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Abstract

The paper describes PECAS, an architecture for
intelligent systems, and its application in the Ex-
plorer, an interactive mobile robot. PECAS is a
new architectural combination of information fu-
sion and continual planning. PECAS plans, inte-
grates and monitors the asynchronous flow of infor-
mation between multiple concurrent systems. In-
formation fusion provides a suitable intermediary
to robustly couple the various reactive and delib-
erative forms of processing used concurrently in
the Explorer. The Explorer instantiates PECAS
around a hybrid spatial model combining SLAM,
visual search, and conceptual inference. This paper
describes the elements of this model, and demon-
strates on an implemented scenario how PECAS
provides means for flexible control.

1 Introduction

Recently there has been an enormous increase in R&D for
domestic robot assistants. Moving beyond the Roomba, more
complex robot “gophers” are envisioned, to assist in per-
forming more demanding tasks in human environments. To
achieve this vision, the study of integrated robotic systems
that fulfill many different requirements is necessary.

Research on individual aspects of such systems has yielded
impressive robots, e.g. the museum guides Rhino [Burgard et
al., 2000] and Robox [Siegwart and et al., 2003], or the in-
store assistant ShopBot [Gross et al., 2008]. Other robots,
like RoboVie [Ishiguro et al., 20011, Mel [Sidner et al.,
2004], BIRON [Peltason e al., 2009], or our CoSy systems
[Hawes et al., 2007; Kruijff er al., 2007] provide capabilities
for the robot to interact with a human using spoken dialogue.
As impressive as they are, all these systems lack the wide
range of capabilities needed by a versatile robotic assistant.
Producing such a system by integrating the results of spe-
cialized subfields such as control, perception, reasoning, and
dialogue remains a major challenge to Al and robotics.

If we wish to build a mobile robotic system that is able
to act in a real environment and interact with human users
we must overcome several challenges. From a system per-
spective, one of the major challenges lies in producing a sin-
gle intelligent system from a combination of heterogeneous

specialized modules, e.g. vision, natural language process-
ing, hardware control etc. Ideally this must be done in a
general-purpose, extensible and flexible way, with the ab-
solute minimum of hardwired behaviors. This both allows
solutions to be reused in different systems (allowing an un-
derstanding of the design trade-offs to be obtained), and for
the same system to be altered over time as requirements
change. Additionally, taking account of the “human in the
loop” poses the challenge of relating robot-centric represen-
tations to human-centric conceptualizations, such as the un-
derstanding of large-scale space [Kuipers, 1977].

In this paper we present PECAS (see Section 2), our novel
approach to integrating multiple competences into a single
robotic system. PECAS allows us to address many of the pre-
viously described problems in an architectural way, providing
an approach that is ultimately resuable in other robots and
domains. For a general-purpose architecture to be deployed
it must be instantiated with task-specific content. Section 3
presents the Explorer system, our instantiation of PECAS in
an interactive mobile robot. Following this we use the Ex-
plorer instantiation to present examples of PECAS as a con-
trol system (in a general sense). Section 4 presents a complete
system run from our implementation, demonstrating how the
flow of information and control passes between low and high
levels in our system. Section 5 discusses control in PECAS in
general, and the strengths and weaknesses of our approach.

2 The PECAS Architecture

Our recent work on intelligent robotics has led to the de-
velopment of the PlayMate/Explorer CoSy Architecture Sub-
Schema (PECAS). PECAS is an information-processing ar-
chitecture suitable for situated intelligent behavior [Hawes
et al., 2009]. The architecture is designed to meet the re-
quirements of scenarios featuring situated dialogue coupled
with table-top manipulation (the PlayMate focus [Hawes et
al., 2007]) or mobility in large-scale space (the Explorer fo-
cus [Zender et al., 2008]). It is based on the CoSy Architec-
ture Schema (CAS), which structures systems into subarchi-
tectures (SAs) which cluster processing components around
shared working memories [Hawes et al., 2007]. In PECAS,
SAs group components by function (e.g., vision, communi-
cation, or navigation). All these SAs are active in parallel,
typically combining reactive and deliberative forms of pro-
cessing, and all operating on SA-specific representations (as



is necessary for robust and efficient task-specific processing).
These disparate representations are unified, or bound, by a
subarchitecture for binding (binding SA), which performs ab-
straction and cross-modal information fusion on the informa-
tion from the other SAs [Jacobsson et al., 2008]. PECAS
makes it possible to use the multiple capabilities provided
by a system’s SAs to perform many different user-specified
tasks. In order to give the robots a generic and extensible way
to deal with such tasks, we treat the computation and coordi-
nation of overall (intentional) system behavior as a planning
problem. The use of planning gives the robot a high degree of
autonomy: complex goal-driven behaviors need not be hard-
coded, but can be flexibly planned and executed by the robot
at run-time. The robot can autonomously adapt its plans to
changing situations using continual planning and is therefore
well suited to dynamic environments. Relying on automated
planning means that tasks for the robot need to be posed as
goals for a planner, and behavior to achieve these goals must
be encoded as actions that the planner can process. The fol-
lowing sections expand upon these ideas.

2.1 Cross-Modal Binding

Cross-modal binding is an essential process in information-
processing architectures which allow multiple task-
specialized (i.e., modal) representations to exist in parallel.
Although many behaviors can be supported within individual
modalities, two cases require representations to be shared
across the system via binding. First, the system requires
a single, unified view of its knowledge in order to plan a
behavior that involves more than one modality (e.g., fol-
lowing a command to do something relative to the object
or area). Second, binding is required when a subsystem
needs information from another one to help it solve a
problem (e.g., using visual scene information to guide speech
recognition [Lison and Kruijff, 2008]).

Our approach to binding underlies much of the design and
implementation of our systems, and so we will reiterate it here
(for more details see [Jacobsson et al., 2008]). Each PECAS
SA that wishes to contribute information to the shared knowl-
edge of the system must implement a binding monitor. This
is a specialized processing component which is able to trans-
late from an arbitrary modal representation (e.g., one used for
spatial modeling or language processing) into a fixed amodal
(i.e., behavior neutral) representation. Across a PECAS sys-
tem the binding monitors provide a parallel abstraction pro-
cess mapping from multiple, different representations to a
single, predicate logic-like representation. Binding monitors
deliver their abstracted representations into the binding SA as
binding proxies and features. Features describe the actual ab-
stract content (e.g., color, category, or location) in our amodal
language, whilst proxies group multiple features into a single
description for a piece of content (such as an object, room, or
person), or for relationships between two or more pieces of
content. The binding SA collects proxies and then attempts
to fuse them into binding unions, structures which group mul-
tiples proxies into a single, cross-system representation of the
same thing. Groupings are determined by feature matching.
Figure 1 illustrates this: the SA for navigation (nav SA) and
the SA for conceptual mapping and reasoning (coma SA),
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Figure 1: Binding localization and conceptual information:
“the robot is in the library.” Proxies have dashed borders,
unions solid borders. Relation proxies, -unions are colored.

provide their information to the binding SA. Throughout this
process links are maintained between all levels of this hierar-
chy: from modal content, to features and proxies, and then on
to unions. These links act like pointers in a programming lan-
guage, facilitating access to information content regardless of
location. Binding thus supports the two identified cases for
cross-modal binding: the collection of unions provide a sin-
gle unified view of system knowledge, and cross-subsystem
information exchange is facilitated by linking similarly refer-
ring proxies into single union.

2.2 Planning for Action and Processing

For PECAS we assume that we can treat the computation and
coordination of overall system behavior as a planning prob-
lem. This places the following requirements on PECAS: it
must be able to generate a state description to plan with;
system-global tasks for the robot need to be posed as goals
for a planner; and behavior to achieve these goals must be
encoded as actions which can be processed by the planner.
In our implementation we use the MAPSIM continual plan-
ner and its Multi-Agent Planning Language (MAPL) [Bren-
ner and Nebel, 2009]. In MAPL, we can model beliefs and
mutual beliefs of agents as well as operators affecting these,
i.e., perceptual and communicative actions. The continual
planner actively switches between planning, execution, and
monitoring in order to gather missing goal-relevant informa-
tion as early as possible.

To provide a planning state, the planning SA automatically
translates from the unions in the binding SA into MAPL. The
planner thus automatically receives a unified view of the sys-
tem’s current knowledge. As we maintain links from unions
back to modal content, our planning state, and therefore our
plans, remain grounded in representations close to sensors
and effectors. In PECAS, planning goals arise as modal inten-
tional content which is then abstracted via binding monitors
and placed in the planning SA’s working memory. From here
we use the same translation method as is used on the planning
state to produce MAPL goals for the planner.

While the traditional use of planning is achieving goals in
the world using physical actions, such direct interpretations
of behavior are the exception rather than the rule in cog-
nitive robotics (cf. [Shanahan, 2002]). Here, where infor-



mation is incomplete, uncertain, and distributed throughout
subsystems, much of the actions to be performed by the sys-
tem are to do with processing or moving information. Whilst
some information processing may be performed continually
(e.g., SLAM), much of it is too costly to be performed rou-
tinely and should instead be performed only when relevant to
the task at hand, i.e., it should be planned based on context.

Underlying our approach to information-processing is the
functionally decomposed, concurrently active, structure of
PECAS. As each SA is effectively a self-contained process-
ing unit, our design leads naturally to an integration strategy:
each SA is treated as a separate agent in a multi-agent plan-
ning problem. A crucial feature of this strategy is that each
SA’s knowledge is separate within the planning state, and can
only be reasoned about using epistemic operators (i.e., oper-
ators concerned with knowledge). Likewise, goals are often
epistemic in nature, e.g., when a human or a SA wants to
query the navigation SA for the location of an object.

To realize internal and external information exchange each
SA can use two epistemic actions, tell-value and ask-value,
coupled with two facts about SAs, produce and consume. The
actions provide and request information respectively. The
facts describe which SAs can produce and consume which
predicates (i.e., where certain types of information can come
from and should go). For example, if a human teacher
tells our robot that “this is the kitchen,” this gives rise to
the motivation that all SAs which consume room knowledge
(e.g., coma SA described in the next section) should know
the type of the room in question. This may lead to a plan in
which the SA for situated dialogue (comsys SA) uses a tell-
value action to give the coma SA this information.

Using this design, planning of information-processing be-
comes a matter of planning for epistemic goals in a multi-
agent system. This gives the robot more autonomy in decid-
ing on the task-specific information flow through its subsys-
tems. But there is another assumption underlying this design:
whilst the binding SA is used to share information through-
out the architecture, not all information in the system can or
should be shared this way. Some of it is unavailable because
it is modality specific, and even cross-modal knowledge is of-
ten irrelevant to the task at hand. If all information was shared
this would overwhelm the system with (currently) irrelevant
information (e.g., lists of all the people, rooms, objects, object
categories etc. that parts of the system know about). Thus, in
order to restrict the knowledge the planner gives “attention”
to without losing important information, it needs to be able to
extend its planning state on-the-fly, i.e., during the continual
planning process. In PECAS state extension can be done us-
ing ask-value and tell-value actions, and results in a process
we call task-driven state generation.

3 The Explorer Instantiation

The binding and planning SAs described above are system
and scenario independent. We now discuss the Explorer-
specific SAs to describe concrete functionality and how this
relates to system control. All SAs have been implemented
in CAST (an open-source toolkit implementing the CAS
schema) and tested on an ActivMedia PeopleBot. Figure 2
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Figure 2: The Explofer Architecture

shows all SAs used in the Explorer PECAS instantiation.
Most components used in the different SAs have been dis-
cussed in detail in earlier work (references provided below).

For a mobile robotic system that is supposed to act and
interact in large-scale space, an appropriate spatial model is
key. The Explorer maintains a multi-layered conceptual spa-
tial map of its environment [Zender et al., 2008]. It serves
as a long-term spatial memory of large-scale space. Its in-
dividual layers represent large-scale space at different levels
of abstraction, including low-level metric maps for robot mo-
tion control, a navigation graph and a topological abstraction
used for high-level path planning, and a conceptual represen-
tation suitable for symbolic reasoning and situated dialogue
with a human. In the Explorer, different SAs represent the
individual map layers. For the details on human-augmented
map acquisition see [Kruijff et al., 2007].
nav SA The SA for navigation and spatial mapping hosts
the three lowest levels of the spatial model (metric map, nav-
igation map, and topological layer). For low-level, metric
mapping and localization the nav SA contains a module for
laser-based SLAM. The nodes and edges of the navigation
map represent the connectivity of visited places, anchored in
the metric map through x-y-coordinates. Topological areas,
corresponding roughly to rooms in human terms, are sets of
navigation nodes. This level of abstraction in turn feeds into
the conceptual map layer that is part of the coma SA.

The nav SA contains a module for laser-based people de-
tection and tracking [Zender e al., 2007]. The nav SA bind-
ing monitor maintains the robot’s current spatial position and
all detected people, as proxies and relations on the binding
SA. The smallest spatial units thus represented are areas. This
provides the planner with a sufficiently stable and continuous
description of the robot’s state. The planning SA can pose
move commands to the nav SA. The target location is de-
fined based on the current task which might be to follow a
person, move to a specific point in space, etc. Move com-
mands are executed by a navigation control module, which



performs path planning on the level of the navigation graph,
but automatically handles low-level obstacle avoidance and
local motion control.

obj SA The SA for vision-based object search contains the
components for finding objects using vision. It consists of
a module for view planning and one for visual search. The
view planning component creates a plan for which navigation
nodes to visit, in what order and in what directions to look.
Details of the process can be found in [Gélvez Lépez et al.,
2008]. The visual search consists of SIFT feature matching
directly on acquired images. Objects that are found are pub-
lished on the obj SA working memory. The nav SA detects
this and in turn extends the spatial model with the new ob-
jects. This then propagates the information to the coma SA
and, if and when necessary, to the binding SA.

coma SA The SA for conceptual mapping and reasoning
maintains an abstract symbolic representation of space suit-
able for situated action and interaction. It represents spatial
areas (nav SA), objects in the environment (obj SA), and ab-
stract properties of persons (e.g., ownership relations) in a
combined A-Box and T-Box reasoning framework based on
an OWL-DL reasoner, which can infer more specific concepts
for the area instances [Zender et al., 2008]. The coma SA
makes its information available to the binding SA on demand,
i.e., whenever planning SA sends an ask-val command to the
coma SA, it will add its knowledge about spatial entities, es-
pecially their most specific concepts. In our system the ex-
plicit definitions of area concepts through occurrences of cer-
tain objects are also used to raise expectations about typical
occurrences of certain objects. If the planning SA needs to
know the location of an object that has not been encountered
before, it can query the coma SA, which will then provide a
typical location of the object in question. This is done via
special T-Box queries involving the OWL-DL definitions of
concepts. An example of this will be discussed in Section 4.
comsys SA The subarchitecture for situated dialogue pro-
cessing has a number of components concerned with under-
standing and generation of natural language utterances [Krui-
jff et al., 2009]. Speech recognition converts audio to possi-
ble text strings, which are subsequently parsed. Parsing pro-
duces a packed representation of logical forms (LFs) that cor-
respond to possible semantic interpretations of an utterance.
Finally, the semantics are interpreted against a model of the
dialogue context. Content is connected to discourse referents,
being objects and events talked about over the course of an in-
teraction. In the dialogue context model, both the content of
the utterance and its intent are modeled. All of this infor-
mation is communicated to the planning SA and the binding
SA through proxies representing the indexical and intentional
content of the utterances. In rough terms the indexical content
(information about entities in the world) is used by the bind-
ing SA to link with information from other modalities. Mean-
while the intentional content (information about the purpose
of the utterance) is used by the planning SA to raise goals for
activity elsewhere in the system [Kruijff er al., 2009].

4 Example: Finding a book

This section presents a scenario in which a human asks the
Explorer to perform a task. It shows how PECAS controls
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Figure 3: Initial situation: the user approaches the robot

system behavior and information-processing. The example is
taken directly from our implemented system, showing system
visualizations (with minor post-processing).

The system starts in the spatial context and binding state
visualized in Figure 3: the robot and person are occupying
the same area, and the person is close to the robot. The robot
proxy is provided by the nav SA which it abstracts from its
representation of the robot pose. The person proxy is pro-
vided by the nav SA because a person is being tracked. In
addition to these, the nav SA makes available a proxy for the
area in which one of these proxies occurs, linking them with a
position relation proxy. Finally, the close relation proxy con-
nects the robot proxy to the proxy of the person because the
person is geometrically close to the robot. Note that no ob-
jects are present, nor are other areas except the current area.

Next, the human approaches the robot and says “find me
the Borland book”. The comsys SA interprets this utterance,
presenting the elements of its interpretation to the rest of the
system as proxies. Figure 4a shows the results. The Explorer
itself (the recipient of the order) is represented by a proxy
with Concept addressee, which binds to the robot proxy
already present. The word “me” refers to the speaker, and
generates a “person” proxy identified by the Name feature
I. The expression referring to the book is given by a “Bor-
land_book” proxy, not yet bound to any other proxies.

The comsys SA can determine the intention of this utter-
ance, and separates the intentional elements of the interpreta-
tion from the aforementioned descriptive proxies. This inten-
tional content is written to planning SA as a proxy structure
with links back to the binder. The structure of this motive
can be seen in Figure 4b. Planning SA, detecting a new mo-
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(c) Planning state after processing the intentional content

Figure 4: State after the user has uttered the command “Find me the Borland Book.”

tive, begins the process of creating a plan to fulfill it. First,
it converts the information on the binder (Figure 4a) to the
MAPL representation in Figure 4c. In this process unions
become objects and predicates in the planning state. E.g.,
as the person union is related by a position relation union
to an area union, this will be expressed to the planner as
(perceived-pos gensymé area_0), where gensym4
is an auto-generated planning symbol referring to the person,
and area_0 refers to the area. The planner similarly converts
the motive from Figure 4b into a MAPL goal (K gensym4
(perceived-pos gensymé6) ). This can be read as the Ex-
plorer having the goal of the the person knowing the position
of the book. We use this interpretation of the command “Find
me...”, as the robot does not have the ability to grasp objects.
Given this state and goal, the planner creates a plan:

Ll: (negotiate_plan gensymO coma_sa)
L2: (tell_val_asserted-pos

coma_sa gensym0 gensymé6)
L3: (find_a gensym0 gensym6 gensymO)
L4: (tell_val_perceived-pos

gensym0 gensymé4 gensymé6)

This plan states that the Explorer must find the location of the
book (L3), then report this location to the person (L4). Be-
fore it does this it must negotiate with the coma SA (as each
subarchitecture is treated as a separate agent) to provide a lo-
cation where it might be able to find the book (L1,1.2). The
reasoning behind this plan is that Explorer must provide the
person with a perceived location for the book (as is specified
in the goal), and, having not seen it recently, the only way to
obtain a perceived location is via its object search functional-
ity. To perform an object search the system must have both
an object to search for (the book in this case) and an area
to search. Typical positions of objects (as opposed to their
perceived positions) are stored in the ontology in coma SA.
Rather than make all of this knowledge available via binding
by default (a choice which would add many extra and redun-
dant facts to the planning state), typical positions are offered
by coma SA using a produce fact (see Section 2.2). This al-
lows the planner to query coma SA for typical positions when
it requires them. One advantage of this on-demand state gen-
eration is that the comsys SA could also be used to provide
the same knowledge (and would be if the book was not found
initially). In the above plan, the planner makes use of this by
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Figure 5: Hypothetical position of the Borland book.

getting the coma SA to tell-val the typical position of the
Borland book to the binding SA. This yields the information
that, as it is a book, it would typically be found in a library.
Along with this, the coma SA also volunteers the specific in-
formation it has on libraries: an area exists in its map that is
a library. This is illustrated in Figure 5.

Given this hypothesis for the book’s location, MAPSIM
uses a replanning step to expand the initial plan to include
steps to move the robot to the library, search there for the
book, then move back and report to the user. The updated
plan and planning state are now as follows:

Objects:

(area_id_0 - area-id) (area_id_1 - area-id)
(gensym0O — robot) (gensyml — area-—name)
(gensym4 - person) (gensym6 - borland_book)
(gensym6 — movable) (gensym7 — area-—name)
Facts:

area_id_0)
area_id_1)

(area—-id gensyml
(area—-id gensymb6

(area—-name area_id_0 gensyml)
(area—name area_id_1 gensym7)
(asserted-pos gensymb6 gensym7)
(perceived-pos gensym0 area_id_0)
(remembered-pos gensym4é gensyml)
Plan:

Ll: (move gensymO area_id_1 area_id_0)

L2: (object-search-in-room

gensym0 gensym6 area_id_1)
L3: (approach-person

gensym0 gensym4 area_id_0)
L4: (tell_val_perceived-pos gensymO

gensym4 gensymé6)
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Figure 6: Perceived location of the book

In the above, gensym?7 is the binding union of the library.
Using the ArealD feature from the this union, the planner is-
sues a command to the nav SA which moves the robot to the
library (fulfilling step L.1). As with all other steps in the plan
(including the information-processing ones), the results of
this action are checked by MAPSIM to determine whether it
has completed successfully or whether replanning is required.
This check is performed by inspecting the planning state and
comparing it to the expected state. This means that all ac-
tions must have effects that are visible on the binding SA (for
subsequent translation). Once the check has passed for L1
(confirming the robot has arrived in the library), the planner
issues an object search command to the object SA. The Ex-
plorer searches the room as described previously. Once the
object is found, the nav SA adds it to the navigation graph.
Since it is part of the current spatial context, it is also ex-
ported to the binder in the form of an object proxy, which is
connected to the room’s proxy by a new position proxy. This
position proxy has a PERCEIVED temporal frame.

The new proxies generated by object search bind to the ex-
isting complex (pictured in Figure 5), resulting in the struc-
ture in Figure 6. This binding provides the original comsys
SA book proxy with a perceived position (in addition to its
typical one). With this knowledge in the planning state (i.e.,
the effect of L2 is verified, which satisfies one precondition
of 1.4), the planner is able to trigger the remaining steps in
the plan: moving to the user and reporting the perceived posi-
tion. A move command is send to the nav SA referencing the
Location feature from the person proxy. Once close to this
location, a tell-val is sent to the comsys SA to communi-
cate the book’s location to the person. A content generation
component in the comsys SA uses the contents of the binder
(see Figure 6) to generate the utterance “the Borland book
is in the library”, thus completing the plan and satisfying the
original goal (that the person knows the position of the book).

5 Discussion

The preceding sections illustrate how our architectural ideas
come together to create a control system for intelligent be-
havior. Although the surface form of the scenario does not
present much in the way of novel interactions, the PECAS
architecture and the multi-level spatial representation provide
a novel system-level approach with a number of important
features. Including the binding SA in the architecture allows

multiple modalities to collaborate on problems that a single
modality in isolation would not be able to solve. E.g., in the
Explorer the comsys SA initially provides a description of an
object based on natural language input, conceptual mapping
then extends this description, and vision finally completes it.
Whilst other systems may include elements of cross-modal
fusion, we have taken the additional, novel step of using the
results of fusion to provide input to a continual planner. This
allows the behavior of multiple modalities to be marshalled
in pursuit of system goals in a general, extensible manner.
Using continual planning PECAS achieves this in a way that
is responsive to external change and certain types of failure.
In PECAS all this is true both of actions that have physical
effects, and of internal, information-processing actions.

Both the theory and implementation of the Explorer sys-
tem and PECAS are works in progress, so we can identify
many areas that need further study, or currently limit our ap-
proach. E.g., while the the use of MAPSIM provides many of
the strengths of our work, planning occurs at quite a high level
of abstraction. This consequently also applies to interactions
between subarchitectures, and between the Explorer and the
world. Whilst this has some advantages (e.g., subsystems are
free to interpret commands in modality specific ways, some-
thing discussed in more detail below), it may be a hindrance
to more closely coupled interactions between behaviors, such
as positioning the robot to see an object that it is trying to pick
up. Also, actions used in the PECAS architecture must have
effects that are visible at the level of binding proxies, which
may not hold for actions that have effects in a single SA. Our
system also relies on many translations between formalisms.
Whilst our structured support for this (via binding) is a clear
strength, in practice the translations can become somewhat
arbitrary and hard to maintain.

5.1 Approaches to Control

The HYCAS workshop aims to investigate issues of hybrid
control in autonomous systems, so what lessons can we learn
from the work presented here? In all PECAS systems we
have a number of control patterns working in parallel. At the
lowest level we can reasonably discuss in terms of architec-
ture, components typically run in one of two modes. Either
they perform continuous processing which provides a stream
of data to working memory, or they wait for a particular event
which triggers some processing (which may or may not result
in a change to working memory). In this case events may ei-
ther be external to the system (e.g., a sensor, such as a micro-
phone, being triggered), or internal (where an event describes
a change to working memory contents). Within a SA these
types of processing behaviors happen concurrently (with SAs
also working in parallel to each other). Control of SA-level
processing is typically constrained at design-time, when com-
ponents are set to listen to particular types of events. At
run-time these events, and mediated access to the informa-
tion they describe, provide implicit synchronization during
processing. Thus PECAS does not provide explicit control
strategies within SAs (although a few common control strate-
gies tend to be reused).

As described in the preceding sections, the path to high-
level control in PECAS comes via SAs exposing modal con-



tent to the rest of the system via the binding system. The pro-
cess by which this occurs plays a major role in system con-
trol. Binding monitors provide abstracted representations of
SA-local content. They typically do this based on three dif-
ferent triggers: SA-internal events, SA-external events, and
on-demand. The first of these is the most basic case: the
generation of a new local representation triggers the SA’s
binding monitor to generate a proxy. This happens in the
Explorer for discourse referents in the comsys SA. The sec-
ond case, SA-external events, typically provides a way for
the existing binding state to influence the generation of fur-
ther proxies (one of the limited, distributed, forms of atten-
tion in PECAS): the monitor listens for both SA-internal and
-external events, then, when some particular events co-occur,
it generates a proxy from some local content. This happens in
the Explorer when the conceptual mapping SA provides prox-
ies in response to proxies generated by other SAs (e.g., when
the comsys SA generates a proxy for an object, the coma SA
provides additional proxies to bind with it). The final case,
on-demand monitor operation, occurs when a binding moni-
tor is explicitly asked (rather than implicitly triggered) to pro-
vide information about a particular entity already represented
in the binding SA. This approach is used by the system to
deliberatively add information to the binding system. This is
typically done during the planning process (as an element of
on-demand state generation).

The first two of these binding monitor triggers represent
additional design-time control decisions within PECAS sys-
tems. The designer explicitly chooses which SA and system
events should cause information to be shared via binding (and
thus added to the planning state for system control). The un-
derlying assumption is that the system will need high-level
access to this information regardless of context, and there-
fore this hard-wired approach is acceptable. The latter case,
on-demand triggering, provides a system with explicit con-
trol over the information shared between all SAs and used for
planning. We expect this approach, whether driven by plan-
ning or other mechanisms, to become the dominant approach
in future PECAS systems. The alternative (implicit control
over the contents of the binding SA) would place the system
entirely at the mercy of reactive control, potentially flooding
the binding SA with irrelevant or redundant information.

Binding monitors typically provide two types of abstrac-
tion: level-of-detail abstraction and temporal abstraction. The
former has been taken for the implicit meaning of “abstrac-
tion” in the preceding sections: translation of a complex
modal representation into a less complex amodal representa-
tion. Temporal abstraction is often implicit in level-of-detail
abstraction, but it is important to make its presence explicit as
it influences our control approach. Changes within SAs typ-
ically occur at a rate linked to the rate of change of sensors
used for that SA’s modality or the processing schemes used
to interpret the results of those sensors. E.g., in the nav SA
the pose of the robot is updated by SLAM at 5Hz, in the com-
sys SA elements of the discourse references are incrementally
updated during an utterance interpretation (and across multi-
ple utterances if they are reused), and in the obj SA object
positions are updated as close to framerate as the system can
manage. If the planner, or any other deliberative system, had

to take control decisions using information at this level of de-
scription from multiple SAs, its decisions would only be valid
for that length of time all of these representations remained
unchanged (a number limited by the most volatile item of
information). This would make system-wide control rather
difficult. Binding monitors ameliorate this problem by only
propagating relevant changes from the SA level to the bind-
ing SA. What constitutes a relevant change is both SA- and
task-specific, but often relevance is coupled to the potential
of the change to significantly alter the global state of the sys-
tem. Temporal abstraction occurs because significant changes
typically do not occur at the same rate as all changes; they
often happen much less frequently. This highlights the close
coupling between temporal abstraction and level-of-detail ab-
straction, as the latter defines our global state. This fact is
often relied upon in systems which operate on multiple levels
of abstraction. In this sense the role binding plays in PECAS
can be meaningfully compared with the definition of an in-
terface layer in the work of Wood (e.g., [Wood, 1994]). In-
terface layers are where a designer identifies critical points
in the representations used by a system. These are points at
which the representations become suitable for particular types
of reasoning tasks. The identification of these layers is crucial
for system control; they provide a way to match up represen-
tations with decision making approaches, e.g., detailed, dy-
namic representations for reactive control, and more abstract,
stable representations for deliberative control. So, to reiterate
an important point, unions and proxies (and to some extent
the actions used by the planner) represent a stable point in
the space of representation used by PECAS systems. Without
them we would not be able to use planning (which requires
such stability) to control system behavior.

From a control perspective there are two interesting aspects
to our use of planning. First, as mentioned previously, we use
continual planning: we integrate execution monitoring and
replanning into our high-level control system. This provides a
form of closed-loop high-level control for our system, where
the effects of actions are monitored relative to expectations
established by their definitions, and replanning is triggered
if these expectations are violated. Second, the planner only
has an opaque interface to the actions themselves. Rather
than being concerned with how each action is implemented,
PECAS only requires that the implementing SA abides by the
contract provided by the action definition; otherwise planning
and monitoring will fail. This is in contrast to other systems
(e.g., 3T [Bonasso et al., 1997]) where high-level control is
used to schedule behaviors all the way down to the lowest-
level (e.g., skills) too. By adopting a less exacting approach
to action execution we allow each SA to interpret the action
in a contextually appropriate way. SAs may choose to use
one or many components to execute an action and may go
through as many intermediate steps as required. This allows
a single high-level control action to become a multiple step
lower-level action, e.g., when an action results in a dialogue,
or a visual search behavior. Of course, this means the planner
is unable to directly influence the creation or scheduling of
these lower level tasks. This is not a problem in our current
domains where actions do not compete for resources across
SAs, but in future this could become a problem. Possible



solutions include making the actions available to the planner
less coarse but still not providing a one-to-one mapping to
SA-internal actions (i.e., giving it tighter control over SA be-
havior), or annotating actions with resource constraints.

In summary, the overall behavior of a PECAS system,
including the Explorer instantiation described in this paper,
emerges from the interaction of reactive and deliberative con-
trol systems at multiple levels of abstraction. Multiple con-
current components within SAs are controlled implicitly by
design-time event-subscription rules, and use CAST’s event
mechanisms and working memories to synchronism their pro-
cessing at run-time. Across the system a collection of bind-
ing monitors provide an interface at which representations
become abstract and stable. This allows a single delibera-
tive control process to interact with the multiple concurrent
SAs. It is this interface level which allows a PECAS instanti-
ation to solve some problems with deliberative approaches
(e.g., cross-SA coordination) and others with reactive ap-
proaches (e.g., within-SA coordination and sensor and effec-
tor control) whilst remaining contextually appropriate and re-
sponsive to its environment (i.e., no single control strategy
ever exclusively takes charge of the entire system). How-
ever, this approach currently relies on an external designer
fixing the representations either side of the interface level.
Whilst this is not necessarily a problem in the short-term, in
the future we would like to investigate what properties define
a good interface level so that new system designers will not
have to make uninformed design decisions.

6 Conclusion

We described PECAS, an architecture for intelligent systems.
PECAS is a new architectural combination of information
fusion and continual planning. Its purpose is to plan, inte-
grate and monitor the asynchronous flow of information be-
tween multiple concurrent systems to achieve a task-specific
system-wide goal. We used the Explorer instantiation to show
how this works out in practice. The Explorer instantiates
PECAS around a hybrid spatial model combining SLAM, vi-
sual search, and conceptual inference, with the possibility to
use spoken dialogue to interact with a human user. We de-
scribed the elements of this model, and demonstrated using a
realistic (and implemented) scenario how PECAS provides a
novel approach to control for autonomous systems.
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