

2.4.1.2 Linear Gaussian Model

The linear model, subject to Gaussian noise, is the most restrictive, but, at the same time, the
most important special state-space form, as it allows for an optimal analytic solution of the
recursive filtering problem given by the Kalman filter. Under the linear Gaussian assumption,
the system and the measurement model are both linear functions of the state:

xt+T = Ftxt +Gu
t ut+T +Gv

tvt (2.28a)
yt = Htxt +He

t et, (2.28b)

where Ft, Gu
t , Gv

t , Ht and He
t are matrices and where vt and et are stochastical vectors dis-

tributed according to vt ∼ N (0, Qt) and et ∼ N (0, Rt). Alternatively, model (2.28) can be
described by the distributions:

pvt(xt+T − Ftxt +Gu
t ut+T |xt, ut) = N (xt+T ;Ftxt −Gu

t ut+T , G
v
tQtG

vT
t ) (2.29a)

pet(yt −Htxt|xt) = N (yt;Htxt, H
e
tRtH

eT
t ). (2.29b)

Here N (x̂, P ) denotes a multivariate normal distribution with mean x̂, covariance P and cor-
responding Gaussian pdf N (x; x̂, P ) in x.

2.4.1.3 Nonlinear Model with Linear Gaussian Substructure

Under the nonlinear model with linear Gaussian substructure, conditioned on one part of the
state space denoted xn, the remaining part xl is linear and Gaussian. Compared to the non-
linear model, this special model class allows for more efficient filtering algorithms such as
the marginalised particle filter (MPF) or Rao-Blackwellised particle filter, see Section 2.4.2.3.
The general state-space form of this model is:

xnt+T = fnt (xnt ,u
n
t+T ) + F n

t (xnt )xlt +Gvn
t (xnt )vnt (2.30a)

xlt+T = f lt(x
n
t ) + F l

t (x
n
t )xlt +Gul

t (xnt )ult+T +Gvl
t (xnt )vlt (2.30b)

yt = ht(x
n
t ) +Ht(x

n
t )xlt +He

t (x
n
t )et, (2.30c)

with xlt ∼ N (x̂lt, Pt),
[

vnt
vlt

]
∼ N

(
0,
[
Qnt 0

0 Qlt

])
and et ∼ N (0, Rt). Note that, for simplicity,

vnt and vlt are assumed mutually independent. F n
t , Gvn

t , F l
t , G

ul
t , Gvl

t , Ht and He
t are matrices

depending on xnt and fnt , f lt and ht denote nonlinear functions.
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The model defined by (2.30) is very general. In many practical applications it is sufficient
to consider a special case of it. An important special case occurs, if the system model is linear
Gaussian and the measurement model is nonlinear. This leads to a substantial reduction in the
computational complexity of the filtering problem, since one covariance matrix can be used
for all particles. If the system model is almost linear, it can be linearised in order to reduce the
computational complexity. This is of special interest in real-time implementations, such as the
one considered in this thesis. Special cases of model (2.30) and their implications are treated
in [91].

2.4.2 Filtering Methods

This section presents three approximate solutions to the recursive filtering problem: the particle
filter (PF), which is also referred to as sequential Monte Carlo method, the extended Kalman
filter (EKF), which is an extension of the Kalman filter (KF) to nonlinear systems and the
marginalised particle filter (MPF), which combines the standard particle filter and the Kalman
filter in order to exploit a linear Gaussian substructure in a nonlinear model.

2.4.2.1 Particle Filter

The particle filter can be used to obtain a stochastic approximation of the filtering densities
(2.24), even if a nonlinear state-space model is given in its most general form (2.25). Since
the seminal paper [89], much has been written about the particle filter as well as applications
using it. The theory is described in [92, 93]. Interesting variations of this theory that try to
improve the proposal density are, for instance, the auxiliary particle filter [94], the Gaussian
particle filter [95] and the unscented particle filter [96]. Applications of the particle filter to
the problem of camera tracking can be found, for instance, in [45, 97–99].

The key idea of the particle filter is to represent the posterior density (2.23) by a set of
n� 1 samples or particles {x[i]

t }ni=1 and associated weights {w[i]
t }ni=1, such that:

p(xt|Yt,Ut) ≈
n∑
i=1

w
[i]
t δ(xt − x

[i]
t ), (2.31)

where δ(·) denotes the Dirac delta function. It can be shown that, as n → ∞, the approxi-
mation (2.31) approaches the true posterior. The particles are identically and independently
distributed (i.i.d.) samples from a proposal distribution q(·) and the weightsw[i]

t are normalised
important weights according to:

w
[i]
t ∝

p(X
[i]
t |Yt,Ut)

q(X
[i]
t |Yt,Ut)

, (2.32a)

or in a recursive fashion:

w
[i]
t ∝ w

[i]
t−T

p(yt|x[i]
t )p(x

[i]
t |x

[i]
t−T ,ut)

q(x
[i]
t |x

[i]
t−T ,Yt,Ut)

. (2.32b)
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The only restriction imposed on q(·) is that its support includes the support of p(·). Note if
the proposal distribution is chosen to be the prediction, the update of the importance weights
simplifies to:

w
[i]
t ∝ w

[i]
t−T p(yt|x

[i]
t ). (2.33)

This is the most common choice of importance density due to its simplicity, although it is not
optimal. Details regarding the principle of importance sampling can be found, for instance, in
[95].

It can be shown that, using the recursive propagation of the samples and weights according
to (2.32b), the approximate distribution will degenerate. After a few iterations all but one
particle will have negligible weight. A commonly used measure for the degeneracy of the
particle set is the effective sample size Neff [90]. An approximation of this measure can be
calculated from the normalised importance weights (2.32b):

N̂eff,t =
1∑n

i=1

(
w

[i]
t

)2 . (2.34)

The effective sample size measures the number of particles that contribute to the support of the
estimated probability density function. A solution to the degeneracy problem is to introduce a
resampling step as suggested in [89].

The basic idea of resampling is to eliminate particles with small weight and to concentrate
on particles with large weight. This is done by drawing a new particle set {x[i]∗

t }ni=1 from
the approximate distribution (2.31) with replacement, such that Pr(x

[i]∗
t = x

[i]
t ) = w

[i]
t , and

by setting {w[i]∗
t }ni=1 = 1

n
. Different resampling methods are compared in [100]. In this

thesis, systematic resampling [90] is used. This is the most efficient resampling algorithm,
as it requires only one random number and takes time linear in the number of particles. In
sampling importance resampling (SIR), the particle set is resampled in each iteration, while
in sequential importance sampling (SIS), resampling is performed only when it is necessary
according to some measure such as N̂eff,t. Algorithm 2.2 presents the SIR filter as suggested
in [90]. Note that in the SIR filter, the proposal distribution is chosen to be the prediction. A
minimum variance estimate x̂t of the state can be obtained after step 2 of this algorithm as a
weighted sample mean:

x̂t|t =
n∑
i=1

w
[i]
t x

[i]
t|t, (2.36a)

and the covariance of the estimate is given by the sample covariance:

Pt|t =
n∑
i=1

w
[i]
t

(
(x

[i]
t|t − x̂t|t)(x

[i]
t|t − x̂t|t)

T
)
. (2.36b)
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Algorithm 2.2 Sampling Importance Resampling (SIR) Filter

1. Initialise the filter: {x[i]
0|−1}ni=1 ∼ p(x0) and {w[i]

0 }ni=1 = 1
n

for i = 1, . . . , n, where p(xn0 )
can be arbitrary, but it is assumed known. Let t := 0.

2. Measurement update: compute the importance weights according to (2.33) and nor-
malise:

w
[i]
t =

p(yt|x[i]
t )w

[i]
t−T∑n

j=1 p(yt|x
[j]
t )w

[j]
t−T

, i = 1, . . . , n.

3. Resample.

4. Time update: generate n i.i.d. samples {x[i]
t+T |t}ni=1 ∼ p(xt+T |x[i]

t|t,ut+T ).

5. Let t := t+ T and repeat from 2.

2.4.2.2 Extended Kalman Filter

The extended Kalman filter (EKF) is an approximate extension of the Kalman filter (KF) to
nonlinear systems. The Kalman filter, as developed in [88], provides an analytic solution to
the linear Gaussian problem. Given that the properties of the linear Gaussian model defined in
Section 2.4.1.2 hold and that the a priori pdf is Gaussian, the posterior density is at every time
step Gaussian and, hence, can be parametrised by a mean and a covariance. The main idea is
then to update the moments using a linear filter so that the covariance of the estimation error
is minimised. Derivations of the Kalman filter can be found, for instance, in [28, 101].

As many practical applications require nonlinear models, different approximative exten-
sions of the Kalman filter have been developed. The extended Kalman filter, which linearises
the nonlinear model by applying a first order Taylor expansion around the latest state estimate,
is the most commonly used. It is treated in different books on filtering, e.g. [28, 101, 102].
Further approximative extensions are the second order extended Kalman filter [103], the iter-
ated extended Kalman filter [101, 102] and the unscented Kalman filter [104]. All of these
are concerned with improving the possibly poor performance of the extended Kalman filter in
the presence of high model nonlinearities, however, at the expense of additional complexity.
Applying the extended Kalman filter to tracking problems is widespread in computer vision as
well as in robotics, see for instance [28, 39, 105]. Further references are given in Section 2.4.3.
The extended Kalman filter — in this thesis applied to the problem of visual-inertial camera
tracking and recursive feature localisation — is introduced in the sequel.

Assuming that the considered system is modelled according to (2.25), with the additional
property that vt ∼ N (0, Qt) and et ∼ N (0, Rt), the extended Kalman filter applies a first
order Taylor expansion around the latest estimate in order to obtain an approximate linear
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Gaussian model, which can then be estimated optimally. The linearised system model is:

xt+1 ≈ f(x̂t|t,ut+T ,0) + Ft(xt − x̂t|t) +Gv
tvt

= Ftxt + f(x̂t|t,ut+T ,0)− Ftx̂t|t +Gv
tvt, (2.37a)

with Jacobians:

Ft :=
∂f(x,ut+T ,0)

∂x

∣∣
x=x̂t|t

Gv
t :=

∂f(x̂t|t,ut+T ,v)

∂v

∣∣
v=0

.

The linearised measurement model is:

0 ≈ h(x̂t|t−T ,yt,0) +Ht(xt − x̂t|t−T ) +He
t et

= Htxt + h(x̂t|t−T ,yt,0)−Htx̂t|t−T +He
t et. (2.37b)

with Jacobians:

Ht :=
∂h(x,yt,0)

∂x

∣∣
x=x̂t|t−T

He
t :=

∂h(x̂t|t−T ,yt, e)

∂e

∣∣
e=0

.

The extended Kalman filter is given in Algorithm 2.3. A thorough derivation can be found in
[28]. The standard Kalman filter can be obtained from Algorithm 2.3 by substituting:

−h(x̂t|t−T ,yt,0) = yt −Htx̂t|t−T and f(x̂t|t,ut+T ,0) = Ftx̂t|t −Gu
t ut+T .

2.4.2.3 Marginalised Particle Filter

Recursively estimating the posterior density p(xt|Yt,Ut) in case of a nonlinear state-space
model (2.25) can be accomplished by the particle filter as outlined in Section 2.4.2.1. However,
if the model is in the form of (2.30), that is it contains a conditionally linear substructure,
subject to Gaussian noise, this can be exploited to obtain better estimates, i.e. estimates with
reduced variance [106] and possibly reduced computational costs as well [107]. The method is
referred to as marginalised particle filter (MPF) or Rao-Blackwellised particle filter. The theory
is described, for instance, in [91–93]. Practical applications and experiences are gathered
in [108]. The MPF has been used in the context of visual SLAM as well, see for instance
[56, 109, 110]. Further applications are given in Section 2.4.3. The MPF is introduced briefly
in the sequel. A thorough derivation can be found in [91, 111].

Consider a state vector xt that can be partitioned according to:

xt =

[
xnt
xlt

]
, (2.39)
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Algorithm 2.3 Extended Kalman Filter (EKF)

1. Initialise the filter:
x̂0|−1 = x0 and P0|−1 = cov(x0),

where the a priori pdf p(x0) is Gaussian. Let t := 0.

2. Measurement update:

zt = 0− h(x̂t|t−T ,yt,0)

St = HtPt|t−TH
T
t +He

tRtH
eT
t

Kt = Pt|t−TH
T
t S
−1
t

x̂t|t = x̂t|t−T +Ktzt

Pt|t = (I−KtHt)Pt|t−T ,

where zt is referred to as innovation or residual, St as innovation covariance, and Kt as
Kalman gain.

3. Time update:

x̂t+T |t = f(x̂t|t,ut+T ,0)

Pt+T |t = FtPt|tF
T
t +Gv

tQtG
vT
t .

4. Let t := t+ T and repeat from 2.
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where xnt denotes the nonlinear part of the state space and xlt denotes the part that is linear
Gaussian, if conditioned on xnt . By marginalising out xlt from the full posterior density (2.23):

p(Xt|Yt,Ut) = p(xlt,X
n
t |Yt,Ut) = p(xlt|Xn

t , Yt,Ut)︸ ︷︷ ︸
KF

p(Xn
t |Yt,Ut)︸ ︷︷ ︸

PF

, (2.40)

the particle filter can be used to obtain an approximate estimate of p(Xn
t |Yt,Ut) and the

Kalman filter, since Xn
t is given, provides an optimal estimate of p(xlt|Xn

t , Yt,Ut). The MPF
is a clever combination of both algorithms. An alternative interpretation as a Kalman filter
bank is developed in [111, 112].

Under the first interpretation, which is used in this thesis, the posterior is represented by
a set of n � 1 particles {xn,[i]t , x̂

l,[i]
t , P

[i]
t }ni=1, where each particle contains a Gaussian distri-

bution N (x̂lt, Pt) and an associated importance weight w[i]
t . Assuming that the system under

consideration is modelled according to (2.30), the marginalised particle filter — in this repre-
sentation inherently using a SIR filter (cf. Algorithm 2.2) — is given in Algorithm 2.4. Note
that for the sake of notional brevity, the dependence of x

n,[i]
t in ht, Ht, ft, F n

t and Gvn
t and the

dependence of unt+T in ft given in model (2.30) are suppressed. The expressions for the case,
where vnt and vlt are not mutually independent, can be found in [91]. The minimum variance
estimate x̂nt|t and the covariance P n

t|t of the nonlinear partition can be obtained from (2.36) by

substituting x
[i]
t|t = x

n,[i]
t|t . The estimate and covariance of the linear partition are:

x̂lt|t =
n∑
i=1

w
[i]
t x̂

l,[i]
t|t (2.42a)

P l
t|t =

n∑
i=1

w
[i]
t

(
P

[i]
t|t + (x̂

l,[i]
t − x̂lt|t)(x̂

l,[i]
t − x̂lt|t)

T
)
. (2.42b)

As mentioned in Section 2.4.1.3, many practical applications allow for special cases of
model (2.30). In the case of linear system dynamics and nonlinear measurements, one covari-
ance matrix can be used for all particles. This leads to a substantial reduction in the computa-
tional complexity of Algorithm 2.4. Important special cases and their implications are treated
thoroughly in [91, 107].

2.4.3 SLAM and Localisation

Simultaneous localisation and mapping (SLAM) is historically related to robot navigation:
a robot acquires a map of its environment and simultaneously localises itself relative to this
map, while all it is given is a sequence of measurements Yt and controls Ut. Measurements
are typically fused from a number of sensors such as the global positioning system (GPS), laser
rangefinder, radar or inertial sensors (sensor fusion). Localisation is the subproblem of deter-
mining the pose relative to a given map. It is therefore included in the SLAM problem. One
of the first formalisations of the SLAM problem can be found in [113]. Since then extensive
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Algorithm 2.4 Marginalised particle filter (MPF), inherently using a SIR filter

1. Initialise the particle set and the associated Gaussians according to step 1 of the SIR
filter and the extended Kalman filter, introduced in Algorithm 2.2 and 2.3, respectively.

2. Measurement update:

(a) Particle filter measurement update: use step 2 of the SIR filter with:

x := xn

p(yt|xn,[i]t ) = N
(
yt;ht +Htx̂

l,[i]
t|t−T , HtPt|t−TH

T
t +He

tRtH
eT
t

)
. (2.41a)

(b) Kalman filter measurement update: use step 2 of the EKF with:

x̂ := x̂l,[i], P := P [i], zt = yt − ht −Htx̂
l,[i]
t|t−T , i = 1, . . . , n.

(c) Resample.

3. Time update:

(a) Particle filter time update: use step 4 of the SIR filter with:

x := xn, u := un,

p(xnt+T |x
n,[i]
t|t ,u

n
t+T ) = N

(
xnt+T ; fnt + F n

t x̂
l,[i]
t|t , F

n
t Pt|tF

nT
t +Gvn

t Q
n
tG

vnT
t

)
.

(b) Kalman filter corrective measurement update: the prediction of the nonlinear states
in step 3a provides information about the linear states that can be incorporated by
interpreting the nonlinear time update (2.30a) as an artificial measurement:

xnt+T − fnt︸ ︷︷ ︸
yt

= F n
t xlt +Gvn

t vnt

and, using this equation, performing a second corrective measurement update
analogously to step 2b. Assume that the corrected linear states are denoted
{x̂l,[i],∗t|t , P

[i],∗
t|t }.

(c) Kalman filter time update: (cf. step 3 of the EKF)

x̂
l,[i]
t+T |t = f lt + F l

t x̂
l,[i],∗
t|t +Gul

t ult+T , P
[i]
t+T |t = F l

tP
[i],∗
t|t F

lT
t +Gvl

t Q
l
tG

vlT
t .

4. Let t := t+ T and repeat from 2a.
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research has been undertaken in the robotics community. A survey of the essential solution
methods and significant implementations is given in [114]. Recent advances are gathered in
[115]. The textbook [28] provides mathematical derivations and implementations for the most
important algorithms in probabilistic robotics. Localisation and mapping are first treated sepa-
rately and then in combination yielding SLAM. The online — in contrast to the full — locali-
sation problem involves the estimation of the momentary pose — in case of SLAM along with
the map — and a representation of the confidence in the estimate without storing the entire his-
tory of measurements, controls or states. The tools for achieving this are given in Section 2.4.1
and 2.4.2, respectively. Considering the structure from motion problem (cf. Section 2.3.4),
where the camera trajectory and the scene structure are estimated from an image sequence,
and model-based camera tracking (cf. Section 2.3.5), where the camera trajectory is estimated
relative to a given 3D model of the target scene, both by using computer vision techniques,
the parallels to the SLAM and the localisation problem in robotics are obvious. However, it
should be noted that, among others, one major difference complicates vision-based tracking
compared to robot localisation: unless additional sensors are used, there are no control inputs
Ut available to predict the pose of a handheld camera. Nowadays, the computer vision and
the robotics community are closing in on each other: Recursive filters as well as sensor fusion
are frequently exploited concepts in computer vision [44, 98, 99, 105, 116–121] and the use of
cameras is widespread in robotics [109, 122–125]. The today established notions visual and
monocular SLAM are evidence of this.

The remainder of this section gives examples of how the problem of camera pose and
structure estimation has been solved using concepts developed in robotics. A brief introduction
and critical discussion of the following algorithms — playing an important role in this thesis
— is given: the localisation based on the extended Kalman filter denoted EKF-Localisation,
the most classical SLAM approach, the EKF-SLAM, and two advanced SLAM techniques,
FastSLAM and MPF-SLAM.

2.4.3.1 EKF-Localisation

It is straightforward to put the problem of real-time model-based camera tracking in the nonlin-
ear state-space form (2.25). Consider the moving camera as a dynamic system, where the state
vector xt contains information related to the momentary pose and kinematics of the camera
and where the observations Yt are obtained by processing images (cf. Section 2.1.4). A recur-
sive filter such as the extended Kalman filter can then be used to estimate the camera trajectory.
The major benefit from using the recursive filtering framework instead of the computer vision
techniques introduced in Section 2.3.1.1 lies in the possibility to perform sensor fusion. This is
easily achieved by formulating one specific measurement equation for each sensor and opens
up for compensating for the lack of control inputs Ut in vision-only tracking. Visual-inertial
sensor fusion is most frequently proposed in literature and the advantages of this special sen-
sor combination are well-proven, see for instance [2, 44, 121] and the references therein. In
outdoor environments GPS has been used, e.g. in [84, 120, 126, 127]. An efficient and robust
markerless visual-inertial camera localisation system is developed in Chapter 3.
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(a) Consistent map. (b) Corrupted map.

Figure 2.12: EKF-SLAM: (a) illustrates a consistent map reconstructed by moving a
camera in front of a corner of a room. The mapped point landmarks are shown with their
location covariances. (b) presents the corruption of the map after an erroneous measure-
ment update.

2.4.3.2 EKF-SLAM

EKF-SLAM denotes the classical recursive solution to the structure from motion problem.
The key idea is to augment the state xt, as introduced in Section 2.4.3.1, with a map mt of the
environment and to estimate the joint posterior p(mt,xt|Yt,Ut) using the extended Kalman
filter. The map is typically represented by a vector composed of the 3D locations m

(i)
t of point

landmarks, but also other parametrisations such as lines [39, 40] or surfaces [128, 129] have
been proposed. Clearly, for any reasonable number of features, the vector mt is significantly
larger than xt that is being estimated in Section 2.4.3.1, resulting in an enormous computational
complexity of the filter algorithm.

The EKF solution to visual SLAM is widespread in literature [39, 40, 105, 130] and several
topics have been addressed such as computational complexity [118, 131, 132], loop closing
and map consistency [118, 132, 133] and robustness and relocation [33, 134–136]. See [114]
for a state of the art of the essential solution methods. Visual-inertial sensor fusion is also
investigated in this context [137–139].

Besides the topics mentioned above, one major problem inherent to the EKF-SLAM ap-
proach is its sensitivity to incorrect measurements due to the joint estimation of the camera
states and the map in one state vector. Since the camera states and the map have to be treated
simultaneously in the measurement update, one incorrect measurement cannot only corrupt
the camera states momentarily, it can also introduce an irreparable inconsistency into the map.
This will inevitably lead to a filter divergence and require a complete initialisation. An example
is given in Figure 2.12. This effect is also discussed, for instance, in [116, 140].

2.4.3.3 FastSLAM

FastSLAM, as first introduced in [141] and extended in [142], is an algorithm that utilises the
idea of the marginalised particle filter to obtain a solution to SLAM that scales with the number
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of features. Let N be the number of features m
(i)
t in the map mt and let xt denote the camera

pose. The key idea pertains then to the fact that the full posterior p(mt,Xt|Yt,Ut) can be
factorised into N + 1 densities:

p(mt,Xt|Yt,Ut) = p(Xt|Yt,Ut)
N∏
i=1

p(m
(i)
t |Xt,Yt,Ut). (2.43)

Stated differently, the features m
(i)
t are mutually independent, given the camera trajectory Xt.

Note that the observation (2.43) has the same structure as (2.40). Utilising this structure and
assuming that the camera trajectory is represented by a particle set, N separate Gaussians, one
for each individual feature, can be associated to each particle representing the map. The theory
and implementations of the FastSLAM algorithm are thoroughly treated in the recent textbook
[28] and a comparison to the EKF-SLAM approach can be found in [143].

Utilising the FastSLAM algorithm — originally devised to solve the SLAM problem for
mobile robots, where the dimension of the state space is small — in monocular SLAM is a
recent trend in computer vision as well as in robotics [109, 117]. However, one major problem
of FastSLAM should be noted. The correlations between the features and the camera pose are
coded in the diversity of the particles and their associated maps. During the resampling step,
as particles are removed, covariance information is lost. Over time this effect — referred to as
particle depletion — can lead to an inconsistent map estimate and to a limited ability to close
loops [144]. Hence, in the context of FastSLAM, it is of special interest to prolong the survival
times of the particles. This topic is treated in Chapter 5.

2.4.3.4 MPF-SLAM

In this thesis, MPF-SLAM refers to a SLAM system, where the marginalised particle filter
is used to estimate the posterior distribution p(mt,Xt|Yt,Ut). Such a system is developed
in [56, 110] for being able to exploit inertial data together with FastSLAM. The MPF-SLAM
algorithm is a generalisation of FastSLAM in the respect that, besides the landmark positions,
also a conditionally linear Gaussian substructure xlt, present in the dynamic system of the
camera can be marginalised. For this purpose, the dynamic system has to be put in the form
of model (2.30). The concept of the MPF-SLAM algorithm is explained by the following
factorisation:

p(mt,x
l
t,X

n
t |Yt,Ut) = p(Xn

t |Yt,Ut)p(x
l
t|Xn

t , Yt,Ut)
N∏
i=1

p(m
(i)
t |xlt,Xn

t ,Yt,Ut) (2.44)

and the idea behind it is to extend the FastSLAM algorithm to be able to cope with a state
vector of a higher dimension. This is achieved by exploiting the benefits of the marginalised
particle filter compared to the standard particle filter as mentioned in Section 2.4.2.3. Being
able to cope with a higher state dimension is of special interest in the context of visual-inertial
SLAM, where, besides the momentary pose, kinematics and biases related to the camera and
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the inertial sensors have to be estimated as well. The robustness and performance of such a
visual-inertial system is investigated in Chapter 5. The problem of loosing covariance infor-
mation with the particle trajectories applies for MPF-SLAM as well.





3
Model-based Visual-Inertial Tracking

This chapter is devoted to developing a hybrid model-based camera tracking system, which
fuses measurements from a camera and low cost inertial sensors, i.e. from a camera IMU
system as presented in Section 2.2. The fusion is based on the extended Kalman filter (EKF)
(cf. Section 2.4.2.2). This work was performed within the EU project MATRIS [66], where
the objective was to develop a visual-inertial tracking system that required no markers or other
special infrastructure in the environment (cf. Section 2.1.4). To achieve this, a markerless top
down image processing approach relying on a 3D model of the target environment is used.

The aim of visual-inertial sensor fusion is to overcome some fundamental limitations of
vision-only tracking:

High computing power: The image processing used to generate camera measurements (cf.
Section 2.1.4) is computational intensive, especially without a continuous image se-
quence and a reasonable prediction of the camera pose. By exploiting kinematic infor-
mation provided by inertial sensors, a more accurate prediction of the camera pose can
be obtained. The improved prediction allows for reducing the computational cost of the
image processing and the demand for camera measurements in general.

Slow camera motions: Pure vision-based tracking systems usually can handle only slow cam-
era motions. This is to some extent due to the computational demand, but also due to
inherent camera characteristics such as motion blur, which disturbs the feature registra-
tion, and the comparatively low sample rate. Inertial sensors can be sampled at a much
higher rate than cameras and the algorithms for processing their measurements are less
computationally intense (cf. Section 2.2.1). They are suitable for capturing fast move-
ments, while the camera provides an absolute reference that can compensate for the drift
in the integrated inertial data (cf. Section 2.2.1.3).

Occlusion: If too many features are occluded, the camera pose cannot be estimated using

47
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computer vision techniques (cf. Section 2.3.1). Inertial sensors — in general — always
deliver measurements. The pose can therefore be updated at any time, even though the
accuracy of the estimate deteriorates quickly without an external reference, which can
be provided by the camera measurements.

Jitter: Computer vision techniques tend to introduce jitter, i.e. unwanted variations, into the
motion estimates. The reason is that the current pose estimate usually relies only on
the currently visible feature set, while past poses have no significant influence. The
amount of jitter increases when the feature set changes significantly between frames.
This is typically the case, when the outlier rate is high and a robust estimation technique
such as RANSAC (cf. Section 2.3.3) is used. In recursive filtering (cf. Section 2.4.2),
the influence of past poses can be increased via the process noise and the influence of
measurements can be lessened via the measurement noise so that a smoother trajectory
can be obtained. Moreover, an accurate pose prediction simplifies the outlier rejection.

Given the considerations above, it is obvious that cameras and inertial sensors have com-
plementary properties and thus provide a promising sensor combination. The advantages
of visual-inertial sensor fusion are extensively treated in literature, especially in the field of
augmented reality. Various methods have been proposed, many of them using the extended
Kalman filter [26, 44, 121, 137, 145–149]. An open question is, however, whether and how
accelerometer readings should be incorporated into the pose estimation. Resolving this issue
is one major topic of this chapter. Different state-space models are therefore designed and
evaluated within the visual-inertial tracking system developed in this chapter.

Section 3.1 gives an overview of the visual-inertial tracking framework. The individual
building blocks, initialisation, markerless image processing and sensor fusion are treated in
Sections 3.2 through 3.4. Section 3.5 describes how a 3D model of the target environment can
be acquired and discusses further issues that arise when setting up the system. In Section 3.6,
the results are evaluated both under controlled conditions and in real world environments.
Conclusions are drawn in Section 3.7.

3.1 Approach

The architecture of the visual-inertial tracking framework is outlined in Figure 3.1. The
CamIMU (cf. Section 2.2) provides synchronised inertial data and camera images. The image
processing component generates point correspondences between the 3D model of the target
scene and the camera images. The extended Kalman filter is then used to fuse these with the
measurements from the IMU to obtain a pose estimate. The pose estimates are exploited for
the markerless image processing, i.e. a top down approach is used, thus making the vision and
the sensor fusion system tightly coupled.

The workflow of the software system is specified in Figure 3.2. At time t, a data packet con-
sisting of the camera frame t and the sequence of IMU readings for the interval [t−(r−1)T, t]
is captured. Here, T denotes the sample time of the IMU and rT denotes the sample time of
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Figure 3.1: Architecture of the visual-inertial tracking framework.
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Figure 3.2: Workflow of the visual-inertial tracking framework. The grey box is refined
in Figure 3.3.
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the camera. The image is resampled to compensate for distortion (cf. Section 2.1.1.2). A di-
vergence test is performed on the state estimate, based on which the system either initialises or
processes the inertial measurements up to time t. Either way a pose estimate is obtained and
used for generating point correspondences between the 3D model of the environment and the
camera image. The extended Kalman filter is then updated using the correspondences. The ini-
tialisation of the tracking system is discussed in Section 3.2. The top down image processing
approach used to generate the camera measurements is described in Section 3.3. Section 3.4
covers the fusion of camera and IMU measurements as well as related topics such as outlier
rejection and divergence monitoring.

3.2 System Initialisation

The system is said to be initialised when the estimate of the camera pose is based purely on
prior information instead of a pose prediction as during the ordinary predictive tracking loop.
In robotics, the initialisation phase is referred to as global localisation. The result of this phase
is an initial estimate that must meet the following requirements: it is appropriate to initialise
the extended Kalman filter, i.e. the error of the estimate is known and can be represented by
a Gaussian, and it is reasonably accurate to initialise the image processing method used. The
tracking system developed in this thesis provides three different initialisation modes that vary
in their degree of automation.

3.2.1 Manual

The easiest way to initialise the system is to enter a fixed initial orientation and position and
to align the pose of the CamIMU device by hand so that the feature registration snaps on. This
method is sufficient for small-scale desktop environments and has the advantage of requiring
no special preparation.

3.2.2 Semi-Automatic

In the absence of severe magnetic disturbances, for instance caused by large amounts of ferrous
material in the target scene, the 3D orientation provided by the IMU (cf. Section 2.2.1) can be
used to initialise the rotational states. In this case, only the position of the CamIMU has to
be aligned by hand. The semi-automatic method is more convenient, however, it requires
calibration of the relative rotation between the global frame and the frame defined by the 3D
model of the target scene, the world frame (cf. Section 2.2.2.4).

3.2.3 Fully Automatic

A fully automatic initialisation method based on a database of reference images and bottom up
feature matching (cf. Section 2.1.4.1) has been developed [150, 151]. It is intended for cases
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where the manual method is in-sufficient — e.g. in large-scale environments — and the IMU
cannot be used due to magnetic disturbances. Similar techniques are used in [31, 49, 152].

A reference image is here defined as a camera frame with a known pose and an associ-
ated set of distinctive features — this thesis uses SIFT (scale invariant feature transform) [48]
features — with known 3D coordinates. In order to handle multiple reference images effi-
ciently, the full-automatic initialisation process is divided into two steps: First, the database
is queried with the current camera frame to find the closest reference image using a similarity
measure based on colour histograms. An advanced similarity measure using local histograms
has been developed in the MATRIS project [153]. In the second step, the pose obtained from
the reference image is verified and refined using the associated features. These are matched
against the features extracted from the live image and an improved pose estimate is computed
from the resulting point correspondences (cf. Section 2.3.1) using the RANSAC algorithm (cf.
Section 2.3.3). The details of this method are given in [5, 154]. The fully automatic approach
requires a sufficiently dense database of reference images.

3.3 Top Down Image Processing

In order to obtain an efficient tracking method, it is essential to exploit the pose prediction
provided by the sensor fusion system in the markerless image processing. This is achieved
by the analysis-by-synthesis technique. With this technique, a 3D model of the target scene,
typically a CAD model, is used to predict the appearances of features in the camera images,
usually by projecting the model from the predicted camera poses. Assuming that the 3D model
is sufficiently accurate, the performance of this image processing approach depends on the
accuracy of the pose prediction: A more accurate prediction reduces the computational demand
and increases the accuracy of the feature registration. The analysis-by-synthesis technique has
been proposed earlier, mostly using a geometric CAD model, a wireframe model, of the target
scene in combination with edge features [87, 147, 155]. Textured CAD models have been used
as well [44, 156].

In this thesis, a textured CAD model of the target scene is used to predict the local appear-
ances of corner features. The model is projected from the predicted camera pose in order to
obtain a synthetic image that resembles the camera frame. For establishing correspondences,
small texture windows (patches) of the synthetic image, centred around the projected locations
of the corner features, are registered in the camera frame using a variation of the Kanade-Lucas
tracker (cf. Section 2.1.4.2) that includes an affine photometric model. In order to increase the
convergence radius, the registration is performed in a coarse-to-fine fashion using image pyra-
mids (cf. Section 2.1.4.2). This relaxes the requirements with respect to the accuracy of the
predicted pose and, hence, increases the robustness of the overall system as well as its ability
to initialise from a rough initial pose.

The workflow of the analysis-by-synthesis approach is outlined in Figure 3.3. A simple
two-sided test object is here used as target. The middle part of the figure denotes the sequence
of operations that are performed on the image data illustrated on both sides. The left side refers
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Figure 3.3: Workflow of the top down image processing approach.
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to the camera image and the right side to the synthetic image. The registration is performed in
greyscale.

The process starts with projecting the CAD model from the predicted camera pose. This
is done by rendering the model on the graphics card using OpenGL (open graphics library)
[157]. The image intensities are then obtained from the framebuffer. Note that the background
colour — black in Figure 3.3 — appears in the synthetic image in regions that are not covered
by the model. These regions will be excluded from the registration as described in the sequel.

Assume that a feature map, i.e. a set of suitable 3D points on the model, is given. This map
is then projected to find a subset of features that are visible in the camera frame. One such
feature is indicated before and after the projection in Figure 3.3.

In the next step the image pyramids are generated for both the camera image and the syn-
thetic image. Two additional resolution levels are generated in Figure 3.3. Depending on the
expected feature displacements, the number of levels can be varied, e.g. it can be increased dur-
ing the initialisation phase. The rendering process introduces aliasing effects. If, in addition,
the camera is out of focus, the registration can be stabilised by lowpass filtering the synthetic
image before constructing the image pyramid so that both images are equally blurred.

Rectangular patches, centred around the predicted positions of the visible features, are
then defined on each level of the synthetic image pyramid. Figure 3.3 shows the three patch
resolutions defined for the marked feature. Note that parts of the background appear in the
higher resolutions. In order to exclude these from the registration, a binary mask is generated
for each patch using the depth buffer 1.

The masked patches are then registered in the camera image applying the coarse-to-fine
strategy introduced in Section 2.1.4.2. Figure 3.4 shows the result of a successful registration.

The last step is to establish 2D/3D correspondences by associating the 3D locations of the
registered features to their 2D locations in the camera image, whereat the latter are normalised
using (2.3b).

The mathematical details of the iterative patch registration are given in Section 3.3.1. The
management of the feature map is treated in Section 3.3.2 and Section 3.3.3 presents results.

3.3.1 Iterative Patch Registration

This section provides the mathematical details for registering a masked patch of a synthetic
image in a camera image given a predicted position. Assuming that the CAD model and the
camera pose used to generate the synthetic image are both reasonably accurate, the synthetic
image resembles the camera image with respect to content and perspective distortion. This is
a suitable condition for an iterative registration technique such as the Kanade-Lucas Tracker
(KLT) (cf. Section 2.1.4.2). However, due to changing light conditions and the photometric
response function of the camera used, the effective intensities of the synthetic image can differ
significantly from those of the camera image (cf. Figure 3.4). It turns out that this effect can be

1The depth buffer is written during the rendering process and indicates background pixels by the value 1
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(a) Synthetic image and considered patch. (b) Registration in the camera image.

Figure 3.4: Patch registration: (a) shows the synthetic image, with the considered patch
marked by a rectangle, and (b) illustrates the spatial and photometric registration of this
patch in the camera image. Note how the contrast and brightness of the camera image has
been adjusted locally during the photometric registration.

compensated for locally by extending the basic KLT with a relatively simple affine photometric
model that has been used earlier in [32].

Let I(mp) be the intensity value of pixel mp in the synthetic image and J(mp) analogously
in the camera image. The relation between the pixel intensities is modelled as:

I(mp) = λJ(mp + d) + δ ∀mp ∈ W, (3.1)

where d = [dx, dx]
T denotes the displacement, λ can be regarded as a parameter adjusting

the contrast and δ as a parameter adjusting the brightness of the texture window W . Here, W
denotes the masked patch area of the synthetic image. The registration problem is then to find
the parameter vector α = [d1, d2, λ, δ]

T that minimises:

α̂ = arg min
α

=
∑
W

(
I(mp)− λJ(mp + d) + δ

)2 ∀mp ∈ W. (3.2)

Substituting λJ(mp + d) + δ for its first order Taylor expansion and setting the derivatives of
(3.2) with respect to α to zero, results in a linear system that can be solved for α:

Gα = b, (3.3a)

where

G =
∑
W

s(mp)s(mp)
T ∀mp ∈ W (3.3b)

b =
∑
W

(
I(mp)− J(mp)

)
s(mp) ∀mp ∈ W, (3.3c)
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with

s(mp) =
[
Ix(mp) Iy(mp) I(mp) 1

]T
. (3.3d)

Here, Ix(mp) and Iy(mp) denote the horizontal and vertical image gradient in I(mp). The
details of the linearisation can be found, for instance, in [58] and in the recent book [13]. In
order to obtain an accurate estimate α̂, Newton-Raphson-style iterations of (3.3) are performed
until either a maximum number of iterations is exceeded or the change in α̂ is negligible. Note
that subpixel accuracy can be achieved with this method.

Initial values for the photometric parameters λ and δ can be obtained from the mean and
the standard deviation of a local window centred around the predicted position in the synthetic
and the camera image, respectively. The registration is assumed valid, if the final residual is
below a threshold. This threshold depends on the properties of the target scenario and can be
tuned experimentally.

3.3.2 Feature Management

This section treats the feature management in the visual-inertial tracking framework presented
in this chapter. Several aspects of this topic are discussed: structure of the feature map, detec-
tion, deletion, distribution and number of features in the map.

The structure of the feature map is simple. It is a set of 3D points — each one denoting
a feature — on the surface of the CAD model, preferably at distinctive corners in the texture.
The features need no special descriptors, as the patches used for the registration are obtained
from the synthetic images. The management of the feature map is implemented as a set of
elementary rules.

In order to ensure a minimum number of visible features in the map, new features are
added, if too few are predicted to be visible in the current camera image. Corner points are
detected in free and valid areas of the synthetic image using the simple but efficient corner
detector FAST (Features from Accelerated Segment Test) [158]. An area is said to be free
and valid if it contains no background pixels and is not already covered by another feature in
the map. In order to obtain an even distribution of features in the images, a minimum pixel
distance is enforced between the features during the detection. The depth buffer can be used to
obtain the 3D coordinates corresponding to the detected corners. The 3D coordinates are then
added to the map.

Features are deleted from the map, if their registration fails in more than 50% of the frames,
where they should be visible.

Another facet of feature management is to select an appropriate subset of the visible fea-
tures to try to register in the current image. This plays an important role in real-time systems,
since registering all visible features is computationally costly. It is particularly important,
when the viewing distance to the target object varies significantly. This is exemplified in
Figure 3.5(e,f), where many features are added to the map when the camera is close to the
target object, while, at a large distance, most of them become redundant in the sense that their
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registration will not improve the pose estimate. In order to avoid the generation of redun-
dant camera measurements, a minimum pixel distance is also enforced during the registration.
More advanced, but also significantly more expensive methods are proposed, for instance, in
[159, 160].

In applications, where the viewing distance does not change significantly, it is advanta-
geous to select an appropriate static feature map offline in order to save computational power
for feature management and detection.

3.3.3 Results

Figure 3.5 demonstrates the potential of the model-based markerless image processing method
developed in this section. The features on the target object are registered under a wide range
of possible light conditions and views. In Figure 3.5, successful registration is shown in under-
and overexposed camera images (a,b), from nearly orthogonal views onto the sides of the
target object (c,d) and from significantly different viewing distances of 10 cm and 350 cm,
respectively, (e,f).

This performance is obtained using two crucial techniques: the affine photometric model
used for registering the synthetic patches in the camera images and the analysis-by-synthesis
technique used to construct those patches appropriately. The affine photometric model al-
lows for tracking features under varying light conditions. The analysis-by-synthesis technique
makes sure that, given a reasonably accurate pose prediction, the correct level of detail and
the correct perspective distortion of the patches are obtained. This makes successful feature
registration from a variety of different view points possible. Moreover, this technique provides
further advantages: the graphics hardware can be utilised to project the CAD model efficiently,
the feature tracking is drift-free and the pose prediction provided by the sensor fusion system
is exploited to an extremely high degree to improve the efficiency of the registration.

However, it is important to note that these advantages are conditioned on a sufficiently
accurate prediction of the camera pose and model of the target scene. These aspects are treated
in Section 3.4 and 3.5, respectively.

3.4 Sensor Fusion

This section is concerned with combining camera and inertial measurements using the ex-
tended Kalman filter (cf. Section 2.4.2.2) to obtain the camera pose. The objective of this
section is to develop a fusion strategy that allows for a tight integration of the camera and
the inertial sensors and that provides an accurate pose prediction that can be fed to the vision
system so that a stable and efficient final system is obtained.

Systems have been reported with a loose coupling between the vision and inertial subsys-
tem: in [147] inertial sensors are used as prediction devices, in [149] as backup, in [44, 126,
161] the 2D/3D correspondences are used to obtain a camera pose or motion measurement that
is then fed to an extended Kalman filter. In the system developed here, a tight integration of the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Augmented camera images showing the successful feature registration (indi-
cated by green rectangles) and pose estimation (indicated by the pose of the augmented
coordinate system) under different light conditions and varying viewing angles and dis-
tances with respect to the target object.
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camera and the inertial sensors is obtained by fusing the respective measurements, 2D/3D cor-
respondences, 3D angular velocities and 3D linear accelerations uniformly with an extended
Kalman filter. Outliers among the camera measurements are also handled in the filter.

Furthermore, the proposed systems differ in whether and how accelerometers are used
for the pose estimation: in [147, 148, 162] only gyroscopes are used, in [44] accelerometers
are modelled as inclinometers in the fashion of an attitude and heading reference system (cf.
Section 2.2.1) and in [26, 121] the measurements are modelled according to (2.15) as in a
strapdown inertial navigation system. Henceforth, the above fusion strategies are denoted
gyro, gravity and acceleration model, respectively. As accelerometers can introduce a severe
drift in the position estimate (cf. Section 2.2.1.3), it is not clear, whether they improve the
tracking performance or introduce instabilities. In particular, this may depend on the accuracy
and performance of the image processing approach used. Another open question is, whether
the inertial data should be treated as measurements or as control inputs. Both approaches are
encountered in literature [121, 139].

In order to solve these issues for the visual-inertial tracking framework developed here,
four state-space models, representing the different fusion strategies mentioned above, are de-
veloped in Section 3.4.1. An experimental performance evaluation under controlled conditions
and in real world environments is provided in Section 3.6. Outlier rejection and divergence
monitoring are treated in Section 3.4.2 and 3.4.3, respectively.

3.4.1 Tracking Models

Four state-space models, representing different fusion strategies, are developed incrementally
in the sequel using the notation of Section 2.4.1. The models are denoted gyro, gravity, accel-
eration and acceleration input model.

3.4.1.1 Gyro Model

In the gyro model, camera measurements, i.e. 2D/3D point correspondences, and gyroscope
measurements, i.e. 3D angular velocities are fused. Both types of observations are represented
by a separate measurement equation. The state vector x comprises:

xT =
[
sTw ṡTw qTsw ωT

s bωTs
]
, (3.4)

where sw denotes the position, ṡw the velocity, qsw the orientation quaternion, ωs the angular
velocities and bωs the gyroscope biases of the IMU. Note that, in order to simplify the expres-
sions in the time update, the position sw and orientation qsw of the IMU with respect to the
world frame are estimated in the state vector. However, the camera pose is easily obtained
from the state vector using (2.12) with the calibrated hand-eye transformation. Rotations are
here represented by unit quaternions. This parametrisation is not minimal, implying that the
constraint of unit magnitude has to be enforced (cf. Section 3.4.3). However, in contrast to
the axis angle form, this representation is singularity-free. Moreover, it provides linear ex-
pressions for the concatenation of rotations (cf. Appendix B.2) and a simple expression for the
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rotation and its derivative (cf. Appendix B.2). The process model assumes constant velocity
and constant angular velocity. It defines no control inputs. The model is nonlinear but has a
linear Gaussian substructure:

sw,t+T
ṡw,t+T
qsw,t+T
ωs,t+T

bωs,t+T

 =


sw,t + T ṡw,t + T 2

2
vs̈w,t

ṡw,t + Tvs̈w,t
exp

(
− T

2
(ωs,t + vωs,t)

)
� qsw,t

ωs,t + vωs,t
bωs,t + vb

ω

s,t

 , (3.5)

where vs̈w,t,v
ω
s,t and vb

ω

s,t denote time independent Gaussian process noise that is uncorrelated
in all components. In order to use this model in an extended Kalman filter, the model must
be linearised as in (2.37a). The required Jacobians can be calculated automatically using a
computer algebra system such as Mathematica [163]. The integration of the angular velocities
used to obtain qsw,t+T is derived in Appendix B.3. The respective Jacobian is provided there,
too. The linear Gaussian gyroscope measurement model is given as (2.16):

yωs,t = ωs,t + bωs,t + eωs,t. (3.6)

Here, yωs,t denotes the angular velocities, and eωs,t denotes time independent Gaussian measure-
ment noise. Let (mn,t,mw,t) be a 2D/3D correspondence with mutually independent Gaussian
measurement noise en,t ∼ N (02, Rnn,t) and ew,t ∼ N (03, Rww,t). By defining the stacked
vectors yct := [mT

n,t,m
T
w,t]

T and ect := [eTn,t, e
T
w,t]

T ∼ N (05, Rt) with:

Rt =

[
Rnn,t 02×3

03×2 Rww,t

]
, (3.7)

the camera measurement can be modelled in the form of (2.25b):

02 = h(xt,y
c
t , e

c
t)

=
[
I2 −(mn,t + en,t)

]
Rcs(Rsw,t(mw,t + ew,t − sw,t)− cs).

(3.8)

Note that this expression is obtained from the homogeneous collinearity constraint (2.7b) by
inserting the hand-eye transformation (2.12). The linearised model required in the EKF mea-
surement update can be obtained from (2.37b) by calculating the respective Jacobians. The
camera measurements are processed sequentially, each in an individual EKF measurement
update.

3.4.1.2 Gravity Model

In the gravity model, the accelerometers are modelled as inclinometers, i.e. they are used to
estimate the sensor attitude by assuming that the body acceleration is negligible. The state
vector x comprises additional parameters for the accelerometer biases bas yielding:

xT =
[
sTw ṡTw qTsw ωT

s baTs bωTs
]
. (3.9)
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The motion model assumes constant velocity and constant angular velocity, extending (3.5)
with:

bas,t+T = bas,t + vb
a

s,t, (3.10)

where vb
a

s,t denotes time independent Gaussian process noise driving the accelerometer biases.
The accelerometer measurement model is obtained from (2.15) by assuming that the body
acceleration s̈w,t is white zero-mean noise included in the Gaussian process noise eas,t. This
assumption introduces a correlation between the process noise vs̈w,t and eas,t, which would
actually require a modification of the extended Kalman filter. This correlation is, however, not
modelled here. The measurement equation becomes:

yas,t = −Rsw,tgw + bas,t + eas,t. (3.11)

As Rsw,t = rot(qsw,t), this model is in the form of (2.26b). The linearised model can be
obtained analogously to (2.37b), where the required Jacobian is provided in (B.12) in Ap-
pendix B.2. The gyroscope (3.6) and the camera measurement model (3.8) are the same.

3.4.1.3 Acceleration Model

The acceleration model estimates the body acceleration s̈w in the state vector x yielding:

xT =
[
sTw ṡTw s̈Tw qTsw ωT

s baTs bωTs
]
. (3.12)

The motion model assumes constant acceleration and constant angular velocity changing the
upper three equations of the process model (3.5) to:sw,t+Tṡw,t+T

s̈w,t+T

 =

sw,t + T ṡw,t + T 2

2
(̈sw,t + vs̈w,t)

ṡw,t + T (̈sw,t + vs̈w,t)
s̈w,t + vs̈w,t

 . (3.13)

Here, the accelerometer measurement model involves also the body acceleration s̈w,t resulting
in (2.15):

yas,t = Rsw,t(̈sw,t − gw) + bas,t + eas,t. (3.14)

As discussed in Section 2.2.1.3, this measurement function requires an accurate prediction of
the orientation qsw,t, as errors in qsw,t result in an imaginary body acceleration, that propagates
quadratically into the position. The gyroscope (3.6) and the camera measurement model (3.8)
are the same.

3.4.1.4 Acceleration Input Model

In order to reduce the dimensionality of the state space, the inertial measurements are consid-
ered to be control inputs uTt = [yωTs,t ,y

aT
s,t ] instead of measurements in the acceleration input

model. The reduced state vector x comprises:

xT =
[
sTw ṡTw qTsw baTs bωTs

]
. (3.15)
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The process model is obtained by inserting the measurement equations (3.6) and (3.14) into
the constant acceleration, constant angular velocity model resulting in:

sw,t+T
ṡw,t+T
qsw,t+T
bωs,t+T
bas,t+T

 =


sw,t + T ṡw,t + T 2

2
Rws,t(y

a
s,t+T − bas,t − vas,t) + T 2

2
gw

ṡw,t + TRws,t(y
a
s,t+T − bas,t − vas,t) + Tgw

exp
(
− T

2
(yωs,t+T − bωs,t − vωs,t)

)
� qsw,t

bωs,t + vb
ω

s,t

bas,t + vb
a

s,t

 . (3.16)

Note that the measurement noises eas,t and eωs,t given in (3.6) and (3.14), respectively, are here
included in the process noise vas,t and vωs,t, respectively. The camera measurement model (3.8)
is the same. By treating the angular velocities and accelerations as input signals, six states and
two measurement update steps can be eliminated. The tuning becomes easier, as fewer noises
have to be adjusted. Moreover, these noises can be determined experimentally from the IMU
device used by looking at the standard deviations of several seconds of sensor data captured
while the device is stationary. There are two further ramifications to mention. As the state
space comprises no angular velocities, the orientation can only be predicted, when inertial
readings are available. Furthermore, the state space contains no body acceleration, implying
that correlations between the orientation and the body acceleration are lost.

3.4.2 Outlier Rejection

In markerless image processing, outliers are likely, especially if a coarse-to-fine approach is
used. Since the extended Kalman filter is sensitive to incorrect measurements, it is crucial to
detect outliers and to prohibit them from being used in the measurement update. In vision-
only tracking the most common way to handle outliers is to check spatial constraints using the
RANSAC algorithm (cf. Section 2.3.3), or variations of this. This tends to be too restrictive.
The visual-inertial sensor fusion algorithm, however, has the advantage of providing temporal
information about where the features should occur in the images in order to match the inertial
data and the motion model. It turns out that this information is sufficient for detecting outliers,
for instance by analysing the innovations. Let z

(i)
t be the innovation computed for the ith

2D/3D correspondence at time t and let S(i)
t be its covariance with z

(i)
t ∼ N (0, S

(i)
t ) (cf.

Algorithm 2.3). The normalised residual, z̄(i)
t , is then obtained from the innovation as:

z̄
(i)
t = S

(i)−1/2
t z

(i)
t ∼ N (0, I2) (3.17)

and a standard χ2 test, with the null hypothesis that the ith correspondence is correct, can be
constructed. The measurement update should be dropped if:

z
(i)T
t S

(i)−1
t z

(i)
t > χ2

α,2, (3.18)

where α is referred to as significance level of the test. A common value for α is 0.05 yielding
the threshold 5.991. During the experiments, this threshold was found to be too restrictive.
Real outliers produce considerably larger residuals. A much less restrictive threshold 15, cor-
responding to the significant level α = 10−4, is therefore used.
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3.4.3 Divergence Monitoring

The purpose of divergence monitoring is to detect a failure in the tracking system that requires
external reinitialisation (cf. Figure 3.2). In vision-only tracking a failure is usually assumed
when too few features are registered. The visual-inertial sensor fusion algorithm, however,
allows the system to continue tracking for a short period of time without visible features.
External reinitialisation is only desired, if integrating the inertial data has introduced a severe
drift, which inevitably leads to filter divergence. The process of examining the state of the
extended Kalman filter for signs of divergence is denoted by divergence monitoring. Here, this
process is implemented as a combination of simple tests, where the filter is said to diverge if
at least one of the tests fails:

Innovations: Divergence monitoring is related to outlier rejection. Under normal operation,
the innovations zt ∼ N (0, St) should resemble zero mean Gaussian white noise. If
the distribution changes, this indicates that the filter is diverging. The change is usu-
ally detected by lowpass filtering a distance measure st obtained from the residuals and
comparing this to a threshold. Here, the geometric moving average (GMA) :

gt = λgt−T + (1− λ)st with 0� λ < 1 (3.19)

is used to detect a change in the mean, i.e.:

st =
1
√
nz

1Tnz z̄t, (3.20)

where the n × 1 vector z̄t denotes the normalised residual (cf. Section 3.4.2) and 1n
is a vector with n unit elements. Note that, in combination with the outlier rejection,
this term is bounded by the outlier threshold. Alternative lowpass filters and distance
measures can be found, for instance, in [103], where the topic of change detection is
thoroughly treated.

State uncertainty: The above test is unlikely to detect a divergence when no features are
visible. Since the inertial measurements provide no absolute reference, the innovations
are less meaningful. In particular, the acceleration input model treats the inertial data
as control inputs. However, the lack of camera measurements results in an increasing
state uncertainty. Hence, the norm of the state covariance is computed and compared to
a threshold. Here, the Frobenius norm [164] is used and a threshold between 3 and 5 is
chosen during the experiments.

Quaternion norm: The EKF measurement update step does not preserve the norm of the
orientation quaternion. A slight change from unit length is corrected for by normalising
the quaternion. A significant change, however, indicates that the filter has diverged. The
threshold 0.05 is chosen during the experiments. By normalising the quaternion, the
filter ceases to propagate the conditional mean. In order to adapt the state covariance
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appropriately, a method proposed in [165] is used. Let q∗sw,t and P ∗qq,t be the minimum
squared error estimate of the quaternion at time t. The normalisation step:

qsw,t =
q∗sw,t
‖q∗sw,t‖

(3.21a)

Pqq,t = P ∗qq,t + (qsw,t − q∗sw,t)(qsw,t − q∗sw,t)
T , (3.21b)

where qsw,t and Pqq,t constitute the new constrained estimate used in the subsequent time
update, is performed after each measurement update.

3.5 Offline Preparation

This section describes the offline preparation required to use the visual-inertial tracking system
in a special target environment. The calibration of the CamIMU hardware and related issues
are treated in Section 3.5.1. The generation of the input data required by the software system,
in particular, by the vision subsystem, is described in Section 3.5.2.

3.5.1 CamIMU

The CamIMU and its properties are presented in Section 2.2.2. In order to use this device
with the tracking framework developed here, the intrinsic parameters of the camera as well
as the hand-eye transformation between the camera and the IMU must be calibrated and the
calibration must be repeated every time the objective is changed or adjusted. In this thesis, an
extended version of the freely available camera calibration toolbox for Matlab [18] is used to
perform the calibration. The toolbox implements the calibration procedure outlined in Section
2.1.2 and has been extended to estimate also the hand-eye transformation with the algorithm
described in Section 2.2.2.1. The method requires inertial data to be recorded for each cal-
ibration image while holding the CamIMU statically. More precise results are obtained by
averaging several seconds of data. Furthermore, the measured standard deviations provide
suitable settings for the measurement noises in the extended Kalman filter.

3.5.2 Input Data

The markerless image processing algorithm and the initialisation process require input data.
The former requires a textured CAD model of the target object or environment 2. A manually
created CAD model of a simple test object is shown in Figure 3.3. Textured CAD models of
more complex environments can be created semi-automatically with a commercial 3D mod-
elling tool such as REALVIZ ImageModeler [167]. They can also be generated automatically

2The model is assumed to be given in the standard Virtual Reality Modeling Language (VRML) file format
[166]
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from an image sequence using computer vision techniques (cf. Section 2.3). Textured mod-
els have been obtained from perspective camera images [168] and from fisheye images [169].
Note that, in order to be used with the visual-inertial tracking framework, the 3D model needs
special properties: it has to be aligned with gravity (cf. Section 2.2.2.2) and given in abso-
lute units (cf. Section 2.2.2.3). A method to automatically generate textured CAD models that
meet the special requirements of the tracking method presented here has been developed and
implemented in the MATRIS project.

The input data required by the initialisation process depends on the initialisation mode
used (cf. Section 3.2). The manual initialisation requires the definition of a suitable initial
orientation and position. The semi-automatic method requires calibration of the relative rota-
tion between the global coordinate system and the coordinate system associated with the CAD
model. This transformation can be computed at run-time using the equations given in Section
2.2.2.4, once the system has been initialised manually. The fully automatic method requires a
database of reference images. These can be calibrated manually given the CAD model [5], or
they can be exported during the automatic model generation step [156, 169].

3.6 Experimental Setup and Results

This section provides an experimental performance evaluation of the visual-inertial tracking
system developed in this chapter. The focus is on the comparison of the four different sen-
sor fusion models developed in Section 3.4.1, i.e. the effects of using accelerometers on the
tracking performance. The system initialisation is not the subject of evaluation in this thesis.
Three different target environments are considered in the experiments: a small-scale scenario,
desktop, a mid-scale scenario, room, and a large-scale scenario, foyer. In each of the three sce-
narios, the developed system is able to estimate the trajectory of the CamIMU online and stably
at 25 Hz using images with resolution 320 × 240 pixels. In particular, virtual augmentations,
i.e. virtual graphics or characters that are drawn on top of the camera images in real-time, show
no visible jitter or drift, even during fast movements and when the CamIMU is very close. An
example is shown in Figure 3.14(b) in the sequel. Moreover, the analysis-by-synthesis based
image processing algorithm revealed no problems with textures from cameras other than the
one used for the tracking.

For an in-depth evaluation representative data sequences (synchronised images and IMU
data) have been captured from each scenario. The CamIMU was controlled by an industrial
robot in the desktop environment and by hand in the room and foyer test case. The results are
presented in the sequel. The tracking performance and computational efficiency of the four
different state-space models denoted gyro, gravity, acceleration and acceleration input are first
investigated in the desktop scenario, where the reference trajectory of the robot is available,
see Section 3.6.1. The evaluation shows that the acceleration input model performs best with
respect to both criteria. Sections 3.6.2 and 3.6.3 present a qualitative evaluation in the room
and foyer scenario, respectively, demonstrating the high stability and accuracy achieved, also
under realistic conditions, with the acceleration models.
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Table 3.1: Desktop: standard deviation noises assuming equal noise in all dimensions.
Note that the process and measurement noise settings related to the accelerations dif-
fer significantly between the models and data sequences. In order to assure meaningful
evaluation results, appropriate settings have been derived for each model from the model
assumptions and the reference trajectory of the robot.

gyro gravity acceleration acceleration input
fast sequence
vs̈w,t 4. 4. 0.1 –
eas,t – 0.84 0.14 –

slow sequence
vs̈w,t 0.19 0.19 0.1 –
eas,t – 0.28 0.14 –

both
vas,t – – – 0.14
vωs,t 0.1 0.1 0.1 0.01
vb

ω

s,t 1 · 10−5 1 · 10−5 1 · 10−5 1 · 10−5

vb
a

s,t 1 · 10−5 1 · 10−5 1 · 10−5 1 · 10−5

eωs,t 0.01 0.01 0.01 –
en,t 7 · 10−3 7 · 10−3 7 · 10−3 7 · 10−3

Table 3.2: Room, foyer: standard deviation noises assuming equal noise in all dimen-
sions. The acceleration model is used in these test cases.

room foyer
vs̈w,t 0.1 1.
vωs,t 0.1 0.1
vb

ω

s,t 5.5 · 10−4 5.5 · 10−4

eas,t 0.04 0.18
eωs,t 0.023 0.06
en,t 7 · 10−3 7 · 10−3

The noise settings used during the experiments are outlined in Table 3.1 for the desktop
test case and in Table 3.2 for the test cases room and foyer. The noises are given as standard
deviations assuming equal noise in all dimensions. The noise affecting the feature registration
has been determined experimentally by looking at the change in the 2D pixel locations while
the camera was stationary. The 3D model coordinates, which are obtained from the target
scene model, are assumed certain.
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(a) (b)

Figure 3.6: Desktop: two frames of the image sequences, where the CamIMU is nearest
to (a) and farthest from (b) the target object.

Table 3.3: Desktop: root mean square prediction errors in pixels for the different state-
space models.

gyro gravity acceleration acceleration input
mean std mean std mean std mean std

fast sequence 3.82 4.04 3.83 4.05 0.91 0.59 0.77 0.45
slow sequence 0.51 0.47 0.50 0.47 0.59 0.37 0.69 0.40

3.6.1 Test Case: Desktop

This small-scale scenario denotes the simple two-sided test object shown previously in Fig-
ures 3.3 and 3.4. The CAD model has been created by hand. In order to obtain reference data,
the CamIMU was mounted on a robotic arm while observing the target object. The robotic
arm performed a continuous movement in the shape of an eight at various speeds. Figure 3.6
shows camera images from the outer points of this movement. Two data sets are considered
for the tests, a slow sequence and a fast sequence. The estimated accelerations and angular
velocities are shown in Figure 3.7.

As the fast sequence contains significant body accelerations, which violate the assumptions
of the gravity model (cf. Section 3.4.1.2) severely, a simple detection criterion is applied.
Basically, the accelerometer measurement is rejected at time t, if∣∣‖yas,t − bas,t‖ − ‖gw‖

∣∣ > Da, (3.22)

where yas,t denotes the measured acceleration, bas,t is the bias estimate, gw is the gravity vector
in the world frame and Da is a user-defined threshold, chosen as Da = 0.4 during the experi-
ments. Further body acceleration detection criteria can be found, for instance, in [170, 171].

The prediction errors of the features in the images, i.e. the Euclidean distances between the
predicted feature positions and the registered positions, are used as indicators of the tracking
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Figure 3.7: Desktop: body accelerations and angular velocities of the slow and the fast
sequence as estimated by the system running in the acceleration mode.
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Figure 3.8: Desktop, fast sequence: the prediction errors of the registered features show
clearly the superiority of the acceleration and the acceleration input model. The outliers
are already removed.
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(a) gyro model (b) gravity model

(c) acceleration model

Figure 3.9: Desktop, slow sequence: after 22.32 s of tracking with only two features,
marked by green crosses, the gyro model (a) has drifted significantly, while the gravity
and acceleration model (b,c) show comparably stable results. This can be seen from the
pose of the augmented coordinate system.

performance. Table 3.3 shows clearly how the acceleration and the acceleration input model
outperform the other models on the fast sequence producing a significantly smaller root mean
square prediction error. This also becomes apparent in Figure 3.8, where the prediction errors
produced by these models remain constant, while the gyro and the gravity model produced er-
rors that are highly correlated with the acceleration peaks in Figure 3.7. On the slow sequence,
all models perform comparably well, as expected.

Table 3.3 also shows that the gravity model, which uses the accelerometers as inclinometers
to estimate the attitude of the CamIMU, gives no improvement compared to the gyro model
on any of the two sequences. This is explained by the fact that a relatively high feature density
is used for the experiments, providing sufficient information about the orientation. Figure 3.9
presents results on the slow sequence, where only two camera measurements per image are
delivered by the vision system, thus revealing the benefits of using the accelerometers in the
gravity as well as in the acceleration model.
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Figure 3.10: Desktop, fast sequence: per frame processing time needed for the EKF time
and measurement updates by the acceleration and the acceleration input model. This has
been measured on a 2.2 GHz laptop. Note that the processing time varies due to a vary-
ing number of vision measurements per frame. The three peaks are explained by frame
misses, where the IMU buffer contained twice as many IMU readings (cf. Figure 3.2).

Finally, Table 3.3 shows that the acceleration and the acceleration input model yield com-
parable results, indicating that the missing correlations between the orientation and the body
acceleration in the acceleration input model do not impact the tracking performance. The
acceleration input model yields as stable and precise estimation results as the acceleration
model, but with significantly reduced computational costs. Figure 3.10 shows the processing
time needed by both models for the EKF time and measurement updates. In this specific exper-
imental setup, using the acceleration input model reduces the computational costs by a factor
of 2.7.

The experimental results presented so far allow for the following conclusions. The gravity
model is superior to the gyro model by reducing the number of features needed to correct the
drift in the gyroscopes, but both models show — as expected — a poor tracking quality in
the presence of body accelerations. The acceleration and the acceleration input model also re-
duce the number of features needed and provide significantly higher prediction quality. Under
slow movements, where the constant acceleration model is actually overparameterised, they
still perform just as well without introducing instabilities. Moreover, treating the inertial data
as control inputs significantly reduces the computational burden, while keeping the tracking
quality.

To give an idea of the absolute accuracy of the overall system under quick motions, the
input trajectory of the robot has been transformed into the spatial and time reference of the
fast sequence and compared to the camera trajectory produced by the acceleration and the
acceleration input model. The average Euclidean position error obtained in this comparison
is 1 cm and the average error in the Euler angles 0.76◦. Note that the transformations used to
synchronise the trajectories contribute to the estimation errors, so that the actual accuracy can
be assumed higher.
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Figure 3.11: Desktop, fast sequence: gyroscope and accelerometer biases as estimated
by the acceleration model.
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Table 3.4: Desktop: root mean square prediction errors in pixels for the acceleration
model with and without accelerometer bias estimation.

w/ bias estimation w/o bias estimation
mean std mean std

fast sequence 0.908 0.586 0.913 0.589
slow sequence 0.586 0.373 0.725 0.412

Finally, the online bias estimation has been investigated on the fast sequence using the
acceleration model. The result is shown in Figure 3.11. The gyroscope bias estimates —
initialised to zero — converge quickly and stay constant over the short duration of the exper-
iment, while the accelerometer bias estimates change with the orientation. This indicates that
the gyroscope biases are estimated reliably, while other errors such as calibration or model
errors tend to show up incorrectly in the accelerometer bias parameters. As a matter of fact,
the online accelerometer bias estimation turns out to make the tracking instable without sig-
nificantly improving the overall tracking performance when corrective camera measurements
are available. Table 3.4 presents the root mean square prediction errors for the features with
and without online accelerometer bias estimation. It shows that the performance gain is minor.
Moreover, the system turns out to be very sensitive to the accelerometer bias process noise.
Furthermore, the gyroscope biases are the predominant sources of error, not only for the ro-
tational, but also for the translational states for the acceleration models. Therefore only the
gyroscope biases are estimated online during the subsequent experiments. This reduces the
state vector by three states and hence saves further computational power.

3.6.2 Test Case: Room

This mid-scale scenario denotes a room of base area 5 × 4 m, where the CAD model, created
with REALVIZ ImageModeler, consists of three walls. The fourth wall contains mostly win-
dows and is therefore not included in the model. Equally, the floor and the ceiling are ignored,
as they provide no discriminative features. The textured CAD model and several pictures of
the room are shown in Figure 3.12. A high-quality digital camera has been used to obtain the
textures for the model.

In this scenario, the CamIMU is handheld and allowed to move without constraints in the
room. The captured data sequences feature a significant range of rotations and translations as
demonstrated in Figure 3.13. This is all handled robustly by the system running in the accel-
eration and the acceleration input mode. Two 360◦ rotations are performed whereas one wall
is not included in the CAD model. Tracking is continued by integrating inertial data during
periods without visible features, as indicated in Figure 3.14(c). The vision system is able to
recover the features, once, they occur in the field of view again. When the user moves the
camera very close to the target scene seeing only few features, the augmentation still remains
in its place (Figure 3.14(b)). Finally, some fast movements with free accelerations of up to
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(a) (b) (c)

Figure 3.12: Room: the textured CAD model and real pictures.
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Figure 3.13: Room: camera trajectory in world coordinates as estimated by the proposed
system. The coordinate systems denote the camera orientation for every 50th frame.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14: Room: some augmented frames demonstrating the range of possible move-
ments (a-c) and the stable operation of the system under occlusion (d) and varying light
conditions (d,f). Note that the wall observed in (c) is not part of the model. However, the
augmentation in the lower left corner stays in its place. In (d) the green crosses indicate
registered features and the red ones mark features where the registration failed due to the
occlusion.
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(a) (b) (c)

Figure 3.15: Foyer: the textured CAD model and real pictures from different viewpoints.

(a) (b)

Figure 3.16: Foyer: camera frames overlaid with feature positions and virtual objects.
Note the significant motion blur in (b), where features were nevertheless registered.

12.9 m/s2 and rotations up to 9.6 rad/s are tracked successfully. Figure 3.14(d-f) illustrated the
stable operation of the system under occlusion and varying light conditions.

3.6.3 Test Case: Foyer

The CAD model of this large-scale scenario contains one wall (4.5× 8.5 m) — roughly mod-
elled as one plane — of a large open foyer inside a building. The textured model and two
pictures from different viewpoints, that have been used to create the model with REALVIZ
ImageModeler, are illustrated in Figure 3.15. During the experiments, the scene is viewed
from the first floor (cf. Figure 3.15(b)), where the wall included in the model is at a distance
of approximately 7 m. The tracking system is initialised by hand, as a ferrous handrail at this
floor causes magnetic disturbances. Figure 3.16 shows two augmented live camera images.
Note that the features on the posters look quite similar due to the big viewing distance. An
accurate pose prediction is therefore crucial to maintain the tracking.
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Figure 3.17: Foyer: body accelerations and angular velocities as estimated by the system
running in the acceleration mode.

This sequence can not be processed using the gravity or the gyro model, although the
camera movements are indeed mainly rotational. The reason for this is that the rotations are
off-centre and hence produce high linear accelerations. Figure 3.17 shows the significant body
accelerations and angular velocities, estimated with the acceleration model, which tracks ro-
bustly throughout the whole sequence.

Figure 3.18 presents the prediction errors for the features with the detected outliers marked
by stars. The root mean square prediction error over the whole image sequence is 1.42 pixels
with 1.47 pixels standard deviation. Some increased displacements between time 60 and 70
are explained by camera measurements repeatedly missing for up to half a second. Without
visible features the pose is based solely on integrated IMU data.
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Figure 3.18: Foyer: prediction errors for the features produced by the acceleration model.
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3.7 Conclusion

In this chapter, a model-based visual-inertial tracking framework is described that requires no
markers or other special infrastructure in the environment. It uses an affine illumination in-
variant image processing method, which exploits the pose prediction obtained from the sensor
fusion algorithm and a textured CAD model of the environment to predict the appearances of
corner features in the camera images. Moreover, different sensor fusion models, all allowing
for a tight integration of the camera and the inertial sensors, have been evaluated experimen-
tally. The open questions posed in the beginning of Section 3.4 are solved for the described
tracking framework. The experimental evaluation clearly shows the benefits of the acceler-
ation models, i.e. a better tracking quality and reduced demand for camera measurements.
By combining the top down markerless image processing algorithm with the fusion strategy
of the acceleration input model, a very efficient and robust final system is obtained, which is
shown to work robustly also in realistic mid- and large-scale environments, under varying light
conditions, fast camera movements and even short periods without camera measurements. To
summarise, the following improvements are achieved compared to vision-only tracking:

• increased robustness against rapid camera motions.

• reduced computational costs, both due to an accurate prediction of the feature appear-
ances and locations in the images and a reduced demand on camera measurements in
general.

• stable pose estimation with only few visible features.

• compensation for short-term loss of camera measurements, for instance, due to occlu-
sion.

• reduced jitter and drift.

It is important to note that, due to the image processing approach used, the tracking sys-
tem presented here is suitable for environments containing richly textured planar regions and
walls. However, the analysis-by-synthesis technique has also been applied successfully to
poorly textured environments by exploiting prominent contours, see for instance [41, 42, 155].
The developed system allows for a smooth exchange of the image processing algorithm, thus
making it easy to extend its applicability to such scenarios.

Model-based approaches provide stable tracking and are suitable for a wide range of appli-
cations. However, the model generation and maintenance can be time consuming and the as-
sumption of a static environment is often violated. Subsequently, Chapters 4 and 5 are devoted
to simultaneous localisation and mapping using computer vision techniques (cf. Section 2.3)
and recursive filtering techniques (cf. Section 2.4).



4
Visual SLAM

Many of the recent real-time markerless camera tracking systems rely on the existence of a
complete 3D model of the target environment. Section 2.3.5 gives a brief overview. Also the
visual-inertial tracking system developed in Chapter 3 assumes that a scene model is available
as a textured CAD model. Model-based approaches are suitable for a wide range of applica-
tions and state of the art techniques allow for stable, accurate and drift-free camera registration,
given the absolute reference of the model. However, sometimes it is not feasible to model the
entire target scene in advance, in particular, if parts are not static, or, if it is desirable to use an
existing CAD model, which is not complete. In order to allow camera movements beyond the
parts of the environment modelled in advance, it is required to derive additional 3D structure
online, i.e. to perform localisation and mapping simultaneously. The development of such a
system in a vision-only setup is the topic of this chapter. The additional exploitation of inertial
data is investigated in the subsequent Chapter 5.

Two prominent research topics are related to the problem of estimating the camera trajec-
tory and scene structure from an image sequence: structure from motion (SFM), originally
developed in computer vision, and simultaneous localisation and mapping (SLAM), originally
developed in robotics. How they pose the estimation problem and the strategy to solve it is
described in Section 2.3 and 2.4, respectively. Structure from motion is often associated with
words such as robustness, accuracy and bundle adjustment and with the aim to solve the full lo-
calisation problem. SLAM is instead associated with recursive filtering, uncertainty measures
and with the aim to solve the online localisation problem. Moreover, in the area of SLAM,
effort has been used to develop algorithms that scale with the size of the map. The prob-
lems of FastSLAM and MPF-SLAM, as two representatives, are expounded in Section 2.4.3.3
and 2.4.3.4, respectively. The aim of this chapter is to unify the ideas of both lines of work
— robust estimation and recursive filtering — in an algorithm, that is capable of solving the
considered estimation problem with minimal drift in real-time.

Section 4.1 outlines the approach and the workflow of the method developed in this chapter.

79
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Camera
Structure

estimation

Markerless top
down image
processing

Feature map

Pose estimation Camera pose

Figure 4.1: Architecture of the visual SLAM system.

Section 4.2 proceeds with the reconstruction of 3D geometry — 3D points in space and cam-
era poses — from camera measurements. Section 4.3 develops a measure of feature quality.
Results demonstrating the performance of the system on real and synthetic image sequences
are presented in Section 4.4 and final conclusions are drawn in Section 4.5.

4.1 Approach

The basic structure of the tracking system developed here fits into the sequential structure from
motion framework. Figure 4.1 illustrates the major building blocks and how they are related.
The markerless image processing component generates point correspondences between the
image obtained from the camera and the features in the map. These are used to obtain the
camera pose, which is then used to estimate the feature locations. In both steps standard
computer vision techniques are applied (cf. Section 2.3). When implemented in a naive way,
this loop, the regular sequential structure from motion loop, will inevitably lead to significant
drift in the camera registration. In order to avoid this and to obtain a robust real-time system
with minimal drift, the standard algorithm is enhanced in several respects:

Robust estimation: The 3D geometry estimation processes, i.e. the reconstruction of the
camera pose and the 3D locations of the features, are based on robust algorithms in
each step.

Uncertainty propagation: As in the extended Kalman filter, geometry estimation is per-
formed in a stochastic framework, where all parameters and measurements are modelled
as Gaussian random variables.

Recursive feature refinement: As in FastSLAM, an extended Kalman filter is associated to
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each feature for refining its 3D location recursively, once it has been initialised by trian-
gulation.

Feature monitoring: The quality and consistency of each feature are monitored in order to
select appropriate 3D features, i.e. features that are already initialised in 3D, for pose
estimation.

Epipolar constraint: Both the collinearity constraint (cf. Section 2.1.3.1) and the epipolar
constraint (cf. Section 2.1.3.2) are used for estimating the camera pose. This allows for
incorporating features from the time of their initial detection, irrespectively of their 3D
state.

The resulting algorithm is effectively a combination of sequential structure from motion and
FastSLAM with only one particle. The stochastic model is simplified, as the camera and
the features are assumed mutually independent. However, experiments show a significant
reduction of the drift in the camera registration.

The workflow of the software system is specified in Figure 4.2. It is assumed that sufficient
3D information about the target environment is available to initialise the predictive tracking
loop. This knowledge can be represented as, for instance, a CAD model of an object in the
scene, a set of 3D features or a marker placed in the environment. The reference frame of the
prior knowledge defines the world coordinate system.

The first step in the tracking loop is to register visible map features in the camera image,
using a markerless top down image processing algorithm. The method is similar to the one
developed in Section 3.3. However, the corner features are tracked across subsequent camera
images rather than from a synthetic image to the camera image. The iterative patch registration
therefore includes — besides the affine photometric model — an affine motion model and
further enhancements to reduce the drift in the feature localisations and to allow for the reliable
detection of outliers. Hence, it provides accurate camera measurements with few outliers.
The details can be found in [7]. The previous pose is used to predict the visibility of the
features in the current frame. Note that computer vision techniques are in general not recursive.
Camera poses are typically estimated for each frame independently, using the available camera
measurements. As camera motion is not explicitly modelled, the previous pose must serve as
prediction.

After the registration step, suitable sets of 2D/3D and 2D/2D correspondences are estab-
lished. The pose estimation is divided into two stages. An initial pose is computed from the
2D/3D correspondences using the RANSAC algorithm (cf. Section 2.3.3) in order to remove
outliers. The resulting inliers are then used in a refinement stage, where epipolar constraints
given by the 2D/2D correspondences and the previous camera pose are incorporated. The esti-
mated camera pose is the used to either triangulate or refine the 3D locations of the registered
features. RANSAC is used to perform robust triangulation, the result of which serves as prior
estimate for the extended Kalman filter. On demand, new features are extracted in free areas
of the image and added to the feature map.
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Register features

Establish 2D/3D and
2D/2D correspondences

Estimate initial
pose (RANSAC,

collinearity constraint)

Feature map
Estimate refined pose

(collinearity and
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Capture frame

Estimate feature loca-
tions (RANSAC, EKF)

Few
features?

Extract new
features

Yes No

Figure 4.2: Workflow of the visual SLAM system: predictive tracking loop.
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The management of the feature map is here solved similarly to the visual-inertial tracking
system presented in Chapter 3 (cf. Section 3.3.2). However, as the 3D feature locations are
estimated online and features are tracked across subsequent camera images, the structure of
the feature map is more complex. Both the image registration and the reconstruction, require
information associated with each feature. The details can be found in [6, 7]. Moreover, the
selection of appropriate features for pose estimation depends not only on spatial considerations
but also on the quality of the feature with respect to its localisation in 3D. A feature quality
measure is therefore developed in Section 4.3.

The rest of this chapter focuses on the enhanced 3D estimation processes (cf. Section 4.2)
and their experimental evaluation (cf. Section 4.4). In particular, the value of the basic stochas-
tic model is investigated.

4.2 3D Geometry Estimation

Geometry estimation in 3D includes the initial triangulation of the 3D feature locations treated
in Section 4.2.1, the recursive refinement in the extended Kalman filter described in Sec-
tion 4.2.2 and the two pose estimation stages discussed in Section 4.2.3.

All building blocks required to perform these estimations are given in Chapter 2. The ho-
mogeneous collinearity constraint (2.7b) is used for the linear triangulation (cf. Section 2.3.2)
of the feature locations and as measurement equation in the extended Kalman filter. The obser-
vations are here camera views. The image collinearity constraint (2.7a) serves two purposes.
It is used in the cost function for the nonlinear least squares (LS) and weighted least squares
(WLS) optimisation of the camera pose (cf. Section 2.3.1). Here, the observations are point
correspondences. Moreover, it is used for determining the consistent observations, i.e. the
inliers, during the RANSAC (cf. Section 2.3.3) iterations of the first pose computation stage
and the initial triangulation. The reasons for this choice are given in Section 2.1.3.1. The
symmetric epipolar distance (2.20) is used in the cost function of the second pose optimisation
step, for incorporating the observed 2D/2D correspondences. The camera pose is represented
by the six-dimensional vector sr = [rTcw,w

T
c ]T (cf. Section 2.1.1.4). The minimal axis-angle

parametrisation rTcw is chosen since it is suitable for nonlinear optimisation.
The three entities involved in 3D geometry estimation are 2D feature locations, given as

normalised image points mn, 3D feature locations, given as world points mw, and camera
poses sr. Depending on the type of estimation performed, the role of measurement and un-
known changes. Camera poses are obtained from point correspondences and 3D points are
obtained from camera views. All of the three entities are modelled as mutually independent
Gaussian random vectors:

mn ∼ N (m̂n, Rnn) mw ∼ N (m̂w, Pww) sr ∼ N (ŝr, Psrsr). (4.1)

The noise in the 2D feature locations is a tuning parameter. In the experiments, equally dis-
tributed noise with 1 pixel standard deviation in both dimensions is assumed over the whole
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m̂LS
w

y1

y2

y5

θ

Figure 4.3: Robust triangulation: a buffer of camera views, where subsequent views are
separated by a sufficiently large angle θ, is used for robust triangulation. Here, the least
squares estimate m̂LS

w is obtained from the camera views y2 and y5, respectively, and is
consistent with the views y3 through y4. Measurement y1 is an outlier.

camera image, i.e. Rpp = I2, where Rpp denotes the covariance in the pixel coordinate system.
The transformation to the normalised image frame is Rnn = K−1RppK

−T , where K denotes
the matrix of the intrinsic camera parameters, K−1 is given in (2.3b) and K−T denotes the
transposed inverse of K (cf. (4.2) in the sequel). If the camera images exhibit severe distor-
tion, e.g. if a wide-angle cameras is used, it is sensible to assume increasing noise towards the
image borders. A heuristic method is proposed in [172]. As in the extended Kalman filter,
a first order Gauss approximation is used to approximate nonlinear functions of Gaussians.
Let x ∼ N (x̂, Pxx) be a Gaussian random vector. The nonlinear function y = f(x) is then
approximately distributed according to y ∼ N (ŷ, Pyy) with [173]:

ŷ ≈ f(x̂), Pyy ≈ FPxxF
T and F :=

∂f(x)

∂x

∣∣∣∣
x=x̂

. (4.2)

The relations (4.2) yield the exact moments of y, if f(x) is linear, and a fair approximation, if
f(x) is fairly linear or Pxx is fairly small. The first order Gauss approximation is very efficient
compared to other transformations such as the second order Gauss approximation [103], the
unscented transform [174] and the Monte Carlo transform [175]. Moreover, it turns out to
work well in the practical application presented here.

4.2.1 Robust Feature Triangulation

At least two camera views are needed to triangulate a 3D point (cf. Section 2.3.2). However, in
order to obtain a more reliable and accurate initial estimate, a larger window of camera views
is used. The idea is illustrated in Figure 4.3. Let the eight-dimensional vector
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Algorithm 4.1 Robust triangulation
Assume that a windowed buffer {yj}mj=1, with m ≥ 4 in the experiments, of camera views is
associated to feature (i). The deterministic sample consensus algorithm given in the sequel
can then be used to obtain a least squares estimate m̂LS

w,t of the 3D feature location and the
subset of camera views I ⊆ {yj}mj=1 consistent with this estimate. An example configuration
is shown in Figure 4.3.

1. Let k := 1.

2. If the angle between the normalised view rays defined by yk and ym, respectively, is
smaller than a threshold β, with β = 5◦ in the experiments, go to 5.

3. Calculate a least squares estimate m̂LS
w,t from yk and ym as outlined in Section 2.3.2.

4. Determine the set of inliers I by applying a user-defined outlier threshold (2 pixels in
the experiments) to the residuals of the image collinearity constraint (2.7a). If the inlier
ratio is bigger than a threshold (60% in the experiments), stop with success.

5. Let k := k + 1. If k < m, repeat from 2, else stop with failure.

y
(i)
t := [m̂

(i)T
n,t , ŝ

rT
t ]T (4.3)

denote the camera view of the ith feature in the map at time t and let d(i)
t be the corresponding

view ray (cf. Section 2.1.3.1) with:

d
(i)
t = rotT (r̂cw)K−1[m̂

(i)T
n,t , 1]T , (4.4)

where K denotes the matrix of the intrinsic camera parameters, K−1 is given in (2.3b) and
r̂cw is obtained from ŝrTt . A windowed buffer {y(i)

j }mj=1 of past camera views is then associ-
ated to each feature (i), which is not yet initialised in 3D. Note that, in order to simplify the
expressions, the subscript j is here used as buffer index. However, it can be replaced by the
timestamp of the respective camera view to fit definition (4.3). After the pose estimation, the
current view is added to the buffer as y

(i)
m+1, if the buffer is empty or if:

d
(i)
m · d(i)

m+1

‖d(i)
m ‖‖d(i)

m+1‖
≥ cos(α). (4.5)

This assures the angle between the normalised view rays of subsequent elements to be larger
than a threshold α. In other words, subsequent elements differ sufficiently. The threshold
α = 1◦ and the buffer capacity 20 are used in the experiments. For the sake of notional
brevity, the superscript (i) is suppressed in the sequel. However, all calculations refer to a
single feature (i).
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Once a buffer {yj}mj=1 exceeds a minimum size (4 in the experiments), Algorithm 4.1 is
used to obtain an initial least squares estimate m̂LS

w,t of the 3D point and the subset of camera
views I ⊆ {yj}mj=1 that are consistent with this estimate. Hence, I is the set of inliers. The
time subscript t is suppressed in the sequel. A valid estimate m̂LS

w is then used to compute a
weighted least squares estimate m̂WLS

w from I. Let

02 = h(mw,y) := dh(m̂n,mw, ŝ
r) (4.6)

denote the measurement relation given by the homogeneous collinearity constraint dh(·) (2.7b).
The formulation of the weighted least squares problem is then analogous to (2.18):

m̂WLS
w = arg min

mw

∑
yj∈I

h(mw,yj)
TP−1(yj)h(mw,yj), (4.7a)

where P (yj) denotes the covariance of camera view yj . A first order Taylor expansion around
the least squares estimate m̂LS

w provides a closed expression for (4.7a) [103]:

m̂WLS
w ≈

(∑
yj∈I

HT
j P
−1(yj)Hj

)−1 ∑
yj∈I

HT
j P
−1(yj)

(
Hjm̂

LS
w − h(m̂LS

w ,yj)
)

(4.7b)

cov(m̂WLS
w ) ≈

(∑
yj∈I

HT
j P
−1(yj)Hj

)−1

, (4.7c)

with Jacobian:

Hj :=
∂h(mw,yj)

∂mw

∣∣∣∣
mw=m̂LS

w

and Pww := cov(m̂WLS
w ). The covariance P (yj) results from (4.2) using the stochastic model

given in (4.1):

P (yj) ≈
[
Hn
j Hs

j

] [Rnn,j 0
0 Psrsr,j

] [
HnT
j

HsT
j

]
, (4.7d)

with Jacobians:

Hn
j :=

∂h(m̂LS
w ,yj)

∂mn

Hs
j :=

∂h(m̂LS
w ,yj)

∂s
.

The weighted least squares estimate m̂WLS
w is accepted, if the following criteria are fulfilled:

• The ratio of camera views that are consistent with m̂WLS
w is larger than a threshold (60%

in the experiments).

• The 3D location m̂WLS
w is in front of all consistent cameras.
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• The ratio λmax/zc between the square root of the largest eigenvalue, λmax, of cov(m̂WLS
w )

and the distance of the feature to the camera, zc, is smaller than a threshold (10% in the
experiments). In other words, the uncertainty in depth is significantly smaller than the
parameter estimate itself (cf. Figure 4.7). Otherwise, the extended Kalman filter is likely
to diverge due to large linearisation errors.

A valid estimate m̂WLS
w with covariance cov(m̂WLS

w ) is used as a priori distribution to initialise
the extended Kalman filter associated to the considered feature. If the estimate is rejected, the
triangulation is tried again, when the next camera view ym+1 is added to the buffer.

4.2.2 Robust Feature Refinement

Once, the extended Kalman filter associated to a feature is initialised, standard measurement
updates are performed to estimate the 3D location recursively. The prediction step is not
needed, as the features are assumed stationary. Each registration of the feature in a camera
image provides a new measurement yt as defined in (4.3). The measurement model is basically
given in (4.6) and the linearised covariance of the measurement noise is given in (4.7d). These
expressions are here restated in the standard notation of the extended Kalman filter framework.
Let et := [eTn,t, e

T
sr,t]

T ∼ N (08, Rt) with:

Rt =

[
Rnn,t 02×6

06×2 Psrsr,t

]
(4.8)

denote the measurement noise and let xt := mw,t denote the state vector. Relation (4.6) can
then be put in the form of the nonlinear measurement model (2.25b):

02 = h(xt,yt, et)

=
[
I2 −(m̂n,t + en,t)

]
T (xt, ŝ

rT + eTsr,t).
(4.9)

Here, the homogeneous collinearity constraint is completed with noise. The linearised model
required in the EKF measurement update (cf. Algorithm 2.3) can be obtained from (2.37b)
by calculating the respective Jacobians. The complicated derivative ∂ rot(rcw)mw

∂rcw
is provided in

(B.11) in Appendix B.2.
In order to obtain a robust algorithm, the outlier rejection procedure described in Sec-

tion 3.4.2 is applied also here. A standard χ2 test with significance level α = 0.05 is used. The
outlier test is given in (3.18).

4.2.3 Robust Pose Estimation

The pose is estimated in two stages. Assume that appropriate sets of 2D/3D and 2D/2D cor-
respondences are provided by the procedure described in Section 4.3. Then, in the first stage
a rough pose is computed from the 2D/3D correspondences using the Levenberg-Marquardt
algorithm with the previous pose as initial guess. The RANSAC framework is used to estimate
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the pose in order to remove possible outliers. The resulting inliers are used in the second stage,
where epipolar constraints given by the 2D/2D correspondences and the previous camera pose
are incorporated. Both stages are detailed in the sequel.

4.2.3.1 Estimation from 2D/3D Correspondences

The aim of this section is to compute a weighted least squares estimate ŝrWLS
t of the camera

pose with covariance cov(ŝrWLS
t ). The procedure is derived analogously to Section 4.2.1 by

changing the role of measurement and unknown. Expressions similar to the camera measure-
ment model developed in (3.8) are obtained. Let the five-dimensional vector

y
nw,(i)
t := [m̂

(i)T
n,t , m̂

(i)T
w,t ]T (4.10)

denote the ith 2D/3D correspondence with m
(i)
n,t ∼ (m̂

(i)
n,t, R

(i)
nn,t) and m

(i)
w,t ∼ (m̂

(i)
w,t, P

(i)
ww,t),

where the estimate of m
(i)
w,t is obtained from the extended Kalman filter associated to the re-

spective feature in the map. Let {ynw,(i)t }ni=1 denote a set of such correspondences established
for time t. Note that (i) is here used for indexing the 2D/3D correspondences rather than the
feature map. Furthermore, let

02 = h(srt ,y
nw
t ) := dn(m̂n,t, m̂w,t, s

r
t ) (4.11)

denote the measurement relation, here based on the image collinearity constraint dn(·) (2.7a).
The formulation of the weighted least squares problem is then analogous to (2.18):

ŝrWLS
t = arg min

srt

n∑
i=1

h(srt ,y
nw,(i)
t )TP−1(y

nw,(i)
t )h(srt ,y

nw,(i)
t ), (4.12a)

where the quantity inside the sum is referred to as the Mahalanobis distance (cf. (2.18)) and
P (y

nw,(i)
t ) denotes the covariance of correspondence y

nw,(i)
t . Analogously to (4.7d), the first

order Taylor approximation of this covariance is:

P (y
nw,(i)
t ) ≈

[
H
n,(i)
t H

w,(i)
t

] [R(i)
nn,t 0

0 P
(i)
ww,t

][
H
n,(i)T
t

H
w,(i)T
t

]
, (4.12b)

with Jacobians:

H
n,(i)
t :=

∂h(ŝrWLS
t ,y

nw,(i)
t )

∂mn

H
w,(i)
t :=

∂h(ŝrWLS
t ,y

nw,(i)
t )

∂mw

.

The problem (4.11) is solved by using the Levenberg-Marquardt algorithm with the previous
pose ŝrWLS

t−T as initial guess. The covariances P (y
nw,(i)
t ) are estimated once before the min-

imisation using the initial guess as linearisation point. In order to remove possible outliers,
(4.12a) is solved iteratively. The RANSAC procedure is outlined in Algorithm 4.2. However,
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Algorithm 4.2 Robust pose estimation from 2D/3D correspondences

Assume that a set of 2D/3D correspondences {ynw,(i)t }ni=1, with n ≥ 4 in the experiments, is
given. The following algorithm can then be used to obtain a weighted least squares estimate
ŝrWLS
t of the camera pose and the subset of correspondences I ⊆ {ynw,(i)t }ni=1 that are consis-

tent with this estimate. Let m denote the maximum number of iterations and p the size of a
sample set, with m = 50 and p = 4 during the experiments:

1. Let k := 1 and ŝrWLS
t := ŝrWLS

t−T .

2. Calculate a weighted least squares estimate ŝrWLS
t from all correspondences using

(4.12).

3. Determine the set of inliers I by applying a user-defined outlier threshold (3 pixels in the
experiments) to the Mahalanobis distances. If the inlier ratio is bigger than a threshold
(60% in the experiments), go to 5.

4. Iterate (RANSAC).

(a) Randomly choose a sample set of p correspondences.

(b) Calculate a weighted least squares estimate ŝrWLS
t from the sample set using (4.12).

(c) Determine I. If the inlier ratio is bigger than a threshold go to 5

(d) Let k := k + 1. If k < m, repeat from 4a, else stop with failure.

5. Compute a final estimate ŝrWLS
t from the set I and calculate the covariance cov(ŝrWLS

t )
using (4.12c).

experiments show that on average only few iterations are needed, since the image processing
approach and the feature selection procedure (cf. Section 4.3) used ensure few outliers. As-
suming that a pose estimate ŝrWLS

t and a set of inliers I is obtained from Algorithm 4.2, the
covariance cov(ŝrWLS

t ) can be approximated analogously to (4.7c):

cov(ŝrWLS
t ) ≈

( ∑
y
nw,(i)
t ∈I

H
(i)T
t P−1(y

nw,(i)
t )H

(i)
t

)−1

, (4.12c)

with Jacobian:

H
(i)
t :=

∂h(srt ,y
nw,(i)
t )

∂srt

∣∣∣∣
srt=ŝrWLS

t

and Psrsr,t := cov(ŝrWLS
t ).
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4.2.3.2 Refinement Adding Epipolar Constraints

The weighted least squares estimate ŝrWLS
t obtained from the first stage is refined by incor-

porating epipolar constraints implied by the 2D/2D correspondences and the previous camera
pose ŝrWLS

t−T . Let the four-dimensional vector

y
nn,(j)
t := [m̂

(j)T
n,t , m̂

(j)T
n,t−T ]T (4.13)

denote the j th 2D/2D correspondence and let {ynn,(j)t }mj=1 denote a set of such correspondences
established for time t. Furthermore, let

0 = h(srt , ŝ
rWLS
t−T ,ynnt ) := ds(m̂n,t, m̂n,t−T , E) (4.14)

denote the measurement relation, where the symmetric epipolar distance ds(·) is given in (2.20)
and the essential matrix E is obtained from srt and ŝrWLS

t−T as in (2.8). In the second pose es-
timation stage, the image collinearity constraints implied by the consistent 2D/3D correspon-
dences I ⊆ {ynw,(i)t }ni=1 and the epipolar constraints given by the 2D/2D correspondences
{ynn,(j)t }mj=1 and the previous pose ŝrWLS

t−T are minimised simultaneously. The estimate of the
first stage is used as initial guess in:

ŝrWLS
t = arg min

srt

∑
y
nw,(i)
t ∈I

h(srt ,y
nw,(i)
t )TP−1(y

nw,(i)
t )h(srt ,y

nw,(i)
t )+

m∑
j=1

ρ
(
h2(srt , ŝ

rWLS
t−T ,y

nn,(j)
t )

)
. (4.15)

The TUKEY influence function ρ(·) (2.19) is used to handle outliers among the 2D/2D corre-
spondences. The first term in 4.15 is identical to (4.12a). The covariances P (y

nw,(i)
t ) are again

estimated once before the minimisation using the initial guess as linearisation point. In the
second term, since weights are provided by ρ(·), a least-squares formulation is used without
taking the covariances into account. The final covariance cov(ŝrWLS

t ) is obtained from (4.12c)
using the refined estimate as linearisation point. The effective covariance can be assumed
smaller, as more information — provided by the second term — is actually included in the
estimate.

4.3 Feature Quality and Selection

In order to reduce the error drift in the 3D estimation processes, it is crucial to select only
the best features in the map for providing 3D constraints to the pose estimation. The aim of
this section is therefore to develop a measure of feature quality that can be used as selection
criterion.
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The problem of monitoring the quality of a feature is related to divergence monitoring
as treated in Section 3.4.3. Hence, the same change detection technique is applied here: a
geometric moving average (3.19) g(i)

t (with λ = 0.95 in the experiments) of the distance
measure s(i)

t serves as indicator for the quality of feature (i). Here, s(i)
t is chosen to be the

normalised residual of the image collinearity constraint, computed after pose estimation. Using
the notation and definitions of Section 4.2.3.1, s(i)

t is:

s
(i)
t = h(ŝrWLS

t ,y
nw,(i)
t )T

(
P (y

nw,(i)
t ) +H

(i)
t Psrsr,tH

(i)T
t

)−1
h(ŝrWLS

t ,y
nw,(i)
t ), (4.16)

where ŝrWLS
t denotes the pose of the current image obtained from the procedure in Sec-

tion 4.2.3.2.
The indicator g(i)

t is initialised to a high value (50 in the experiments) after triangulation and
is then updated according to (3.19), each time the feature is successfully registered. Before the
pose computation at time t, a threshold is then applied to g(i)

t , in order to decide, whether the
registered feature (i) should provide a collinearity or an epipolar constraint. Hence, a feature,
which repeatedly shows up as a mismatch or as roughly localised in 3D, does not affect the
pose estimate.

4.4 Experimental Setup and Results

This section provides an experimental evaluation of the visual SLAM system developed in
this chapter. The accuracy and computational efficiency of the system are evaluated in three
different experiments. Especially the value of the improvements made to the 3D estimation
processes and the basic stochastic model are investigated. The individual setups and results are
presented subsequently. The system parameters used during the experiments are summarised
in Table 4.1.

4.4.1 Test Case: Room

This test case denotes a corner of a room, i.e. a mid-scale environment with simple geometry
that allows for qualitative evaluation of the reconstruction accuracy without ground truth. A
cubic object with known 3D geometry is placed in the scene and serves as prior knowledge
to initialise the predictive tracking loop. The computational efficiency and the accuracy of the
feature reconstruction subsystem are investigated in this section. In particular, it is shown, how
the developed algorithms improve the reconstruction accuracy compared to a basic implemen-
tation of the structure from motion loop.

In this scenario, the developed system is able to estimate the camera trajectory in real-
time while reconstructing 3D points in a volume of approximately 2× 2.8× 2.5 m around the
origin defined by the known object. Figure 4.4 shows images of the target setup. For an in-
depth evaluation, a representative image sequence has been captured. The sequence starts with
continuous camera movements, where the whole scene as shown in Figure 4.4(a) is scanned
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Table 4.1: Parameter settings used during the experiments. The * indicates quantities that
are weighted with the respective covariance.

parameter value unit
camera
field of view 35 [◦]
image resolution 320× 240 [pixel]
covariance Rpp (cf. Section 4.2) I2 [pixel]

robust feature triangulation (cf. Section 4.2.1)
buffer capacity 20 [frames]
minimum angle α 1 [◦]
minimum angle β 5 [◦]
outlier threshold 2 [pixel]
minimum inlier ratio 60 [%]
maximum depth uncertainty 10 [%]

robust feature refinement (cf. Section 4.2.2)
significance level α 0.05

robust pose estimation (cf. Section 4.2.3)
maximum number of iterations m 50
outlier threshold 3 [pixel*]
minimum inlier ratio 60 [%]

feature quality and selection (cf. Section 4.3)
initial value for gt 50 [pixel]
forgetting factor λ 0.95
selection threshold for gt 2 [pixel*]

(a) (b) (c)

Figure 4.4: Room: (a) illustrates a wide-angle view on the entire target scene, (b) shows
an image from the camera used for the experiments. It has a much narrower field of view
of 35◦. In (c), the CAD model of the known object is shown. The object coordinate
system defines the reference frame for tracking and reconstruction.



4.4 Experimental Setup and Results 93

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

nu
m

be
r

Feature map

 

 

2D features

3D features

0 1000 2000 3000 4000 5000 6000
0

20

40

60
Registered features

frames

nu
m

be
r

Figure 4.5: Room: the upper plot illustrates the development of the feature map in terms
of the number of 2D and 3D features at each frame. 2D features denote features that are
not yet initialised in 3D. The lower plot shows the number of features registered in each
frame with the mean indicated by the straight line.

once. Afterwards, the movements are faster and the camera revisits parts of the environment.
In order to show the ability of the image processing method to recover feature tracks and to
evaluate the computational efficiency of the reconstruction component, the addition of new
features is manually disabled, once the model is acquired during the first part of the sequence.
This makes sure that the tracking thenceforward is entirely based upon the model acquired
already. Figure 4.5 presents the development of the feature map. The upper plot shows a
constant addition and reconstruction of new point features until around frame 2000, where the
scene structure has been acquired with sufficient feature density. Note that new features are
initialised in 3D within a few frames. The structure estimation is disabled manually at frame
2540. After that there is a slight decrease in the number of features until frame 3380, after
which the map is almost stable until the end of the sequence. This demonstrates the ability
of the developed system to recover feature tracks. On average, 27 features are registered per
camera frame. The progression is given in the lower plot of Figure 4.5 and the jitter especially
at the end of the sequence indicates that the camera moves fast.

Figure 4.6 demonstrates the computational performance of tracking and structure estima-
tion on this image sequence. The upper part contains plots of the processing time needed for
tracking — including feature prediction, registration, selection and pose computation — and
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Figure 4.6: Room: the upper graph plots the processing time needed for tracking and
structure estimation in comparison. The lower graph plots the frame rate with the averages
before and after disabling the structure estimation indicated by the straight lines.
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for reconstruction — including feature detection, triangulation and refinement. The dashed
curve drops to zero after disabling the reconstruction component. The figure shows clearly,
how the reconstruction is performed efficiently, needing on average one fifth of the time of the
tracking. Note that the robust triangulation is the most expensive part of the reconstruction.
The recursive estimation is much more efficient. As mentioned before, in the mid-scale envi-
ronment considered here, features are initialised in 3D within a few frames. In contrast, the
triangulation of distant features in a large-scale environment requires a comparatively large
baseline in order to obtain a sensible prior estimate to initialise the extended Kalman filter.
This is enforced by the angle and the depth uncertainty constraint (cf. Section 4.2.1) and is
illustrated in Figure 4.7. If a sufficient baseline is not provided, the features are nevertheless
used in the second pose estimation stage. However, computational resources are spent on the
triangulation attempts, thus limiting the applicability of the approach to large-scale environ-
ments.

The lower part of Figure 4.5 plots the frame rate incorporating the time needed for the
image resampling to compensate for distortion (cf. Section 2.1.1.2). On average, a frame rate
of 31.49 Hz is achieved while reconstructing features and a frame rate of 43.59 Hz without
structure estimation. This has been measured on a desktop PC with 3 GHz Intel Pentium IV
CPU. The frame rate depends of course on many different factors: the number of features in
the current field of view, the overall number of features in the map, the continuity of the camera
movements, occlusions in the scene and the depth of the scene. Additional time is needed for
image acquisition and virtual augmentations. Altogether the developed system achieves frame
rates around 20 Hz, when a reasonable number of features is used for tracking and a mid-scale
environment is considered, as during this experiment. The average number of iterations (cf.
Algorithm 4.2) needed during the pose computation throughout this image sequence is 1.03
with a maximum of 5. In 97.49% of the frames, no iterations are needed at all.
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(a) Frontal view (b) Top view

Figure 4.8: Room: two views on the reconstructed point clouds obtained from the system
running in advanced (green) and basic mode (orange). The known object defining the
world reference frame and the initial camera view are presented as well. Note how the
orange point cloud is biased compared to the green one.

Figure 4.8 illustrates two reconstructed point clouds in comparison, together with the CAD
model of the known object, the world coordinate system and the initial camera view. The green
point cloud has been generated with the system running the complete algorithm as developed in
this chapter. Subsequently, this mode is referred to as advanced system mode. The green point
set clearly exhibits the two dominant planes of the target scene. In contrast, the orange point
cloud reveals obvious errors. A bias shows in the estimated depths of the points on the left wall,
reconstructed first, and the errors increase significantly over the right wall. This reconstruction
has been generated with the system running in a basic mode, where important enhancements
made to the standard structure from motion loop are disabled. In the basic mode, the system
still uses the drift-free image processing method and the robust triangulation (cf. Section 4.2.1)
and pose computation (cf. Section 4.2.3). However, the feature selection (cf. Section 4.3) based
on the lowpass filtered normalised residuals, the incorporation of the epipolar constraints (cf.
Section 4.2.3.2) and the stochastic model including the feature refinement (cf. Section 4.2.2)
are disabled.

From groups of features, which are known to be nearly coplanar, as the features on the two
walls of the target scene, compensating planes can be estimated. By computing the distances of
the features to these planes, the approximate reconstruction error can be quantified. Using this
method, the reconstruction error of the developed system running in the advanced mode, is in
this specific experimental setup measured with 0.26 cm mean and 0.20 cm standard deviation.
Note that this experiment is not suitable to identify a drift in the reconstruction, as the planes
are not known by ground truth.

4.4.2 Test Case: Simulation

In this test case, the improvement in the camera localisation and the reconstruction accuracy
gained by the advanced system mode is quantified with help of ground truth. Therefore the
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Figure 4.9: Simulation: position errors obtained from the basic and the advanced system
mode on a part of the synthetic image sequence.

image sequence of the room test case is reproduced synthetically. This is done by building
an idealised CAD model of the target scene consisting of two orthogonal planes with a real
texture and rendering this with the internal camera parameters and the estimated trajectory.
The errors in the estimated camera position and orientation obtained from the advanced and
the basic system mode are compared in Figures 4.9 and 4.10. The average errors are given in
Table 4.2. The results demonstrate clearly the superiority of the advanced mode. A further
conclusion to draw from Figures 4.9 and 4.10 concerns the feature registration in the developed
system. The error plots for the basic mode show high peaks but no systematic drift. Hence, the
errors accumulated during the exploration of the scene is reset, when previously reconstructed
features return into the field of view. This again shows the ability of the image processing
method to recover feature tracks.

In this test case, the 3D geometry of the target scene is known by ground truth. Hence,
the reconstruction errors can be quantified exactly by computing the distances of the points to
the accordant planes in the model. The mean of the absolute error is 0.17 cm and the standard
deviation is 0.23 cm. Figure 4.11 plots the errors against the distances of the features from the
origin, where the reconstruction started. The upper plot shows the orthogonal distances from
the respective plane. The mean is 0.05 cm indicating a small bias, whereas the errors tend
to increase with the distance from the origin. However, the increasing errors are consistently
reflected by the 3D covariances associated with the features. This can be seen in the lower



98 4 Visual SLAM

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
−50

0

50
Orientation error (Euler angles) [degree]

x

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
−50

0

50

y

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
−50

0

50

z

frames

Figure 4.10: Simulation: orientation errors obtained from the basic and the advanced
system mode on a part of the synthetic image sequence.

Table 4.2: Simulation: average camera localisation errors obtained from the basic and the
advanced system mode on the synthetic image sequence. The orientation error is given in
Euler angles.

basic mode advanced mode
mean std mean std

position error [cm]
x 1.49 3.18 0.09 0.17
y 0.86 1.80 0.08 0.19
z 2.60 6.16 0.18 0.27

orientation error [◦]
x 2.38 4.72 0.17 0.61
y 1.71 2.03 0.15 0.34
z 1.94 3.93 0.12 0.45



4.4 Experimental Setup and Results 99

0 50 100 150 200 250
−2

−1

0

1

2
Reconstruction errors [cm]

di
st

. f
ro

m
 p

la
ne

0 50 100 150 200 250
−2

−1

0

1

2

no
rm

al
is

ed
 d

is
t. 

fr
om

 p
la

ne

distance from origin [cm]

Figure 4.11: Simulation: reconstruction errors obtained from the advanced system mode.
The upper graph plots the orthogonal distances of the 3D features from the model planes
against the distance from the origin. The lower graph plots the distances weighted with
the covariances (Mahalanobis distances) associated with the features. The mean errors
are indicated by the straight lines.
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Figure 4.12: Simulation: reconstructed point cloud. The mapped point landmarks are
shown with their location covariances. The points in the outer regions of the target scene
tend to be more uncertain. Some uncertain features, which are only just triangulated, are
also visible close to the origin.

graph of Figure 4.11, where the Mahalanobis distances are shown. Let m̂
(i)
w = [xw, yw, zw]T

be the estimated 3D location of feature (i) and let P (i)
ww be the associated covariance. Let

p = [a, b, c, d] denote a known homogeneous plane. The orthogonal distance d̂(i) := d(m̂
(i)
w ,p)

is then:
d(m̂(i)

w ,p) =
axw + byw + czw + d√

a2 + b2 + c2
(4.17)

and the normalised distance d̄(i) is:

d̄(i) = (JP (i)
wwJ

T )−1/2d̂(i) (4.18)

with J = [a/l, b/l, c/l] and l =
√
a2 + b2 + c2. The transformation of the covariance follows

from (4.2). In order to make the graphs in Figure 4.11 comparable, the Mahalanobis distances
are normalised with the minimum weight. The resulting plot shows an even error distribution.
This demonstrates the consistency of the 3D covariances and the value of the basic stochastic
model. An illustration of the covariances in 3D space is given in Figure 4.12.

4.4.3 Test Case: Loop

In this test case, the ability of the developed system to close loops is investigated. A 2.1×1.5×
2.5 m part of a corridor serves as test environment (cf. Figure 4.13). Starting from the known
object as in the previous experiments, the developed system is able to close the loop over the
two walls, the floor and the ceiling. Figure 4.14 demonstrates the point clouds obtained from
processing a captured image sequence in the advanced (green) and in the basic system mode
(orange). The orange point cloud shows a significant drift, while the green cloud demonstrates
a closed loop and allows for identifying details in the scene structure. These results show that
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Figure 4.13: Loop: a fisheye view on the target scene, where posters are placed to obtain
discriminative features. Note, that the poster leaning on the right wall and the poster fixed
to the ceiling are slightly curved and that the bottom is not completely coplanar.

(a) (b)

Figure 4.14: Loop: reconstructed point clouds obtained from the system running in the
advanced (green) and in the basic mode (orange). The orange point cloud shows a signifi-
cant drift. In contrast, the green point cloud allows for identifying scene structures visible
in the real environment (cf. Figure 4.13): (a) demonstrates the consistent reconstruction
of points on the slightly curved posters in the ceiling and the right wall and (b) shows
details of the left wall and the floor. Points are reconstructed in different depths on the
left wall, on the extinguisher, the frame of the balcony door and the balcony floor itself.
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(a) (b) (c)

Figure 4.15: Loop: (a) shows the first image of the sequences, where the wireframe
model of the known object is perfectly registered. In (b), the amount of drift after the
complete loop is demonstrated. In (c) the camera localisation error is reset by recovering
features reconstructed during the first part of the sequence.

a significant drift reduction is accomplished by the developed enhancements. Nevertheless,
the drift is not eliminated completely as demonstrated in Figure 4.15. After the loop, when
the known object returns into the field of view, an error of several pixels is visible in the
augmentation. Since the drift is small, previously reconstructed features are recovered and
the error in the camera localisation is reset. Moreover, the 3D feature positions are corrected
locally via the recursive refinement. However, the correction has no global effects, as the
features are estimated each in a separated Kalman Filter, i.e. correlations among the features
are not modelled.

Figure 4.16 plots the frame rates achieved when processing the image sequence in the
advanced system mode on a laptop with 1.66 GHz Intel core duo CPU. The average frame rate
is 33 Hz and a mean of 29 features are registered in each frame. The frame rate decreases
slowly with the increasing number of features in the map. At the end of the sequence, 468
active features are in the map. Hence, the developed algorithm scales well with the number of
features.

4.5 Conclusion

In this chapter, a vision-only camera tracking system is described, which needs only minimal
prior 3D knowledge about the target environment and is capable of performing robust cam-
era localisation and mapping simultaneously in real-time. Hence, the system is suitable for
enabling real-time tracking in partially known environments also beyond the areas originally
modelled.

The main contribution of this chapter is to unify the robustness and efficiency of standard
sequential structure from motion techniques with the statistical model of the extended Kalman
filter to obtain an efficient and robust algorithm with minimal drift. This is achieved by using
robust computer vision methods throughout the estimation processes and by performing the
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Figure 4.16: Loop: the frame rates include the time needed for image resampling, track-
ing and structure estimation. Image acquisition and visualisation of virtual augmentations
are not taken into account. The average frame rate is indicated by the straight line.

estimations in the stochastic framework of the extended Kalman filter. The robust computer
vision methods are:

• The image processing method allows for a reliable detection of outliers already during
the feature registration.

• The initial triangulation of features is computed from a large window of camera views
in a robust manner.

• During feature refinement, a χ2 test prohibits the use of incorrect measurements in the
EKF measurement update.

• The first pose estimation stage is performed robustly in the RANSAC framework.

• In the second pose estimation state, the TUKEY influence function is used to handle
outliers among the 2D/2D correspondences.

Using the stochastic framework permits recursive estimation of the 3D feature locations and
provides a measure of their location uncertainties. This measure is given by the 3D covariances
and the lowpass filtered normalised residuals. The latter are used to select appropriate features
for providing 3D constraints to the pose estimation. As a further enhancement to the ordinary
structure from motion loop, features are used for the pose estimation from the time of their
initial detection, irrespectively of their 3D state, by giving epipolar constraints.

The experimental evaluation, using both simulated and realistic image sequences, clearly
shows the benefits of the developed method compared to an ordinary sequential structure from
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motion system. These benefits are a higher accuracy in the camera localisation and the re-
constructed feature locations and a significant drift reduction. Moreover, in the considered
mid-scale indoor environments, the basic stochastic model turns out to provide a consistent
uncertainty measure of the 3D feature locations.

The visual SLAM system presented in this chapter achieves a significant drift reduction
while scaling well with the number of features in the map. However, the stochastic model
is not globally consistent due to the unmodelled correlations between the camera pose and
the feature locations. This can lead to an inability to close large loops. Moreover, the trian-
gulation method used to obtain prior estimates of the 3D feature locations is not suitable for
distant features that appear in large-scale environments. An alternative method to initialise the
extended Kalman filters associated with the features from a single camera view is proposed
in [176]. The idea is to replace the three-dimensional Euclidean state by a six-dimensional
inverse depth parametrisation that involves the camera pose and the depth of the feature. As
shown in [176], a large uncertainty in depth can still be represented by a Gaussian with the
inverse depth parametrisation. Furthermore, the system developed in this chapter makes no
use of additional sensors to obtain a better pose prediction. All of these issues are addressed
in the subsequent Chapter 5, which aims at combining and extending the results of the current
chapter and Chapter 3.



5
Towards Visual-Inertial SLAM

It is possible to create robust algorithms for simultaneous localisation and mapping that scale
with the number of features by decoupling pose and structure estimation. The visual SLAM
system described in Chapter 4 uses this and works well in mid-scale environments. As in-
dicated in Section 4.5, the system could be made more suitable for large-scale environments
with some changes. The areas to be addressed are the following:

Extended stochastic model: A globally consistent map estimate can be obtained by mod-
elling the correlations between the camera pose and the feature locations properly.

Sensor fusion: A visual-inertial SLAM algorithm is obtained by combining the ideas devel-
oped in Chapters 3 and 4.

Undelayed initialisation of features in 3D: Distant features can be used by replacing the tri-
angulation method developed in Section 4.2.1 with a method that allows to initialise
features from a single camera view.

In FastSLAM (cf. Section 2.4.3.3), the camera pose is represented by a particle set, and the
correlations between the camera pose and the feature locations are coded in the diversity of
the particles and their associated maps. Moreover, the marginalised particle filter (cf. Sec-
tion 2.4.2.3) provides a suitable framework to handle the fusion of inertial and camera measure-
ments. The combination of both techniques in the MPF-SLAM algorithm (cf. Section 2.4.3.4)
addresses the first two areas. Furthermore, by using an inverse depth parametrisation of the 3D
feature locations (cf. Section 4.5), the last point is addressed.

The visual-inertial SLAM system that emerges from the above ideas is conceptually illus-
trated in Figure 5.1. Both the architecture and the workflow of the system are essentially a
combination of the developments in Chapters 3 and 4. Many of the described concepts can be
reused. In the system the CamIMU (cf. Section 2.2) provides synchronised inertial data and
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Figure 5.1: Architecture of the visual-inertial SLAM system. The essential algorithms
used in the building blocks marked in grey are treated in Section 5.1 and 5.2, respectively.
In order to obtain an efficient algorithm with respect to both storage and computational
time, the feature map is organised as a tree, where paths are shared between particles
[28, 141].
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Table 5.1: Particles are composed of a partitioned state vector xT = [xnT , x̂lT ] that
contains information related to the IMU, i.e. its pose, kinematics and biases, and a set of
Gaussian estimatesN (m̂w, Pww) of the individual 3D feature locations mw. The posterior
probability distribution at time t is shown.

IMU feature 1 · · · feature j · · · feature m

particle 1 (xn, x̂l, P )[1]t|t (m̂w, Pww)[1],(1)t|t · · · (m̂w, Pww)[1],(j)t|t · · · (m̂w, Pww)[1],(m)
t|t

...
particle i (xn, x̂l, P )[i]t|t (m̂w, Pww)[i],(1)t|t · · · (m̂w, Pww)[i],(j)t|t · · · (m̂w, Pww)[i],(m)

t|t
...

particle n (xn, x̂l, P )[n]
t|t (m̂w, Pww)[n],(1)

t|t · · · (m̂w, Pww)[n],(j)
t|t · · · (m̂w, Pww)[n],(m)

t|t

camera images. The inertial measurements are collected between the images and then pro-
cessed by the marginalised particle filter. A pose prediction can be obtained from the particle
set. It is exploited to generate correspondences between the image and features in the map.
The registered feature locations are then used to refine the pose in the marginalised particle
filter, i.e. to reweight the particles, and, in return, to improve the respective 3D locations in
each particle.

The concepts of top down image processing, feature management and feature quality mon-
itoring developed in Chapter 3 and 4, respectively, can be reused in the framework described
here. However, as the 3D feature locations are estimated separately in each particle, the struc-
ture of the feature map is more complex. Each particle associates its own 3D feature map,
represented by an extended Kalman filter for each individual feature. The resulting particle
structure is illustrated in Table 5.1, where the notation used subsequently is introduced as well.

This chapter treats the major building blocks marked in grey in Figure 5.1. Section 5.1 in-
vestigates robust fusion of inertial and camera measurements in the marginalised particle filter
in real-time. The developed algorithm is evaluated in a simple experimental setup, where the
camera measurements are provided by a marker based tracking system (cf. Section 2.1.4) and
the 3D locations of the marker corners are assumed to be known. Section 5.2 deals with the
estimation of the 3D feature locations on a per-particle basis using the inverse depth parametri-
sation suggested in Section 4.5. A simple markerless test setup is then used to compare the
resulting algorithm to the visual SLAM system developed in Chapter 4 and preliminary qual-
itative results of this comparison are presented. Section 5.3 draws final conclusions. The
markerless image processing is not addressed here.

The aim of this chapter is to provide the foundation for a visual-inertial SLAM system
that is suitable for large-scale environments. The essential algorithms are developed and a
proof-of-concept implementation is evaluated in a simple test environment.
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5.1 Real-Time Visual-Inertial Pose Estimation using MPF

The fusion of vision-based and inertial tracking technology is extensively treated in literature,
especially in the field of augmented reality. The extended Kalman filter is the prominent tool
for the pose estimation, similar to the design in Chapter 3. The particle filter is hardly used
in this context. In [146], a sampling importance resampling (SIR) filter (cf. Algorithm 2.2)
is used to fuse point correspondences and gyroscope measurements. The measured angular
velocities are used as control inputs in the time update, while a random walk is applied to the
position. A SIR filter is also used in [177] to estimate the camera pose and kinematics from
point correspondences and 3D orientation provided by an IMU (cf. Section 2.2.1). In the recent
SLAM system [56, 110], the state space is further augmented with time-varying IMU biases.
As the velocities, accelerations and biases are conditionally linear and subject to Gaussian
noise, the high-dimensional state vector is handled by a marginalised particle filter. The state-
space model basically corresponds to the acceleration model developed in Section 3.4.1.3.
However, the computational complexity of the proposed algorithm is inevitably high and can
therefore not be used in a real-time application.

In contrast, the aim of this section is to develop a strategy for fusing angular velocities,
linear accelerations and 2D/3D point correspondences in a marginalised particle filter, which
is able to operate robustly in real-time. This is achieved in two major steps: developing an
efficient state-space model based on the results of Chapter 3 and extending the marginalised
particle filter as presented in Algorithm 2.4. The marginalised particle filter is extended with
automatic model-switching, improved orientation proposals, adaptive process noise and mix-
ture proposals for the translational states.

Section 5.1.1 develops a nonlinear state-space model with linear Gaussian substructure (cf.
Section 2.4.1.3) that can be used in the marginalised particle filter, and Section 5.1.2 provides a
problem-specific reformulation of the general algorithm that incorporates the extensions men-
tioned above. The performance of the proposed strategy is evaluated in combination with a
marker based tracking system and results from a comparison to previous visual-inertial fusion
strategies are presented in Section 5.1.3. Conclusions are found in Section 5.1.4.

5.1.1 State-Space Model

The choice of the state-space model is based on two results of Chapter 3:

• From the four different tracking models investigated in Chapter 3, the acceleration in-
put model performs best with respect to both tracking performance and computational
efficiency.

• The estimation of the accelerometer biases makes the tracking instable without signif-
icantly improving the overall tracking performance when corrective camera measure-
ments are available. Good tracking results are obtained also by estimating only the
gyroscope biases online.
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Considering these results, the nonlinear form of the dynamic model is obtained from the ac-
celeration input model developed in Section 3.4.1.4 by eliminating the accelerometer bias pa-
rameters bas . The state vector x comprises:

xT =
[
sTw ṡTw qTsw bωTs

]
, (5.1a)

where sw denotes the position, ṡw the velocity, qsw the orientation quaternion and bωs the
gyroscope biases of the IMU. The inertial measurements are considered to be control inputs
uTt = [yωTs,t ,y

aT
s,t ]. The nonlinear process model is:

sw,t+T
ṡw,t+T
qsw,t+T
bωs,t+T

 =


sw,t + T ṡw,t + T 2

2
Rws,t(y

a
s,t+T − vas,t) + T 2

2
gw

ṡw,t + TRws,t(y
a
s,t+T − vas,t) + Tgw

exp
(
− T

2
(yωs,t − bωs,t − vωs,t)

)
� qsw,t

bωs,t + vb
ω

s,t

 , (5.1b)

where vas,t,v
ω
s,t and vb

ω

s,t denote time independent Gaussian process noise that is uncorrelated in
all components. Using (5.1) in the marginalised particle filter, requires the partition of x into a
nonlinear part xn and a conditionally linear Gaussian part xl and the separation of (5.1b) into
two equations according to (2.30a) and (2.30b), respectively. The gyroscope biases bωs and the
velocity ṡw are eligible for xl. However, the process model (5.1b) is nonlinear, implying that
one separate covariance matrix is required for each particle (cf. Section 2.4.2.3). As pointed
out in [107], in this case, the marginalised particle filter becomes less computationally efficient,
if many states are marginalised. Hence, in order to obtain a real-time capable algorithm, the
partition:

xnT =
[
sTw ṡTw qTsw

]
xl = bωs (5.2a)

is chosen in this thesis. The reasons for this choice are given in the sequel: The gyroscope
biases can be regarded as quasi-static parameters. The Kalman filter is therefore the more
appropriate estimation tool, see e.g. [28]. Moreover, adding bωs to xn, would increase the
demand for particles and random numbers per particle. In contrast, adding ṡw to xn, is not
expected to have these effects due to its correlation with sw. With partition (5.2a) and, in order
to linearise the orientation update, approximation (B.17b) in Appendix B.3, the time update of
xn is: sw,t+T

ṡw,t+T
qsw,t+T


︸ ︷︷ ︸

xnt+T

=

sw,t + T ṡw,t + T 2

2
(Rws,ty

a
s,t+T + gw)

ṡw,t + T (Rws,ty
a
s,t + gw)

qsw,t − T
2

Sq(qsw,t)y
ω
s,t+T


︸ ︷︷ ︸

fnt (xnt ,u
n
t+T )

+

 03×3

03×3
T
2

Sq(qsw,t)


︸ ︷︷ ︸

Fnt (xnt )

bωs,t︸︷︷︸
xlt

+

 03×3 −T 2

2
Rws,t

03×3 −TRws,t
T
2

Sq(qsw,t) 04×3


︸ ︷︷ ︸

Gvnt (xnt )

[
vωs,t
vas,t

]
︸ ︷︷ ︸

vnt

, (5.2b)
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and the time update of xl is:

bωs,t︸︷︷︸
xlt+T

= I3︸︷︷︸
F lt (x

n
t )

bωs,t︸︷︷︸
xlt

+ I3︸︷︷︸
Gvlt (xnt )

vb
ω

s,t︸︷︷︸
vlt

. (5.2c)

During the particle filter time update (cf. Algorithm 2.4), the exact orientation update (B.15) in
Appendix B.3 is used. This ensures that the sampled quaternions have unit length. The camera
measurement model is derived from (3.8):

02 =
[
I2 −(mn,t + en,t)

]
Rcs(Rsw,t(mw,t + ew,t − sw,t)− cs)

:= ht(x
n
t ,mn,t,mw,t, e

c
t),

(5.3a)

where ect := [eTn,t, e
T
w,t]

T ∼ N (05, Rt) with:

Rt =

[
Rnn,t 02×3

03×2 Pww,t

]
, (5.3b)

according to the notation used in Chapter 4 and Table 5.1. By interpreting the latest estimate
m̂w,t|t−T of the 3D point as part of the implicit measurement, applying a first order Taylor
expansion according to (2.37b) and substituting yt := 02, the measurement equation (5.3a)
can be put in the required form (2.30c):

yt = ht(x
n
t ,mn,t, m̂w,t|t−T ) +He

t (x
n
t )ect , (5.4a)

where:

He
t (x

n
t ) :=

∂ht(x
n
t ,mn,t, m̂w,t|t−T , e

c
t)

∂ec

∣∣∣∣
ec=05

. (5.4b)

Treating the Gaussian estimate N (m̂w,t|t−T , Pww,t|t−T ) as a noisy measurement differs from
the proper MPF-SLAM assumption, where the map is considered to be a part of the linear
state partition xl, see e.g. [56, 110]. However, both interpretations result in exactly the same
measurement equation (5.4a).

In order to compute the importance weights wt ∝ wt−T p(yt|xnt ) in the measurement up-
date (step 2a) of the marginalised particle filter (cf. Algorithm 2.4), the likelihood p(yt|xnt ) is
required. This is obtained by inserting the measurement equation (5.4a) into (2.41a) and using
the fact that the camera measurements are conditionally independent. Let (mn,t, m̂w,t|t−T )(j),
with j = 1, . . . ,m, denote a set of 2D/3D correspondences at time t. The likelihood is then:

p(yt = 02|xnt ) =
m∏
j=1

N
(
02;ht(x

n
t ,m

(j)
n,t, m̂

(j)
w,t|t−T ), H

e,(j)
t (xnt )R

(j)
t H

e,(j)T
t (xnt )

)
, (5.5)

with R(j)
t from (5.3b) and He,(j)

t (xnt ) from (5.4b). Note that the importance weights are eval-
uated for each particle [i], i = 1, . . . , n. The complete expression for the likelihood (5.5) is
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therefore:

p(yt = 02|xn,[i]t ) =
m∏
j=1

N
(
02;ht(x

n,[i]
t ,m

(j)
n,t, m̂

[i],(j)
w,t|t−T ), H

e,[i],(j)
t (x

n,[i]
t )R

[i],(j)
t H

e,[i],(j)T
t (x

n,[i]
t )

)
, (5.6)

where the registered feature positions m
(j)
n,t are shared between particles.

5.1.2 Enhanced MPF

The aim of this section is to optimise the general marginalised particle filter, which is intro-
duced in Algorithm 2.4, for the specific estimation problem described in Section 5.1.1, so that
a robust algorithm is obtained. Algorithm 5.1 is a reformulation of the general algorithm,
which accounts for the system architecture and workflow outlined in Figure 5.1 and exploits
the multi-rate characteristics of the sensors. Note that the order of measurement and time
update is changed.

In preliminary experiments Algorithm 5.1 works fairly well on simulated data. However,
when processing realistic inertial and camera measurements with few enough particles to allow
for real-time performance (n ≤ 100), there is a significant drift in the translational states caus-
ing frequent filter divergences. The observed drift indicates comparatively large errors in the
orientation samples that propagate into velocity and position when the acceleration input model
is used. This effect — that is not observed with the extended Kalman filter (cf. Section 3.6) —
can be ascribed to the somewhat excessive process noise needed by the particle filter to spread
out the samples sufficiently during the time update. Sections 5.1.2.1 through 5.1.2.3 present
several extensions to Algorithm 5.1. These extensions aim to improve the accuracy of the ori-
entation samples and the robustness of the filter. The motivation is given by the preliminary
observations described above and the result of Chapter 3 that, with small orientation errors,
the acceleration input model provides superior tracking performance.

5.1.2.1 Automatic Model-Switching and Improved Orientation Proposals

The experiments in Section 3.6.1 (cf. Figure 3.9) show that in the absence of significant body
acceleration s̈w,t, the gravity model (cf. Section 3.4.1.2) can be used to improve the orientation
estimate while performing as well as the acceleration input model. Since the inclinometer
measurement equation (3.11) used in the gravity model contains no information about the
translational states, no drift can be introduced into these parameters. Hence, the drift observed
when using Algorithm 5.1 can be reduced during periods of low body acceleration by switching
between the acceleration input and the gravity model based on whether body acceleration is
detected or not. The detection criterion (3.22) is slightly improved here. The acceleration input
model developed in Section 5.1.1 is used, if:∣∣‖yas,t‖ − ‖gw‖∣∣ > Da, (5.7)



112 5 Towards Visual-Inertial SLAM

Algorithm 5.1 Visual-inertial marginalised particle filter

Let
{

(xn, x̂l, P )
[i]
t|t
}n
i=1

denote a set of weighted particles representing the posterior filter state
at time t after the camera measurements have just been used. Assume that T is the sample
time of the IMU and kT is the sample time of the camera. The algorithm for processing the
inertial control inputs {unTt+rT}kr=1 up to and including the next set of camera measurements{

(mn,t+kT , m̂w,t+kT |t)
(j)
}m
j=1

is then given by the following steps:

1. Let r := 1.

2. Time update:

(a) Particle filter time update (step 3a of the MPF): Generate n i.i.d. samples
{xn,[i]t+rT |t}ni=1 ∼ p(xnt+rT |x

n,[i]
t|t ,ut+rT ) based on (5.2b).

(b) Kalman filter corrective measurement update (step 3b of the MPF): Compute the
corrected linear states {x̂l,[i],∗t+(r−1)T |t, P

[i],∗
t+(r−1)T |t}ni=1 based on (5.2b).

(c) Kalman filter time update (step 3c of the MPF): Predict the linear states
{x̂l,[i]t+rT |t, P

[i]
t+rT |t}ni=1 based on (5.2c).

(d) Let r := r + 1. If r ≤ k, repeat step 2.

3. Compute the weighted sample mean x̂nt+rT |t according to (2.36). The estimate can be
exploited for top down image processing.

4. Particle filter measurement update (step 2a of the MPF): Compute the importance
weights w[i]

t+rT ∝ w
[i]
t p(yt|x

n,[i]
t ), i = 1, . . . , n and normalise. If m ≥ 1, use (5.6),

else use p(yt|xn,[i]t ) = 1.
Note that the Kalman filter measurement update (step 2b of the MPF) is dropped, as the
measurement equation (5.4a) does not depend on the linear state partition. The linear
states are corrected only in step 2b.

5. Resample.
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during a longer time period DT . The thresholds Da = 0.4 and DT = 0.4 s are chosen in the
experiments. The aim of this section is to develop a gravity model that suits the marginalised
particle filter and improves the accuracy of the orientation samples by using the inclination
measurements during the time update. This technique is also utilised in FastSLAM 2.0 [142],
where the camera measurements are used to improve the proposal distribution for both orien-
tation and position.

The following procedure is performed separately for each particle [i], i = 1, . . . , n: At
time t, the quaternion sample q

[i]
sw,t|t is transformed to the linear state partition x̂

l,[i]
t|t using:

x
l,[i],+
t|t :=

[
q

[i]
sw,t|t

b̂
ω,[i]
s,t|t

]
and P

l,[i],+
t|t :=

[
04×4 04×3

03×4 P
[i]
bωbω ,t|t

]
, (5.8)

with P [i]
bωbω ,t|t = cov(b̂

ω,[i]
s,t|t). The gravity model implies that a constant velocity model can be

used for the nonlinear time update of the remaining translational states:[
sw,t+T
ṡw,t+T

]
=

[
sw,t + T ṡw,t

ṡw,t

]
+

[
T 2

2

T

]
vs̈w,t. (5.9a)

The gyroscope reading yωs,t+T is then used as control input ult+T = yωs,t+T in the time update
of the linear states:[

qsw,t+T
bωs,t+T

]
=

[
exp
(
− T

2
(yωs,t+T − bωs,t − vωs,t)

)
� qsw,t

bωs,t + vb
ω

s,t

]
. (5.9b)

The nonlinear orientation update implies that an extended Kalman filter is needed in each
particle. The accelerometer reading yas,t+T is used in the measurement update of the linear
states. The measurement equation is obtained from (3.11) by eliminating the accelerometer
bias parameters bas,t:

yas,t = −Rsw,tgw + eas,t. (5.10)

At time t+ T , a quaternion is sampled from the posterior Gaussian:

q
[i]
sw,t+T |t+T ∼ N (x̂

l,[i],+
t+T |t+T , P

l,[i],+
t+T |t+T ) (5.11a)

and moved back to the nonlinear partition x
n,[i]
t+T |t+T . This affects the remaining linear states

x̂
l,[i]
t+T |t+T . Let:

q̂ := q̂
[i]
sw,t+T |t+T , q := q

[i]
sw,t+T |t+T , b̂ := b̂

ω,[i]
s,t+T |t+T ,

with

cov

([
q̂

b̂

])
=

[
Pqq Pqb
Pbq Pbb

]
.
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From the Gaussian conditioning operation [28] it follows that:

b̂|q ∼ N
(
b̂ + PbqP

−1
qq (q̂− q), Pbb − PbqP−1

qq Pqb
)
. (5.11b)

The procedure above requires modifications in the structure of Algorithm 5.1: With the ad-
ditional measurement (5.10), the corrective Kalman filter measurement update is replaced
by an extended Kalman filter measurement update and the importance weights w[i]

t of the
particles have to be updated at IMU sample rate T . Let R[i]

sw,t|t−T = rot(q̂
[i]
sw,t|t−T ) and

P
[i]
qq,t|t−T := cov(q̂

[i]
sw,t|t−T ). By applying a first order Taylor expansion to (5.10), the likeli-

hood becomes:

p(yas,t|x
n,[i]
t ) = N (yas,t;−R

[i]
sw,t|t−Tgw, H

[i]
t P

[i]
qq,t|t−TH

[i]T
t +Rt), (5.12)

with

H
[i]
t =

∂(− rot(qsw)gw)

∂qsw

∣∣
qsw=q̂

[i]
sw,t|t−T

(5.13)

and eas,t ∼ N (03, Rt).

5.1.2.2 Adaptive Process Noise

When using the acceleration input model, the drift observed in the translational states correlates
with the body acceleration. A natural idea is therefore to use the magnitude of the predicted
body acceleration s̈w,t|t−T to adapt the acceleration process noise vas,t used in the time update
of the nonlinear states (5.2b). The adaption is done separately for each particle [i] using:

v
a,[i]
s,t = vas,t + α

∥∥ s̈
[i]
w,t|t−T

∥∥, (5.14)

with s̈
[i]
w,t|t−T = R

[i]
ws,t|t−Ty

a
s,t + gw. The value α = 3 is chosen in the experiments. If the

considered application does not require a constant sample time, as is the case in this thesis, the
same mechanism can be used to adapt the number of particles.

5.1.2.3 Mixture Proposal

Using the adaptive acceleration process noise improves the robustness of the filter and mod-
erates the effects of the drift over a short period of time, but does not solve the problem. The
reason is that all particles might be affected depending on the quality of their respective ori-
entation sample. In order to avoid this in the first place, a mixture proposal is used for the
translational states: When the acceleration input model is applied, half of the particles are
sampled according to the constant acceleration model given in (5.2b) and the rest are sampled
using the constant velocity model given in (5.9a). This ensures the existence of both particles
that are not affected by a potential drift and others that are able to track high body accelera-
tions, for instance caused by shifts in the direction of movement. The adaptive process noise
mechanism is also applied to the body acceleration process noise vs̈w,t, which differs from the
accelerometer process noise vas,t. The mixture proposal affects the nonlinear time update of
the translational states, while all other equations given in Section 5.1 remain the same.
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5.1.2.4 Final Algorithm

The modifications of Algorithm 5.1 proposed in Sections 5.1.2.1 through 5.1.2.3 affect the
processing of the inertial data. Algorithm 5.2 provides the procedure to incorporate the ex-
tensions into Algorithm 5.1. It replaces steps 2a through 2c. Note that the time subscripts in
Algorithm 5.1 have to be changed accordingly, as the gravity model involves a measurement
update at IMU sample rate of both the linear and the nonlinear states.

Algorithm 5.2 Enhanced marginalised particle filter
If body acceleration is detected, use the acceleration input model:

1. Particle filter time update:

(a) Sample n new orientations based on (5.2b).

(b) Adapt the process noise for the translational states using (5.14) in each particle
[i], i = 1, . . . , n.

(c) Sample a mixture proposal for the translational states (cf. Section 5.1.2.3).

2. Kalman filter corrective measurement update and Kalman filter time update as in Algo-
rithm 5.1.

Else, use the gravity model. For each particle [i], i = 1, . . . , n:

1. Transform the quaternion to the linear partition using (5.8).

2. Particle filter and extended Kalman filter time update based on (5.9a) and (5.9b), respec-
tively.

3. Particle filter and extended Kalman filter measurement update based on (5.12) and
(5.10), respectively.

4. Transform the quaternion to the nonlinear partition using (5.11).

5.1.3 Experimental Setup and Results

In this section, the developed algorithm for visual-inertial pose estimation in the marginalised
particle filter is evaluated in a simple experimental setup. The CamIMU is used to obtain a
synchronised stream of camera images and inertial measurements. The camera measurements
and a reference trajectory are provided by a marker based tracking system. One rectangu-
lar marker — as illustrated in Figure 2.6(b) — is detected in the camera images. As the 3D
locations of the corners are assumed to be known, four 2D/3D point correspondences are ob-
tained. The camera poses provided by the marker tracking system, the marker poses, are used
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Figure 5.2: Acceleration and angular velocity signals of the test sequence in order to give
an idea of the range of the performed movements.

as reference for the results presented subsequently. The marker poses are obtained from the
point correspondences by using standard computer vision techniques (cf. Section 2.3.1.1). The
marker poses are also used for initialising the filter and for reinitialising it after a divergence.
The filter is said to diverge, if all particles have a negligible importance weight:

w
[i]
t < Dw ∀i ∈ [1 . . . N ], (5.15)

with w[i]
t from step 4 of Algorithm 5.1 before the normalisation and Dw = 1 · 10−16 in the

experiments. Further divergence detection methods can be found, for instance, in [28].
Including image processing and visualisation, the developed algorithm operates smoothly

at 25 Hz using n ≤ 100 particles and images with resolution 320 × 240 pixels. This has been
measured on a 2.2 GHz laptop. For an in-depth evaluation a challenging data sequence (syn-
chronised images and IMU data) has been captured with some quick shifts in the direction of
movement and erratic motions, which are characteristic for a handheld camera (cf. Figure 5.2).
Based on this test sequence the precision, robustness and efficiency of the proposed pose es-
timation method, subsequently referred to as MPF, is compared to the following previous
visual-inertial fusion strategies introduced in Section 5.1:

EKF: This denotes the acceleration input strategy developed in Chapter 3
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Table 5.2: System parameters and standard deviation noises — assuming equal noise
in all dimensions — used during the experiments. As the marker corners are known by
ground truth, the 3D feature locations are assumed certain. Note that the settings are tuned
experimentally based on the test sequences and that the quantitative results presented in
this section depend on the settings chosen.

MPF EKF PF Complex MPF
process noise
vωs,t 0.02 0.02 0.02 0.1
vas,t 0.5 0.5 – –
vs̈w,t 0.5 – 2.4 5.0
vb

ω

s,t 5 · 10−4 5 · 10−4 – 5 · 10−4

vb
a

s,t – – – 1 · 10−3

measurement noise
eωs,t – – – 0.02
eas,t 0.1 – – 0.4
en,t 7 · 10−3 7 · 10−3 7 · 10−3 7 · 10−3

system parameters
N 100 – 300 100
DT (cf. Section 5.1.2.1) 0.4 – – –
Da (cf. (5.7)) 0.4 – – –
Dw (cf. (5.15)) 1 · 10−15 – 1 · 10−15 1 · 10−15

α (cf. (5.14)) 3 – – –

PF: This denotes the fusion of gyroscope data and point correspondences in the SIR filter as
proposed in [146]. The angular velocities are used as control inputs in the time update,
where a random walk is applied to the position.

Complex MPF: This method denotes the pose estimation part of the SLAM system proposed
in [56, 110]. Here, the acceleration model is used and the accelerometer biases are
estimated online. Moreover, the general marginalised particle filter as presented in Al-
gorithm 2.4 is used without exploiting the multi-rate characteristics of the camera and
the IMU as in Algorithm 5.1.

The system parameters and the noise settings used during the experiments are summarised in
Table 5.2. The results are presented in Sections 5.1.3.1 through 5.1.3.3.

5.1.3.1 Comparison to EKF

In this section, the computational performance and precision of the proposed method (MPF)
and the extended Kalman filter (EKF) are compared. Moreover, the ability of the proposed
method to estimate the gyroscope biases is investigated.
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Table 5.3: Average camera localisation errors obtained from the MPF, the EKF and the
complex MPF. The orientation error is given in Euler angles.

EKF complex MPF MPF
position error [cm]
x 0.26 < 0.46 > 0.38
y 0.26 < 0.47 < 0.80
z 0.27 < 0.52 < 0.69

orientation error [◦]
x 0.57 < 0.72 < 1.43
y 0.45 < 0.59 < 0.91
z 0.33 < 0.51 < 0.95

To give an idea of the computational complexity of both filters, the average computing
time needed for processing the data of one frame — i.e. four inertial data at 25 Hz camera
frame rate and four 2D/3D correspondences — is 0.51 ms using the EKF and 15.18 ms with
the MPF. Note that the current MPF implementation is not optimised. This can be done, for
instance, by parallelisation [178, 179]. Table 5.3 compares the average camera localisation
errors obtained from the EKF and the MPF (columns one and three) when considering the
marker poses as ground truth. Better estimates are provided by the EKF. Note, however, that
the reference trajectory obtained from the marker tracking system is also subject to an unknown
error. Moreover, the EKF provides a smoother trajectory while the MPF tends to introduce
jitter.

The ability of the proposed method to estimate the gyroscope biases is investigated on a
data sequence with repeated movements and some stationary parts. The results are presented
in Figure 5.3. The bias estimates obtained from the MPF method converge properly to ap-
proximately the same values as those obtained from the EKF even though the convergence is
slower. Without the extensions described in Section 5.1.2.1, the convergence is significantly
worse. The two major conclusions to draw from this figure are: First, the MPF method is
able to estimate the gyroscope biases correctly, and second, the automatic model-switching
and improved orientation proposals have a positive effect on the estimation of the gyroscope
bias parameters. This again improves the quality of the orientation samples and as a result the
quality of the position samples, when the acceleration input model is used. The reason for the
improved convergence is the accelerometer measurement update in step 3 of Algorithm 5.2.
The accelerometer measurements provide information about the orientation, which due to the
correlations in the covariance matrix contributes to the estimation of the gyroscope biases.
If the acceleration model is always used, the biases are estimated only during the corrective
Kalman filter measurement update in step 2b of Algorithm 5.1.

The results presented in this section show the superiority of the EKF over the MPF, if
real-time pose estimation relative to a known map of the environment is considered. However,
the motivation for using the MPF is to obtain a robust solution for simultaneous localisation
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Figure 5.3: Gyroscope bias estimates obtained from the EKF, the MPF and the MPF
without automatic model-switching and improved orientation proposals (MPF w/o i.o.p.).

and mapping that scales with the number of features, which is not provided by the extended
Kalman filter (cf. Section 2.4.3.2).

5.1.3.2 Comparison to PF

In this section, the efficiency, robustness and precision of the proposed method is compared to
the method based on the standard particle filter (PF), where only gyroscopes are used [146].
Especially, the benefits obtained by using accelerometer measurements are investigated.

In [146], the time update for the orientation states is effectively the same as in (5.1b),
whereas nothing is said about the gyroscope biases. Hence, these are fixed to reasonable values
obtained from the experiment in Section 5.1.3.1. In order to take the lower computational
complexity of the particle filter method into account, n = 300 particles are allowed for this
model. Thus, approximately the same amount of computational resources is used by both
methods. With the constant position model as proposed in [146], no reasonable results can be
obtained with the considered test data. The constant velocity model given in (5.9a) is therefore
used in this experiment.
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Figure 5.4: Filter reinitialisations required by the PF, the MPF and the MPF without
the mixture proposal extension (MPF w/o m. p.): the latter means in this context, that
all particles are sampled on base of the constant velocity model given in (5.9a), i.e. that
the accelerometers are only used for adapting the process noise but not for sampling the
translational states.

With the proposed algorithm using only one third of the particles in the regular particle fil-
ter, the estimation errors obtained from both filters turn out to be comparable during successful
filter operation. Concerning the orientation, this results from the fact, that both filters are ini-
tialised with the same gyroscope bias values and use the same orientation update rule, as the
MPF operates mainly in the acceleration input mode on the considered test sequence. How-
ever, as presented in Figure 5.4, the particle filter method shows repeated filter divergences.
The difference between the methods is most apparent after shifts in the direction of movement,
where the position errors peak for the regular particle filter. In contrast, the method developed
here keeps the track in most of the cases by exploiting the information given by the accelerom-
eter measurements. In order to achieve comparable robustness with the particle filter method,
the process noise and the number of particles must be increased significantly. As this system
aims at real-time performance, the effects of increasing the number of particles is not investi-
gated in detail here. In [146], a study with thousands of particles is given. The contribution
of the mixture proposal extension to the robustness of the MPF also shows up in Figure 5.4
in terms of a reduced number of filter divergences. Figure 5.5 presents an exemplary frame
from the test sequence, where the particle filter diverges, while the marginalised particle filter
is able to keep the track.

Figure 5.6 provides information about the efficiency of the particle filter and the method
developed here in terms of the effective fraction of particles Peff,t := N̂eff,t/n, where the ef-
fective sample size N̂eff,t is introduced in (2.34). The quantity Peff,t ∈ [0, 1] measures the
fraction of particles contributing to the support of the estimated probability density function
and determines the fraction of particles surviving the resampling process. It can be regarded as
an indicator for the quality of the proposal distribution and, as computational power is spend
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(a) PF (b) MPF

Figure 5.5: The overlaid crosses denote the features projected from the pose particles. (a)
shows how the PF diverges after a change in the direction of motion, as no features project
into the neighbourhood of the marker corners, implying that all particles have negligible
weights. (b) demonstrates how the MPF continues the tracking, as the features project
into the close neighbourhood of the marker corners. Note how the feature projections are
spread out in (b) due to the automatic process noise increase described in Section 5.1.2.2.
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Figure 5.6: Fraction of effective particles from the MPF and the PF.



122 5 Towards Visual-Inertial SLAM

when propagating particles in regions of low likelihood, for the efficiency of the filter. Fig-
ure 5.6 shows higher values for the proposed method, implying that the survival time of the
particles and the quality of the proposal distribution are improved compared to the particle
filter method. This is of special interest in the context of FastSLAM and MPF-SLAM, as
covariance information is lost with the particle trajectories (cf. Section 2.4.3.3).

To summarise the results presented in this section, the proposed method shows improved
results with respect to robustness and filter efficiency by exploiting the accelerometer mea-
surements in the way developed in Section 5.1.2. Moreover, the marginalised particle filter
method requires less particles than the particle filter to achieve the same precision, though the
computational demand per particle is higher.

The ability to detect high body accelerations in advance is of further interest in the context
of simultaneous localisation and mapping, when pose and structure estimation are decoupled.
In this case, the information can be used to prevent possible corruptions of the map states by
prohibiting feature initialisations or map updates in case of high acceleration, where the pose
samples are not likely to be well distributed. In contrast, when using the extended Kalman
filter, the camera states and the map have to be treated simultaneously in the measurement
update (cf. Section 2.4.3.2).

5.1.3.3 Comparison to Complex MPF

In this section, the computational performance, efficiency, robustness and precision of the
proposed MPF and the complex MPF method are compared. The latter denotes the pose esti-
mation part of the simultaneous localisation and mapping system described in [56, 110]. The
differences between the two methods are described in the beginning of Section 5.1.3. Note
that for the complex MPF the noise settings are more difficult to tune, as treating the inertial
data as measurements requires two additional noise processes.

To give an impression of the computational demands of the complex MPF, the average
computing time needed to process the data of one frame is observed to be 83.64 ms. In contrast,
15.18 ms are used by the method developed here, yielding a reduction of the computational
costs by a factor of 5.5.

Figure 5.7 shows the estimation errors obtained from the complex MPF and the MPF on the
considered test sequence. The average errors are included in Table 5.3. Figure 5.8 presents the
number of filter reinitialisations required by both methods. The complex MPF performs better
with respect to estimation accuracy, while the MPF method yields better stability. It requires
only four filter reinitialisations, while the complex MPF shows continuous divergences appear-
ing mainly during combined rotational and translational camera motions. This observation is
similar to what is described for Algorithm 5.1 in the beginning of Section 5.1.2. Note that the
results with respect to the estimation precision are affected by the reinitialisations, where the
estimation errors are reset.

Figure 5.9 presents the fraction of effective particles for both methods. The complex MPF
shows higher values, as the motion model used is more predictive than in the proposed method.
This is due to the mixture proposal for the translational states and the adaptive process noise.
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Figure 5.7: Camera localisation errors obtained from the complex MPF and the MPF.
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Figure 5.8: Filter reinitialisations required by the complex MPF and the MPF.
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Figure 5.9: Fraction of effective particles from the complex MPF and the MPF.
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However, there is a trade-off between the efficiency and the robustness of the filter. The param-
eter settings of the method developed here can be modified in order to match the requirements
of the considered application, i.e. in order to emphasise either robustness or efficiency.

To summarise the results of this section, the MPF provides reduced computational demands
and — with the parameter settings chosen in the experiments (cf. Table 5.2) — an improved
tracking stability, while the complex MPF yields a higher precision and filter efficiency.

5.1.4 Summary

Section 5.1 presents a strategy capable of fusing vision-based and inertial tracking technolo-
gies in real-time using the marginalised particle filter. The proposed method is developed in
several steps. A nonlinear state-space model with linear Gaussian substructure is developed
in Section 5.1.1 for the problem of real-time visual-inertial camera pose estimation. In Sec-
tion 5.1.2, the general marginalised particle filter is adapted to the specific characteristics of
the considered application and improved with several extensions: automatic model-switching,
improved orientation proposals, adaptive process noise and mixture proposals for the transla-
tional states. The evaluation of the final method in combination with a marker-based tracking
system shows that the developed extensions increase the precision, the efficiency and most
notably the robustness of the filter. More stable results can be obtained compared to previous
fusion models based upon the standard particle filter and the general marginalised particle fil-
ter, especially in the presence of erratic camera motions. When considering the problem of
pose estimation relative to a known map, the extended Kalman filter turns out to be superior
to the fusion strategy based on the marginalised particle filter. However, in the context of si-
multaneous localisation and mapping, the extended Kalman filter is not the preferred solution,
since it does not scale with the number of features and does not permit to decouple pose and
structure estimation.

5.2 Per-Particle Feature Estimation

This section treats the estimation of the 3D feature locations on a per-particle basis. It aims
at completing the localisation algorithm developed in Section 5.1 with map estimation so that
a simultaneous localisation and mapping system according to the architecture illustrated in
Figure 5.1 is obtained. A comparable SLAM system is proposed in [56, 110], however, using
an Euclidean representation for the features.

In Algorithm 5.1, map estimation and management are incorporated after the measurement
update in step 4. The workflow is identical to that of the visual SLAM system developed in
Chapter 4 (cf. Figure 4.2): Structure is estimated based on the estimated camera pose, fol-
lowed by the optional extraction of new features in free areas of the image. Indeed, the robust
triangulation and refinement method developed in Section 4.2.1 and 4.2.2, respectively, can be
reused here. This can be done by performing the estimation step separately in each particle
using the camera pose it represents. However, on a per-particle basis, the robust triangulation
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algorithm is too time consuming. Moreover, as pointed out in Section 4.5, this method is not
suitable for distant features, as the 3D initialisation must be delayed until a sufficiently large
baseline and, hence, an acceptable initial depth estimate is available. The reason is that the
extended Kalman filter requires a Gaussian representation with small covariance for the in-
volved random variables in order to assure a small linearisation error. Methods for undelayed
feature initialisation in bearing-only tracking proposed in literature are: Federated Information
Sharing (FIS) [180] and inverse depth parametrisation [117, 176].

Federated information sharing is a method where for each new feature a set of location
hypotheses is included in the map, and less likely members are pruned over time. It is an
approximation to the Gaussian sum filter [181] with additive growth in the problem size.

The inverse depth method denotes a change from the minimal Euclidean feature represen-
tation to a six-dimensional representation that involves the camera pose and the depth of the
feature. In this thesis, the inverse depth approach is used. It is easy to incorporate into the
structure of the developed algorithms. It allows features to be used from the time of their
initial observation. Moreover, even infinitely distant features can be used for the pose esti-
mation, i.e. a separate 2D/2D measurement equation as in Chapter 4 is not needed. Since the
camera pose is given in each particle, the six-dimensional estimation problem reduces to a
three-dimensional problem when considered on a per-particle basis.

Section 5.2.1 develops the inverse depth measurement model and the modifications re-
quired to incorporate this model into Algorithm 5.1. The resulting method is then compared to
the visual SLAM system developed in Chapter 4 in the simple test setup of Section 5.1.3. Pre-
liminary qualitative results of this comparison are presented in Section 5.2.2 and conclusions
are found in Section 5.2.3.

5.2.1 Inverse Depth Measurement Model

In the inverse depth model, 3D points are parametrised according to the definition of the
collinearity constraint (cf. Section 2.1.3.1). When a feature is first observed, a ray can be
drawn from the optical centre cw,0 of the camera through the position mn of the feature in the
image plane. The 3D location mw of the feature then lies on this ray at an unknown depth d.
Figure 5.10 illustrates this relation. The directional vector pw = m(θw, φw) is parametrised by
two angles, azimuth θw and elevation φw, expressed in the world frame w. The transformation
of these angles to Cartesian coordinates is:

p = m

([
θ
φ

])
=

cos(φ) sin(θ)
− sin(φ)

cos(φ) cos(θ)

 , (5.16a)

where p has unit length. The inverse transformation is:[
θ
φ

]
= m−1

px
py
pz

 =

[
arctan(px,pz)

arctan(−py,
√

p2
x + p2

z)

]
. (5.16b)
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Figure 5.10: Illustration of the inverse depth parametrisation: The directional vector pw,
expressed in the world frame w is given in spherical coordinates θw and φw.

The advantage of the non-minimal representation is that the depth d of the feature along the
ray is coded in a separate parameter. As an infinite interval in depth corresponds to a finite
interval in inverse depth ρ = 1

d
, features can be initialised in 3D from one camera view by

estimating ρ instead of d. Consider the simple arithmetic example: If the prior inverse depth
estimate is chosen to be ρ̂0|−1 = 0.5 with variance σρ,0|−1 = var(ρ̂0|−1) = 0.25, the 95%
acceptance region covers the inverse depth range ρ ∈ [0, 1]. This corresponds to the depth
range d ∈ [1,∞] including even features infinitely far away.

With the inverse depth parametrisation, the 3D location of a feature is represented by a
six-dimensional state vector:

xf =
[
cw,0 θw φw ρ

]
, (5.17)

where cw,0 denotes the optical centre of the first camera view, θw and φw denote the azimuth
and respectively the elevation angle parametrising the directional vector defined by the first
camera view and ρ denotes the inverse depth along the ray defined by the optical centre and
the directional vector. The transformation of xf to the Euclidean representation mw is:

mw = cw,0 +
1

ρ
m

([
θw
φw

])
, (5.18)

where m([θw, φw]T ) is given in (5.16a).
In order to incorporate the inverse depth parametrisation into Algorithm 5.1, three models

must be derived: The 3D feature locations are estimated, each in a separate extended Kalman
filter. The initialisation of the extended Kalman filter from one camera view is addressed in
Section 5.2.1.1. The measurement model required to perform the filter updates is provided
in Section 5.2.1.2. Finally, the measurement likelihood required to use the features for pose
estimation in the marginalised particle filter is developed in Section 5.2.1.3.
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5.2.1.1 Feature Initialisation

Features are estimated on a per-particle basis. The initialisation procedure is repeated in each
particle [i], i = 1, . . . , n using the registered feature position mn,t and the respective pose
sample. Note that the position sw,t and orientation qsw,t of the IMU are estimated in the
marginalised particle filter. The camera position cw,t and orientation qcw,t are obtained from
(2.12a) using the hand-eye transformation. The prior state parameters cw,0 are immediately
given by the camera position, i.e.:

ĉw,0,0|−1 = cw,t. (5.19a)

The angles θw and φw are obtained from the camera orientation and the registered feature
position [x, y]T := mn,t as:

[
θ̂w
φ̂w

]
0|−1

= f(mn,t,qcw,t) = m−1

rot(qcw,t)
T

xy
1

 . (5.19b)

The initial value for ρ and its variance are design parameters. In the experiments, they are
chosen as in the arithmetic example above. The values can be derived heuristically to cover
a certain working space in the acceptance region. Let Rnn,t denote the covariance of the
measurement noise in the registered feature position and σρ,0|−1 the initial variance of ρ, the
prior covariance Pxf ,0|−1 := cov(xf0|−1) is then:

Pxf ,0|−1 =

03×3 03×2 0
02×3 JRnn,tJ

T 0
01×3 01×2 σ2

ρ,0|−1

 , (5.19c)

with Jacobian:

J :=
∂f(mn,qcw,t)

∂mn

∣∣∣∣
mn=mn,t

.

Note that all rows and columns related to cw,0 are zero, as the camera pose is given by the
particle. Hence, these parameters do not change during the filter update implying that they can
be removed from the state vector xf and treated as deterministic input to the observation model
instead. This reduces the estimation problem to three dimensions and results in substantial
savings in the computational cost.

5.2.1.2 Feature Estimation

Analogously to the method developed in Section 4.2.2, standard extended Kalman filter mea-
surement updates are performed to estimate the 3D feature locations in each particle. In con-
trast to Section 4.2.2, the measurement equation is here in the form of (2.26b), i.e. it is formu-
lated explicitly with additive measurement noise. This is a result of the fact that the pose is
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given by the particle and can therefore be considered a deterministic input to the observation
model rather than a noisy measurement. Let yn,t = mn,t denote the measured image position
of a feature with measurement noise en,t ∼ N (02, Rnn,t). The measurement equation then is:

yn,t = h(xft , sw,t,qsw,t) + en,t

= Pn
(
Rcs

(
Rsw

(
ρ(cw,0 − sw) +m([θTw, φ

T
w]T )

)
− ρ cs

))
+ en,t,

(5.20)

where Rcs and cs denote the hand-eye transformation (cf. Section 2.2.2) and Pn applies the
normalised pinhole projection (2.5a). The linearised model is obtained according to (2.37b)
with He

t := I2 and yn,t solved for explicitly. Moreover, the EKF measurement update is
performed according to step 2 of Algorithm 2.3 with zt = yn,t − h(x̂ft|t−T , sw,t,qsw,t).

5.2.1.3 Likelihood

In order to use the 3D feature locations xf for the pose estimation in the marginalised particle
filter, the likelihood (5.5) needs to be adapted to the measurement model (5.20). By applying
a first order Taylor expansion around x̂ft|t−T , equation (5.20) can be put in the required form
(2.30c):

yn,t = ht(x
f
t , sw,t,qsw,t) + en,t (5.21a)

≈ ht(x̂
f
t|t−T ,x

n
t )−Ht(x

n
t )x̂ft|t−T︸ ︷︷ ︸

ht(xnt )

+Ht(x
n
t )xft + en,t, (5.21b)

with:

Ht(x
n
t ) :=

∂ht(x
f ,xnt )

∂xf
∣∣
xf=x̂f

t|t−T
. (5.21c)

Note that xft := xlt is here considered to be the linear state partition. The linearised model
(5.21b) can now be inserted into (2.41a). Assume that a set {y(j)

n,t}mj=1 of registered feature po-
sitions, each with measurement noise en,t ∼ N (02, Rnn,t) is available at time t. The likelihood
is then:

p({y(j)
n,t}mj=1|xnt ) =

m∏
j=1

N
(
y

(j)
n,t;ht(x̂

f
t|t−T ,x

n
t ), H

(j)
t (xnt )Pxf ,t|t−TH

(j)T
t (xnt ) +Rnn,t

)
. (5.22)

Note that (5.22) is evaluated for each particle [i], i = 1, . . . , n. The complete notation can be
formulated analogously to (5.6).

5.2.2 Experimental Setup and Results

The aim of this section is to provide a proof-of-concept of the ideas presented in this chap-
ter and to present preliminary qualitative results. The MPF-SLAM system that emerges from
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incorporating the per-particle feature estimation method developed in Section 5.2 into the al-
gorithm for visual-inertial pose estimation in the marginalised particle filter described in Sec-
tion 5.1 is here compared to the visual SLAM system from Chapter 4. The focus is on the
comparison of the structure estimation methods and their representations of the uncertainties
in the feature locations treated in Section 5.2.2.1 and 5.2.2.2, respectively. Section 5.2.2.3
presents qualitative results and observations with respect to the camera pose estimation. A
part of the test data sequence used in Section 5.1.3 — more precisely, second 20 to 50 (cf.
Figure 5.2) — where the CamIMU orbits the marker and then performs some quick motions,
is used for the evaluation. The marker corners are tracked in the images using the markerless
image processing method presented in Chapter 3.

By using the reference poses obtained from the marker based tracking system to initialise
the SLAM process, both the MPF-SLAM method developed in this chapter and the visual
SLAM system — here denoted V-SLAM — developed in Chapter 4 are able to estimate the
trajectory of the CamIMU in real-time while mapping the locations of the four marker cor-
ners. The system parameters and noise settings of the previous experiments given in Table 5.2
and 4.1, respectively, are used here. Moreover, as proposed in Section 5.1.3, the map update is
prohibited in the MPF-SLAM system, when body acceleration is detected (cf. Section 5.1.2.1).

5.2.2.1 Feature Initialisation and Estimation

In this section, the different feature initialisation and estimation methods are compared. The
inverse depth parametrisation used in the MPF-SLAM method allows for an undelayed initial-
isation from one camera view. In contrast, the Euclidean representation used in the V-SLAM
system requires delayed triangulation from a sufficiently large baseline. Initial and refined
location estimates obtained from both methods are illustrated in Figure 5.11. The according
images overlaid with the projected covariances are shown in Figure 5.12. Note that the Eu-
clidean location estimates, illustrated for the MPF-SLAM method in Figure 5.11, are obtained
from the feature states (5.17) by using a first order Gauss approximation of the transforma-
tion function (5.18) (cf. Equation 4.2). The approximation is poor, if the uncertainty in ρ is
high. However, the results are only used for visualisation purposes. The same approximation
is applied to (2.5a) in order to obtain the projected covariances in terms of pixels shown in Fig-
ure 5.12. The initial location uncertainties presented in Figure 5.11(a) show the principle of the
inverse depth parametrisation. The elongated ellipsoids meet in the optical centre of the camera
and surround the view rays towards the marker corners. The undelayed feature initialisation
comes at the expense of inaccurate initial estimates: The initial feature locations indicated by
the spheres are far off the corners of the rectangle. This is due to the heuristic choice of ρ̂0|−1,
since no prior knowledge about the depth parameter is available (cf. Section 5.2.1). However,
the ground truth locations are included in the 99% confidence regions indicated by the ellip-
soids and the refined estimates illustrated in Figure 5.11(b) and (d) show a correct convergence.
The initial location estimates obtained from the V-SLAM system (cf. Figure 5.11(c)) are com-
paratively accurate. However, the triangulation is delayed, until a sufficiently large baseline is
available. In this special case, 7 to 9 camera views are used for the estimation of the initial
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(a) MPF-SLAM, image 1: initialisation.

(b) MPF-SLAM, image 19. (c) V-SLAM, image 19: initialisation.

(d) MPF-SLAM, image 100. (e) V-SLAM, image 100.

Figure 5.11: The camera views and the mapped 3D locations of the marker corners with
their location covariances obtained from both the MPF-SLAM and the V-SLAM method
are shown at different images of the test data sequence. The rectangle denotes the location
of the marker. See Figure 5.12 for the according camera frames.
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(a) MPF-SLAM: image 1.

(b) MPF-SLAM: image 19. (c) V-SLAM: image 19.

(d) MPF-SLAM: image 100. (e) V-SLAM: image 100.

Figure 5.12: Camera images augmented with a virtual coordinate system — the world
frame — and overlaid with ellipses demonstrating the projected 3D location covariances
of the mapped marker corners.
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(a) MPF-SLAM. (b) V-SLAM.

Figure 5.13: Estimation errors of one marker corner in the z-dimension and 99% confi-
dence regions obtained from the MPF-SLAM and the V-SLAM method. Note the unde-
layed feature initialisation when using the MPF-SLAM method.

weighted least squares estimate (cf. Section 4.2.1). Figure 5.13 shows the estimation errors of
one of the marker corners in the z-dimension with their 99% confidence regions. The initial
error obtained from the undelayed initialisation is comparatively large. However, the error is
consistently represented by the variance and the estimates of both methods converges to the
correct solution. The final root mean square mapping errors obtained from both methods are
small in this simple experimental environment. The V-SLAM method provides slightly less
error with 0.01 cm, while 0.14 cm are measured for the MPF-SLAM system. By increasing
the number of particles from n = 100 to n = 200, the error reduces to 0.08 cm. However,
the average computing time needed for processing the data of one frame — including pose
estimation and map update — increases from 21.37 ms to 43.61 ms, where on average 9.14%
of the processing time is allotted to the map update.

5.2.2.2 Representation of Uncertainty

As mentioned in the beginning of this chapter, the reason for using FastSLAM mapping, i.e.
for estimating the map separately in each particle, is to obtain a consistent representation of
the correlations between the camera and the features in the diversity of the particles and their
associated maps. Figure 5.14 illustrates the correlations between the mapped locations of the
four marker corners at the time instances given in Figure 5.11. The correlations between the
location parameters θ(j)

w , φ(j)
w and ρ(j), with j = 1, . . . , 4, estimated in the per-particle extended

Kalman filters (cf. Section 5.2.1.1), and the block correlations between the four features are
shown. The covariance matrix is obtained from the particles and their associated maps by
defining the stacked vectors x

l,[i]
t|t = [θ

(1)
w , φ

(1)
w , ρ(1), . . . , θ

(4)
w , φ

(4)
w , ρ(4)][i]T and using these in

(2.42). The same procedure can be used to obtain the correlations between the states related
to the IMU and the features. As shown in Figure 5.14(c) and (d), at an early reconstruction
state, the largest cross correlations develop between the depth parameters of the features, most
notably between feature 1 and 2 and 1 and 4. These are also the most uncertain parameters. At
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(a) Image 1.
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(b) Image 1.
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(c) Image 19.
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(d) Image 19.
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(e) Image 100.
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(f) Image 100.

Figure 5.14: MPF-SLAM: illustration of the correlations between the four estimated
feature locations with n = 100 particles: The correlations between the single location
parameters θ(j)

w , φ(j)
w and ρ(j), with j = 1, . . . , 4, are shown on the left side and the block

correlations between the four features — generated from the blocks with the 2-norm —
are shown on the right side. Note that the covariance matrix is normalised with the block
diagonal elements in order to show the correlations more explicitly.
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Figure 5.15: MPF-SLAM: illustration of the correlations between the four estimated
feature locations with n = 1000 particles (cf. Figure 5.15).

a later state, when the feature estimates are well defined in all directions (cf. Figure 5.11(d)),
the off-diagonal entries become very small as illustrated in Figure 5.14(e) and (f). Although the
survival time of the particles is shown to be extended compared to a regular particle filter (cf.
Section 5.1.3.2), this indicates a particle depletion problem, which can lead to underestimated
uncertainty and a limited ability to close loops (cf. Section 2.4.3.3). Again, this effect can be
reduced by increasing the number of particles at the expense of higher computational costs.
Figure 5.15 illustrates the correlations with n = 1000 particles.

5.2.2.3 Camera Pose Estimation

A notable observation concerning the pose estimation is that the V-SLAM system introduces
jitter, while the MPF-SLAM method provides a smooth trajectory. This is discussed in the
beginning of Chapter 3. Figure 5.16 compares the position estimates obtained for parts of
the test data sequence, where this effect is most visible. Jitter shows in both the first part of
the sequence, where the CamIMU performs continuous motions, and the final part, where the
camera moves quickly. Indeed, the V-SLAM system fails several times during the final part of
the sequence, while the MPF-SLAM method is able to keep the track by using the information
from the inertial measurements. When considering the trajectory obtained from the marker
based tracking system as ground truth, the V-SLAM method provides higher accuracy. The
root mean square estimation error is 0.24 cm for the V-SLAM system and 1.11 cm for the
MPF-SLAM method. Note that the high correlation between the trajectory obtained from
the marker based tracking system and the V-SLAM method in parts results from the fact that
similar computer vision techniques (cf. Section 2.3.1.1) are used. Figure 5.17 illustrates the
estimation errors obtained from the MPF-SLAM method for two dimensions of the camera
position. Note how the variances increase during periods of quick camera motions. This
results from the adaptive process noise technique developed in Section 5.1.2.2. The estimates
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Figure 5.16: Position estimates obtained from the MPF-SLAM and the V-SLAM system.
The plots focus on different parts of the test data sequence.
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Figure 5.17: MPF-SLAM: estimation errors and 99% confidence regions for two dimen-
sions of the camera position with n = 100 particles. The confidence regions are obtained
from the respective diagonal elements of the covariance, which is estimated from the
particle cloud using (2.42b).
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stay mostly within the 99% confidence bounds indicated in the figure, except for the first part
of the upper plot, where the covariances are underestimated. Note, however, that the reference
trajectory obtained from the marker tracking system is also subject to an unknown error.

5.2.3 Summary

This section completes the visual-inertial pose estimation method developed in Section 5.1
with structure estimation on a per-particle basis so that a MPF-SLAM system is obtained.
The Euclidean representation of the 3D feature locations is replaced with an inverse depth
parametrisation that allows for initialising features from one camera view and is more suitable
for handling distant features. The resulting algorithm is evaluated in the simple experimen-
tal environment used in Section 5.1.3 and is compared to the method described previously
in Chapter 4. The inverse depth approach is shown to provide undelayed, computationally
efficient and consistent initialisation of the extended Kalman filters associated to the map fea-
tures in each particle. Compared to the previous method, the stochastic model is extended, as
correlations between the states related to the IMU and the features are coded in the particle
cloud. However, further evaluation of the development of the correlations in a more complex
environment is required in order to investigate the ability of the system to close large loops
(cf. Section 5.2.2.2). The visual-inertial SLAM system developed here yields a smoother tra-
jectory and is more robust against quick camera motions, while the previous visual SLAM
method provides more accurate estimates of the camera pose — when considering the marker
poses as ground truth — and the 3D feature locations. High accuracy is a typical property of
computer vision techniques (cf. Section 2.3.4). Both the estimation accuracy and the amount
of correlations represented in the particle cloud, can be improved by increasing the number of
particles, however, at the expense of higher computational costs.

5.3 Conclusion

This chapter provides the foundation for simultaneous localisation and mapping in large-scale
environments. The visual SLAM system developed in Chapter 4 is enhanced to a visual-inertial
system that combines the marginalised particle filter for sensor fusion with map estimation on
a per-particle basis. The essential algorithms for pose and structure estimation are developed
and evaluated in Section 5.1 and 5.2, respectively, and a proof-of-concept is demonstrated in a
simple test setup.



6
Concluding Remarks

This thesis investigates robustness and accuracy of real-time markerless camera tracking for
mobile augmented reality in both known and unknown environments of different complexity.
The major concepts used to achieve the specified aims are: visual-inertial sensor fusion, decou-
pling of pose and structure estimation and unification of robust computer vision and recursive
filtering techniques. The conclusions from this work are given in Section 6.1 and future work
is suggested in Section 6.2.

6.1 Conclusion

First, a model-based camera tracking system that fuses visual and inertial measurements in
an extended Kalman filter is developed. The system is equipped with an affine illumination
invariant feature registration method that can exploit an accurate pose prediction to improve
computational efficiency. It uses a textured CAD model of the environment to predict the ap-
pearances of corner features in the camera images. The system is shown to work robustly in
realistic environments of different complexity, under varying light conditions, fast and erratic
camera motions and even short periods without camera measurements, e.g. due to occlusion.
Compared to vision-only tracking, it shows less jitter and the computational cost is reduced
both due to an accurate prediction of the feature appearances and locations in the images and
a reduced demand on camera measurements in general. In the process of developing this
method, different state-space models are derived and compared under controlled experimental
conditions. The models differ mostly in whether and how accelerometer data are used. The ac-
celeration model, where gyroscope and accelerometer data are incorporated as in a strapdown
inertial navigation system, demonstrates the best tracking properties. Moreover, treating the
inertial data as control inputs is shown to significantly reduce the computational burden, while
maintaining the tracking quality.
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In order to address tracking in partially known environments, a vision-only system is devel-
oped, which is capable of performing robust simultaneous camera localisation and mapping in
real-time. The system unifies the robustness and efficiency of standard computer vision tech-
niques with a simplified stochastic model and recursive estimation of the 3D feature locations,
each in a separate extended Kalman filter. Compared to an ordinary sequential structure from
motion system, the developed method is demonstrated to provide a higher accuracy in both
camera and feature localisation and significantly less drift. The experimental evaluation is
performed on simulated data and in realistic mid-scale environments. Moreover, the method
is robust against outliers and scales with the size of the map. This is mainly achieved by de-
coupling pose and structure estimation. In the considered test environments, the simplified
stochastic model provides a sufficient uncertainty measure for the 3D feature locations. How-
ever, due to the unmodelled correlations between the features and the camera pose, this system
cannot produce a globally consistent map. Moreover, it makes no use of additional sensors and
is — due to the delayed feature initialisation — not suitable for distant features.

In order to address these issues, a conceptual solution for a visual-inertial SLAM system
with increased potentiality for large-scale environments is provided, and a proof-of-concept
is demonstrated to function in a simple test setup. The idea is to combine the marginalised
particle filter for sensor fusion with FastSLAM mapping and undelayed feature initialisation.
In order to achieve this, a novel marginalised particle filter algorithm for pose estimation and
an inverse depth measurement model for recursive estimation of the 3D feature locations on a
per-particle basis are developed. Using these improvements, the previous vision-only system
is shown to be enhanced in several ways: The stochastic model is extended, as correlations
between the features and the camera pose are represented in the particle cloud. The system
is provided with the beneficial effects of visual-inertial sensor fusion. In particular, reduced
jitter and a higher robustness in the presence of erratic camera motions are demonstrated.
Finally, the inverse depth parametrisation allows for undelayed initialisation of the features
from one camera view and is more suitable for handling distant features. At the same time,
the decoupling of pose and structure estimation is maintained, thus allowing for an algorithm
that scales with the size of the map. However, the enhancements pointed out above go together
with a significantly higher computational complexity and a reduced accuracy in the camera
and feature localisation, at least with a particle number that allows for real-time operation.

6.2 Future Work

The contributions of this thesis are successive and lead towards a complex visual-inertial sys-
tem for real-time simultaneous localisation and mapping. The foundation for such a system is
provided in Chapter 5.

As pointed out in Section 5.2.3, the performance of the developed method with respect to
both estimation accuracy and the amount of correlations represented in the particle cloud, can
be improved by increasing the number of particles. In order to preserve real-time performance
with a larger particle set, computational costs can be saved, for instance, by using the graphics
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hardware and applying parallelisation [178, 179].
Moreover, the results of this thesis indicate that a special loop closing mechanism is needed

— when using a particle number that allows for real-time operation — in order to obtain a con-
sistent map estimate. In the area of real-time camera tracking, where the camera moves freely
in 3D space, loop closing for FastSLAM is an unsolved problem and, hence, an interesting and
new topic for future research. Indeed, loop detection can be solved purely based on camera
images, see e.g. [49, 182]. However, the problem of propagating this information globally
into the map, especially in case of underestimated uncertainty, is unsolved. Recent ideas to
express the SLAM problem as a problem of graph optimisation can be used to start with, see
e.g. [183–185].

Another suggestion for future research is to investigate further sensors such as global po-
sitioning system (GPS). Small GPS enhanced inertial measurement units are nowadays avail-
able and provide a portable tracking setup. Moreover, the absolute position data can be used
to extend the visual-inertial SLAM algorithm developed in this thesis to large-scale outdoor
environments. Camera tracking systems that use GPS data are described, for instance, in
[84, 120, 126, 127, 186].
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A
Notation

A.1 Abbreviations and Acronyms

Abbreviation Meaning
AHRS attitude and heading reference system
CAD computer aided design
CamIMU integrated camera IMU device
CCD charge-coupled device
CMOS complementary metal oxide semiconductor
DLT Direct Linear Transform
DOF degrees of freedom
DSP digital signal processor
EKF extended Kalman filter
FAST Features from Accelerated Segment Test
FIS Federated Information Sharing
GPS global positioning system
IMU inertial measurement unit
KF Kalman filter
KLT Kanade-Lucas tracker
LM Levenberg-Marquardt
LS least squares
MEMS microelectromechanical systems
MPF marginalised particle filter
OpenGL open graphics library
pdf probability density function
PF particle filter
POSIT pose from orthography and scaling with iterations
RANSAC random sampling consensus
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Abbreviation Meaning
SFM structure from motion
SIFT scale invariant feature transform
SIR sampling importance resampling
SIS sequential importance sampling
SLAM simultaneous localisation and mapping
SSD sum of squared differences
SVD singular value decomposition
VRML virtual reality modeling language
WLS weighted least squares

A.2 Symbols and Mathematical Notation

Notation Meaning
Camera Parameters
κ1, . . . , κ5 radial and tangential distortion coefficients
dx, dy width and height of a sensor pixel in metric units
f focal length in metric units
fx, fy focal length in x- and y-direction in pixels per metric unit
hx, hy coordinates of the principal point in pixels
K intrinsic parameter matrix
P perspective projection matrix
sα skew coefficient in pixels per metric unit

Coordinate Systems and Transformations
c camera coordinate system
d distorted image coordinate system
g global (earth-fixed) coordinate system
i image coordinate system
n normalised image coordinate system (f = 1)
p pixel coordinate system
s sensor (IMU) coordinate system
w world coordinate system
D mapping from n to d
K mapping from d to p
Pn mapping from c to n
P mapping from w to p
T mapping from w to c
Rab rotation matrix (rotates points or vectors from coordinate sys-

tem b to a)



A.2 Symbols and Mathematical Notation 147

Notation Meaning
rab three-dimensional axis angle representation of Rab

qab four-dimensional quaternion representation of Rab

qL left-hand side quaternion multiplication matrix
qR right-hand side quaternion multiplication matrix
q̄ quaternion conjugate
� quaternion multiplication
rot(·) conversion to a rotation matrix
s camera pose parameter vector
sq seven-dimensional camera pose parameter vector [qcw; cw]

sr six-dimensional camera pose parameter vector [rcw; wc]

Filtering
δ(·) Dirac delta function
x state or parameter vector
xl linear partition of x

xn nonlinear partition of x

x[i] ith sample of x

x̂t|t−T one step prediction estimate of xt given Yt−T and Ut

x̂t|t posterior estimate of xt given Yt and Ut

Xt history of states up to time t
ya,t measurement at time t expressed in coordinate system a

Yt history of measurements up to time t
ut known control input at time t
Ut history of known control inputs up to time t
ea,t measurement noise expressed in coordinate system a

va,t process noise expressed in coordinate system a

zt innovation or residual at time t
z̄t normalised innovation or residual at time t
St innovation covariance at time t
cov(x) covariance of x

var(x) variance of scalar x
N (x̂, P ) multivariate normal distribution with mean x̂ and covariance

P

N (x; x̂, P ) multivariate Gaussian pdf evaluated in x

Neff effective particle size
Peff effective percentage of particles
Pr(A) probability of statement A

Miscellaneous
a scalar or coordinate system
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Notation Meaning
a vector or origin of coordinate system a

ab a expressed in coordinate system b

ȧb,t linear velocity of a at time t expressed in coordinate system b

äb,t linear body acceleration of a at time t expressed in coordinate
system b

(v)i ith element of vector v

0n n-dimensional zero vector
A matrix
An multiplication of n matrices A
In n× n identity matrix
(·)T transpose
(·)−1 inverse
(·)−T transposed inverse
(f ◦ g)(·) = f

(
g(·)
)

composition of functions f and g
la epipolar line expressed in coordinates system a

ωab
a,t angular velocity at time t from coordinate system b to a ex-

pressed in a (ab is suppressed, if the notation is unambiguous)
ma point m expressed in coordinate system a

m(j)
w j th world point

m(ij)
p observation of the j th world point in the ith image in pixels

(m(i)
n ,m

(i)
w ) ith 2D/3D correspondence

g gravity vector
ḡ = g/‖g‖ direction of gravity



B
Transformations and Kinematics

B.1 Representation of Rotation

A 3D rotation has three degrees of freedom. However, there are many ways to represent
such a rotation using a varying number of parameters, each with its individual advantages
and disadvantages [39, 187, 188]. The most commonly used representations are orthogonal
matrices, axis angle, unit quaternions and Euler angles. The three representations used in this
thesis are introduced in the sequel.

Rotation Matrix

The 3×3 rotation matrix R gives a simple way of representing a 3D rotation. However, it has
nine parameters leading to the high dimensional space of the orthogonal constraint. It has the
following properties:

RRT = RTR = I3 ⇒ R−1 = RT (B.1)
det(R) = 1 (B.2)

The rotation matrix R can be directly used to rotate a vector or a point from one coordinate
system to another. Let mb be a point expressed in coordinate system b. Then ma is:

ma = Rabmb. (B.3a)

Analogously:

mb = Rbama, (B.3b)

with Rba = RT
ab.
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Axis Angle

Under the axis angle representation, a 3D rotation is defined as a three-dimensional vector
r = [a, b, c]T , where the direction is that of the rotation axis and the norm equals the rotation
angle θ = ‖r‖. The conversion to a rotation matrix R is given by the Rodrigues’ formula:

R = rot(r) = I3 +k(θ) S(r) + g(θ) S(r)2, (B.4)

where I3 denotes the 3×3 identity matrix, k(θ) = sin(θ)
θ

and g(θ) = 1−cos(θ)
θ

. S(v) denotes the
skew-symmetric matrix defined by the three-dimensional vector v:

S(v) =

 0 −vz vy
vz 0 −vx
−vy vx 0

 . (B.5)

The axis angle form constitutes a minimal rotation parametrisation and is hence suited for
nonlinear optimisation. This representation has also been used in the extended Kalman filter
framework, see for instance [6] and [39], respectively. However, a singularity is given by θ = 0
requiring special treatment.

Unit Quaternion

A quaternion q = [qw, qx, qy, qz]
T is defined as a four-dimensional vector. A three-dimensional

vector v is identified with the quaternion [0,vT ]. In order to simplify the notation, let qv =
[qx, qy, qz]

T . The multiplication � of two quaternions q and p is:

q� p =

[
qwpw − qv · pv

qwpv + pwqv + qv × pv

]
, (B.6a)

where qv · pv denotes the scalar (inner) product and qv × pv denotes the cross (outer) product
of two three-dimensional vectors. The multiplication can also be written as a matrix multipli-
cation:

q� p =


qw −qx −qy −qz
qx qw −qz qy
qy qz qw −qx
qz −qy qx qw


︸ ︷︷ ︸

qL


pw
px
py
pz

 (B.6b)

=


pw −px −py −pz
px pw −pz py
py pz pw −px
pz −py px pw


︸ ︷︷ ︸

pR


qw
qx
qy
qz

 (B.6c)
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The multiplication is associative but not commutative. The quaternion conjugate q̄ is defined
as:

q̄ =

[
qw
−qv

]
. (B.7)

The inverse quaternion q−1 is defined as:

q−1 =
q̄

‖q‖2
, (B.8)

implying that q−1 = q̄, if q is a unit quaternion, that is ‖q‖ = 1.
A 3D rotation is represented by a unit quaternion q. The conversion to a rotation matrix R

is given by:

R = rot(q) =

q2
w + q2

x − q2
y − q2

z 2(qxqy − qzqw) 2(qzqx + qwqy)

2(qxqy + qwqz) q2
w − q2

x + q2
y − q2

z 2(qyqz − qwqx)
2(qzqx − qwqy) 2(qyqz + qwqx) q2

w − q2
x − q2

y + q2
z

 (B.9)

The relation to the axis angle representation r is:

qw = cos

(
θ

2

)
and qv = sin

(
θ

2

)
v, (B.10)

with θ = ‖r‖ and v = r/‖r‖.
The unit quaternion constitutes a singularity-free representation of a 3D rotation. It is most

commonly used in robotics and computer vision [105, 121]. However, this representation is
not minimal, resulting in the constraint of unit magnitude.

B.2 Rotation Derivative

Using one of the vector parametrisations given in Section B.1 in an extended Kalman filter
framework requires the computation of the first derivative (Jacobian) of the rotation matrix
with respect to this parametrisation. In this thesis, the Jacobians of Rm — the rotation of a
point — with respect to r and q are of special interest and are therefore given below.

The Jacobian of Rm with respect to r is given by the 3×3 matrix:

∂Rm

∂r
=

cos(θ)− k(θ)

θ2
(r×m)rT +

sin(θ)− 2θg(θ)

θ3
(r× (r×m))rT

− k(θ) S(m) + g(θ)
(
− S(r×m) + (r ·m) I3−mrT

)
, (B.11)

where θ, k(θ), g(θ), S(·) and I3 are defined as in B.1.
The Jacobian of Rm with respect to q is given by the 3×4 matrix:

∂Rm

∂q
=

 d0 d1 d2 d3

−d3 −d2 d1 d0

d2 −d3 −d0 d1

 (B.12)
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with

d0 = 2(qwmx − qzmy + qymz)

d1 = 2(qxmx + qymy + qzmz)

d2 = 2(−qymx + qxmy + qwmz)

d3 = 2(−qzmx − qwmy + qxmz).

B.3 Angular Velocities and Unit Quaternions

The instantaneous angular velocity from coordinate frame b to coordinate frame a expressed
in coordinate frame a is defined as a three-dimensional vector ωab

a . It can be transformed
according to:

ωab
a = −ωba

a (B.13a)

ωab
a = qab � ωab

b � qba. (B.13b)

Note that ω is identified with the quaternion [0,ωT ]T as introduced in Section B.1.
The continuous-time differential equation describing the dynamic model of a unit quater-

nion is:
q̇ab,t =

1

2
ωab
a,t � qab,t. (B.14)

Integrating (B.14) with respect to time — assuming that ωab
a,t is piece-wise constant between

the sampling instants kT — results in the discrete-time dynamic model:

qab,t+T = exp

(
T

2
ωab
a,t

)
� qab,t, (B.15)

where
exp(v)T =

[
cos(‖v‖) vT

‖v‖ sin(‖v‖)
]

is the quaternion exponential. A detailed derivation of these relations is given for instance
in [13, 188]. Equation (B.15) can be used to integrate angular velocity samples, e.g. those
obtained from a 3D gyroscope, to an absolute orientation. Defining v = T

2
ωab
a , the Jacobian

of (B.15) with respect to ωab
a is given by the 4×3 matrix:

∂ exp(v)� qab
∂ωab

a

=
T

2
qRab

[
− vT

‖v‖ sin(‖v‖)
1
‖v‖

[
I3− vvT

‖v‖2

]
sin(‖v‖) + vvT

‖v‖2 cos(‖v‖)

]
, (B.16)

and the Jacobian of (B.15) with respect to qab is given by the 4×4 matrix exp(v)L. Note that
a small angle approximation of (B.15) results in the much simpler linear equation:

qab,t+T ≈
(

I4−
T

2
Sω(ωab

a )

)
qab,t (B.17a)

= qab,t −
T

2
Sq(qab,t)ω

ab
a , (B.17b)



B.3 Angular Velocities and Unit Quaternions 153

where

Sω(ω) =


0 −ωx −ωy −ωz
ωx 0 −ωz ωy
ωy ωz 0 −ωx
ωz −ωy ωx 0


and

Sq(q) =


−qx −qy −qz
qw qz −qy
−qz qw qx
qy −qx qw

 .
The approximation (B.17), however, does not keep qab,t+T at unit length.

From (B.13b) and (B.14) it can be shown that the angular velocity is identical in each point
of a rigid body. Let qac,t = qab � qbc,t, where coordinate frame a and b are rigidly connected.
It is shown that ωac

a,t = ωbc
a,t holds:

ωac
a,t = 2(q̇ac,t � qca,t) = 2

(
∂qab � qbc,t

∂t
� qcb,t � qba

)
= 2

(
∂qLabqbc,t

∂t
� qcb,t � qba

)
= 2
(
(q̇Labqbc,t + qLabq̇bc,t)� qcb,t � qba

)
= 2
(
(qab � q̇bc,t)� qcb,t � qba

)
= qab �

(
2(q̇bc,t � qcb,t

)
� qba = qab � ωbc

b,t � qba = ωbc
a,t. (B.18)

Note that q̇t = ∂qt
∂t

and q̇ = 0, if q is static.
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