
Domain-specific Classification Methods for Disfluency Detection

Sebastian Germesin, Tilman Becker, Peter Poller

Deutsches Forschungszentrum für Künstliche Intelligenz GmbH
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany

{germesin, becker, poller}@dfki.de

Abstract
Speech disfluencies are very common in our everyday life and
considerably affect NLP systems, which makes systems that
can detect or even repair them highly desirable. Previous re-
search achieved good results in the field of disfluency detection
but only in subsets of the disfluency types. The aim of this study
was to develop a technology that is able to cope with a broad
field of disfluency types. A thorough investigation of our cor-
pus led us to a detection design where basic rule-matching tech-
niques are complemented with machine learning and N-gram
based approaches. In this paper, we describe the different detec-
tion techniques, each specialized on its own disfluency domain
and the results we gained.
Index Terms: machine learning, disfluencies, classification,
hybrid, lexical rules

1. Introduction
In the last decades, the need for intelligent automatic systems
that use natural language processing (NLP) increased enor-
mously. The progressive capacity and power of today’s com-
puter systems allow the satisfaction of people’s needs towards
task oriented speech applications such as meeting supporting
systems [1] or online translations [2].

The approach of transferring written language systems to
spoken language often results in decreased performance. This
is due to the fact that “speech differs from written language”
[3]. The main aspect that we consider in this work, are speech
disfluencies - “syntactical and grammatical [speech] errors” [4]
which are based on the incrementality of human speech produc-
tion [5]. In fact, 5% - 15% of spontaneous speech is disfluent in
the form of corrections (1), filled pauses (2), disruptions (3) or
even uncorrected sentences (4):

(1) I want to go to Alex, no, to Joe.
(2) Uh, I want to go to Joe.
(3) I want to.
(4) I want to gone to Joe.

At best, the disfluencies should be repaired or at least
marked before the speech material is processed. This could
be done via an automatic system that is placed right behind a
speech-to-text (STT) system, as shown in Figure 1.

The scheme of the disfluency types this study is based on
was developed by [4] as part of the AMI project and is ex-
plained in detail in section 2. AMI stands for Augmented Multi-
party Interaction and is a multi-disciplinary research project to
“develop technology to support human interaction in meetings
and to provide better structure in the way meetings are run and
documented” [1]. A corpus with over 100 hours of meetings
was recorded in the project, focussing on business meetings

Figure 1: Speech to NLP with Disfluency Detection

(see section 3). All meetings are held in English and partici-
pants speak freely in a typical meeting room, yielding a very
good reflection of what happens in real meetings (e.g., speech
disfluencies).

A number of researchers published different techniques to
detect different types of disfluencies. [6] developed a TAG-
based approach (TAG - Tree Adjoining Grammar) combined
with a noisy channel model and yielded results of 79.7% F-
Score on the Penn 3 disfluency-tagged Switchboard corpus.
Later on, [7] extended this approach with a maximum-entropy
reranker and manually written deterministic rules and outper-
formed all state-of-the-art systems in the RT-04F evaluation
task. The idea of writing lexical rules for the detection of disflu-
encies was also followed by [8] who gained competitive results.
Additionally, many studies trained machine learning algorithms
to recognize disfluencies on lexical [9] as well as on prosodic
features [10] and gained equally good results. [10] claimed that
combining lexical and prosodic features would result in a sys-
tem that would outperform both.

The difference to the present work is that each of these stud-
ies were only focused on a subset of the disfluency types. Our
goal was to develop a system that is able to cope with all types
of disfluencies and the observed heterogeneity of the disfluen-
cies led us to the assumption that such a system should be de-
signed in a hybrid way, meaning that each disfluency should be
detected by a special detection technique that was fine-tuned on
this disfluency domain. The effect is a system with reduced
computational overhead and also an improved detection per-
formance. The particular techniques that are invented are ex-
plained in detail in section 4 and their detection results are pre-
sented and discussed in section 5.

2. Disfluency scheme
[10] found that 5% - 10% of our speech is disfluent and, in fact,
our corpus even contains about 15% erroneous speech mate-
rial which can be justified by our available annotation scheme,

class abbrev. example
Hesitation hesit This uh is an example.
Stuttering stutter This is an exa example.
Disruption disrupt This is an example and I
Slip Of the Tongue sot This is an y example.
Discourse Marker dm Well, this is an example.
Explicit Editing Term eet This is uh this is an example.
Deletion delete This really is this is an example.
Insertion insert This an this is an example.
Repetition repeat This is this is an example.
Replacement replace This was this is an example.
Restart restart We should, this is an example.
Mistake mistake This be an example.
Order order This an is example.
Omission omiss This is [] example.
Other other

Table 1: Overview of all Disfluencies used in this study

which has a broad set of disfluency types. We based our work on
this disfluency set as a comparison with other schemes showed
that this scheme was the best fitting one for our approach with
respect to the range of disfluency types and availability.

The common structure of our disfluencies consists of three
regions: The Reparandum which contains the erroneous
speech material, an optional medial region - called the Inter-
regnum - containing, e.g., Hesitations or Explicit Editing Terms
and the repairing part called the Reparans. [4] states that not
all disfluencies fit into that scheme and hence splits up her clas-
sification scheme to what she calls simple and complex disflu-
encies. Simple disfluencies consist only of erroneous speech
material while complex disfluencies fit into the common struc-
ture. Furthermore, she considers types of disfluencies where
the annotator (or the system) has to insert new speech material
to gain the speaker’s intended utterance. She calls them Uncor-
rected disfluencies as they are grammatical errors which were
left uncorrected by the speaker.

Finally, she created a finely granulated classification
scheme including 15 different classes. Table 1 shows the ab-
breviations of these classes and examples that help in the un-
derstanding of the particular meaning of each disfluency type.
The italic written disfluencies are simple disfluencies and the
rest are complex disfluencies.

3. Corpus
The AMI Meeting Corpus [1] contains business meetings
which are focused on the design of a television remote con-
trol. The corpus consists of 135 meetings and 28 of them are
annotated with the disfluency scheme described in the last sec-
tion. We split the disfluency corpus in 80% training set and 20%
evaluation set, resulting in an amount of 10.19 and 2.79 hours
meeting time. An analysis of the disfluency annotated corpus
showed that nearly 15% of all words are disfluent and 40.5% of
all dialog acts contain at least one disfluency. The structure of
the disfluencies allow the embedding of other disfluencies but
we found out that most of them have either no parent disfluency
or just one. Furthermore, we analyzed the length of the disflu-
encies and about 95% of all simple disfluencies consist of one or
two words and the most complex disfluencies have an average
length of two to ten words. Althought the system is designed
to work in an online environment we just work here on manual
transcript data as disfluency annotations on speech recognition
ouput is not yet available. This will be the next step.

N OOV PP
1 3.47% 1181.85
2 27.13% 2674.26
3 80.17% 33310.79

Table 2: N-gram Corpus Statistics

We had to calculate N-grams out of the disfluency annotated
training part of the corpus to use them as features in the ma-
chine learning approaches and in the statistical N-gram based
approach (shown in section 4.3). As the corpus only contains
3760 unique word, this is a relatively small corpus for the es-
timation of statistical word probabilities. Hence, we obtained
limited out-of-vocabulary and perplexity results (see Table 2).
Therefore, a corpus with more material is definitely preferable
and would lead to better performances.

4. Domain-specific disfluency detection
A thorough investigation of our corpus and the used disfluency
scheme showed a heterogeneity with respect to how the differ-
ent disfluencies can be detected. This led us to the following
design: Easily detectable disfluencies should be identified by
a simple rule-based approach while the remaining disfluencies
need a more sophisticated machine learning approach. Addi-
tionally, the disfluencies of the Uncorrected group cannot be
detected via usual classification approaches as most of their ma-
terial is missing in the speech and hence we decided to use a
statistical N-gram based approach to cope with them. Further-
more, the usage of different detection techniques, each special-
ized and fine-tuned on its own disfluency domain, yields the
advantage of an improved performance in conjunction with a
reduced computational overhead at the same time.

4.1. Rule-based approach

The development of rules for the detection of disfluencies starts
by separating the easily detectable disfluencies from the ones
that need a more complex machine learning approach. Our
study showed that Hesitations, Stutterings and Repetitions are
the only classes that are well suited for being recognized by
rules. This is based in their strict structure which allows a trans-
formation into lexical rules.

The detection of Hesitations is easy in the way that there
exists only a finite set of 16 words (in our corpus) that count as
a Hesitation and the top five of them cover more than 98% of
all. This means that detecting Hesitations is just a word-based
matching of these identified words which is shown in Figure 2.

if word ∈ [uh, um,mm, hmm, . . .] then
return ′′hesit′′;

end if

Figure 2: Algorithm to detect Hesitations

Stutterings are “syllables, speech sounds or single conso-
nants, which are similar to the beginning of the next fully ar-
ticulated word . . . [and] they may neither be equal to the whole
next word” [4]. This definition leads to Figure 3 which checks
if the current word is “similar” to the next word. This is done
by counting the number of equal characters of the current and
the next word divided by the length of the current word. If
the resulting value exceeds the empirically measured thresh-
old of 0.84 and both words are not equal, the algorithm iden-

tifies the current word as Stuttering. Additionally, the pseu-
docode shows a check for “false-friends” which are words that
fit into the described scheme even though they are fluent. To
avoid matching them, these often appearing false-friends (in our
study: [we, no, on, so, it]) are explicitly excluded from the de-
tection.

if 1.0 > getSimilarity(word, nextWord) ≥ 0.84 then
if !isFalseFriend(word) then

return ′′stutter′′;
end if

end if

Figure 3: Algorithm to detect Stutterings

[4] states that Repetitions are “expressions that occur sev-
eral times consecutively . . . this denotes both single words and
whole phrases, but no word fragments”. Transforming this def-
inition directly into a regular expression for the rule-matching
yields in ((?: \w+)+)\1) which would detect all Repeti-
tions but with an enormous computation time and a huge num-
ber of false positives. To avoid this, we trimmed the expression
in the way that we restrict the number of words we look for
and it turns out that a length of 1 to 6 words for the Reparan-
dum (2 to 12 words for the whole disfluency) is the best trade-
off that we could find. In Figure 4 we can see the correspond-
ing regular expression where ((?: \w+){1,6})matches up
to 6 consecutive words and the (\1) detects their repetition.
Again, we explicitly exclude some words from the detection
algorithm as they are common repetitions that are assumed cor-
rect: [very, okay, hmm, no, right, yes].

if word.matches(′′((? : \w+){1, 6})(\1)′′) then
if word.isInReparandum()∧!isFalseFriend(word) then

return ′′repeat′′;
end if

end if

Figure 4: Algorithm to detect Repetitions

4.2. Machine learning approach

The machine learning approach is implemented with the help of
the freely available WEKA toolkit [11] which contains many
state-of-the-art machine learning algorithms and a variety of
evaluation metrics. Furthermore, it allows to adapt other al-
gorithms due to its simple interface.

We used machine learning based techniques to detect the
following disfluency types: Discourse Marker, Slip of the
Tongue, Explicit Editing Term, Restart, Replacement, Insertion,
Deletion, Disruption and Other. We had to separate the detec-
tion of the Disruption class from the remaining ones as it needs
a completely different feature set. The Disruptions are, accord-
ing to their definition, classified as a complete segment while
the remaining classes are detected word-by-word.

For both machine learning tasks, we trained and evaluated
several algorithms to find the most suitable one for the task of
the disfluency detection. In fact, the Decision Tree implemen-
tation of the WEKA toolkit outperformed all other algorithms
in accuracy, F-Score and detection time but needs a lot of com-
putation time for the training process. F-Score is a well used
metric that is calculated by the harmonic mean of recall and
precision. Henceforth, there exists an F-Score value for each
class and as presenting all these values would be too much,

we decided to combine all single F-Score values by a weighted
mean to one average value. All results are presented in section
5. We used four different types of features: lexical, prosodic,
speaker-related and dynamic.

Lexical features are estimated on the word-layer and con-
sider also the Part-of-Speech (POS) tags of the particular
words. Next to the absolute words, we use some relative lex-
ical features that describe the lexical parallelism between the
current word to its neighbors.

As [10] describes, prosodic features are well suited for the
disfluency detection task and hence, we use them too. The term
prosodic in this context means features that describe the dura-
tion, energy, pitch and velocity of the words. The energy and
pitch values were normalized with a mean variance normaliza-
tion per channel to reduce the influence of the microphones. Af-
terwards, we used these values to compute features like mean,
variance and mode of the current word or segment and addition-
ally, contextual features that described the prosodic parallelism
of the surrounding elements.

The speaker-related features describe the speaker’s role,
gender, age and native-language as they appear in the corpus.
A speaker’s role can either be the Industrial Designer (ID), the
Project Manager (PM), the Marketing Expert (ME) or the User
Interface Designer (UI). These were used because we found a
correlation between these characteristics and the rate of disflu-
ent words.

The last type of features are dynamic features, that are gen-
erated during the process of the classification and describe the
relationship between the disfluency type of the ongoing word to
its neighbors.

4.3. Detection by n-gram-based approach

The detection of the Uncorrected disfluencies (Omission, Mis-
take and Order) was the most difficult task of this study because
the speaker usually does not produce any explicit editing terms
or any other information about his/her error. A statistical ap-
proach like the N-gram technique seemed to be a good way to
gain information about the correctness of a word-order or a pos-
sible missing or superfluous word.

Using the N-grams directly did not yield any information
about the correctness of the ongoing sentence. Therefore, we
had to define a more global probability of the correctness of the
sentence. Equation 1 shows how we combined the probability
of normal word-based N-grams (see Equation 2) and POS N-
grams (see Equation 3). Using this definition, we were able to
calculate the difference between the “probability of the current
sentence” to the particular alterations where, for example, two
words get swapped or a word gets inserted.

P (s = wn−1
0) = α ∗ PN

POS(s) + (1− α) ∗ PN
W (s) (1)

PN
POS(s) =

n−1X
i=N−1

P (POS(wi)|POS(wi−1
i−N+1))(2)

PN
W (s) =

n−1X
i=N−1

P (wi|wi−1
i−N+1) (3)

5. Experimental results
This section describes the results that were gathered on the par-
ticular disfluency domains with the respective detection tech-
nique. For lack of space, we do only present the confusion ma-
trices of the particular systems and explain evaluation values
like the amount of used training instances or the accuracy and

F-Score in the text. The confusion matrices have to be read in
the way that the predicted classes are placed in the columns and
the actual classes are placed in the rows. The F-Score values
are calculated by a weighted mean over all classes where each
weight is the rate of the particular class.

5.1. Rule matching

The results for the rule-based approach are shown in Table 3.
The approach has a real-time factor of 1:0.0006 which means
that it needs on average 0.6 milliseconds for processing one sec-
ond of speech. Furthermore, the presented results corresponds
to an accuracy of 98.8% and an F-Score of about 98.7%. Com-
pared to the baselines of 93.3% and 90.1%, this is a very good
result.

fluent hesit stutter repeat
23601 80 11 49 fluent

112 998 0 0 hesit
10 0 112 0 stutter
49 0 7 410 repeat

Table 3: Confusion Matrix of Rule Matching

5.2. Machine learning

We split the machine learning part in two different approaches:
One for the detection of Disruptions and one for the remaining
disfluencies. In both following tables, we present the results
from the particular Decision Tree algorithm. For the Disruption
Detection approach, we gained an accuracy of 98.99% with an
F-Score of 99.23% and from the confusion matrix (see Table
4) we can see that almost half of all disruptions were detected
with a false-positives rate of just 0,22%. The results for the ma-
chine learning approach that detects the remaining classes show
that there exists almost no inter-class confusion. We achieved
an accuracy of 97.4% and an F-Score of 97.2% with the corre-
sponding baseline values of 96.1% and 94.2%. The processing
times of both approaches are competitive to the one from the
rule-matching approach.

fluent disrupt
19407 43 fluent

108 95 disrupt

Table 4: Confusion Matrix for the Disruption Detection Task

5.3. N-gram based approach

Unfortunately, the N-gram approach did not yield any detection
improvements. This is most likely due to the small corpus that
was available. N-gram statistics have to be estimated on a huge

flu
en

t

so
t

ee
t

dm re
st

ar
t

re
pl

ac
e

in
se

rt

de
le

te

ot
he

r

23500 57 3 176 15 7 2 0 3 fluent
126 94 0 0 0 2 0 0 0 sot

6 0 22 0 0 0 0 0 0 eet
81 0 2 329 0 0 0 0 0 dm
98 4 0 0 12 0 0 0 0 restart
39 0 0 0 0 93 0 0 0 replace
28 0 0 0 0 0 9 0 0 insert
2 0 0 0 0 0 0 12 0 delete
6 0 0 0 0 0 0 0 0 other

Table 5: Confusion Matrix of Machine Learning Approach

text that has to be fluent and from the same context as the evalu-
ation text. Although both properties are fulfilled by the training
set, it was too small to gain useful N-gram probabilities.

6. Conclusions
We have described a domain-specific approach to detect speech
disfluencies. We first designed a segmentation of the disfluen-
cies in disjoint subsets and after that, used different classifica-
tion techniques, each fine-tuned on its own subset for the detec-
tion. We used rule-based approaches, as well as machine learn-
ing techniques and N-gram based algorithms and combined dif-
ferent types of features. Except for the N-gram based approach,
our approaches resulted in very competitive performances.

7. Future work
The next step is to combine the presented techniques in one sys-
tem that can detect and correct the complete set of disfluencies.
Additionally, we will use a larger text source for the calcula-
tion of the N-gram statistics to give this approach a better basis
for the probability calculation of the correctness of an utterance
under consideration.

8. Acknowledgment
This work is supported by the European IST Programme Project
FP6-0033812 (AMIDA), Publication ID - AMIDA-26. This pa-
per only reflects the authors views and funding agencies are not
liable for any use that may be made of the information contained
herein.

9. References
[1] Carletta, Jean, Ashby, S., Bourban, S., Flynn, M., et al: “The

AMI Meeting Corpus”, In: Proceedings of the Measuring Be-
havior 2005 symposium on “Annotating and measuring Meeting
Behaviour”, 2005

[2] Wahlster, Wolfgang: Verbmobil: Foundations of Speech-To-
Speech Translation, Springer, Berlin - New York, 2000

[3] Eklund, Robert: “Disfluency in Swedish human-human and
human-machine travel booking dialogues”, PhD thesis, Diss.No.
882, Department of Computer and Information Science, Linkping
University, Sweden

[4] Besser, Jana: “A Corpus-Based Approach to the Classification and
Correction of Disfluencies in Spontaneous Speech”, Bachelor’s
thesis, Saarbrücken, 2006

[5] Ferreira, F., Lau, E., Bailey, K.: “Disfluencies, Language Compre-
hension and Tree Adjoining Grammars”, In: Cognitive Science,
Vol. 28, p. 721–749, 2004

[6] Charniak, E., Johnson, M.: “A TAG-based noisy channel model of
speech repairs”, In: Annual Meeting of the Association for Com-
putational Linguistics, 2004

[7] Lease, M., Johnson, M., Charniak, E.: “Recognizing disfluen-
cies in conversational speech”, In: IEEE Transactions on Audio,
Speech and Language Processing, p.1566–1573, September 2006

[8] Snover, M., Dorr B., Schwartz, R.: “A lexically-driven algorithm
for disfluency detection”, In: Human Language Technology Con-
ference, 2004

[9] Moreno, I., Pineda, L.: “Speech Repairs in the DIME Corpus”,
In: Research in Computing Science, Vol. 20, pp. 63, 74, 2006

[10] Shriberg, E., Bates, R., Stolcke A.: “A Prosody-Only Decision-
Tree Model for Disfluency Detection”, In: Proc. Eurospeech ’97,
p. 2383–2386, 1997

[11] Witten, I., Frank, E.: “Data Mining: Practical Machine Learn-
ing Tools and Techniques”, 2nd volume, San Francisco, Morgan
Kaufmann, 2005

