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Abstract. We develop a general criterion for cut elimination in sequent
calculi for propositional modal logics, which rests on absorption of cut,
contraction, weakening and inversion by the purely modal part of the rule
system. Our criterion applies also to a wide variety of logics outside the
realm of normal modal logic. We give extensive example instantiations
of our framework to various conditional logics. For these, we obtain fully
internalised calculi which are substantially simpler than those known in
the literature, along with leaner proofs of cut elimination and complex-
ity. In one case, conditional logic with modus ponens and conditional
excluded middle, cut elimination and complexity are explicitly stated as
open in the literature.

1 Introduction

Cut elimination, originally invented by Gentzen [5], is one of the core concepts of
proof theory and plays a major role in particular for algorithmic aspects of logic,
including the subformula property, the complexity of automated reasoning and,
via interpolation, modularity issues. The large number of logical calculi that are
currently in use, in particular in various areas of computer science, motivates
efforts to define families of sequent calculi that cover a variety of logics and admit
uniform proofs of cut elimination, enabled by suitable sufficient conditions. Here,
we present such a method for modal sequent calculi that in particular applies
also to non-normal modal logics, which appear e.g. in concurrency and especially
in knowledge representation. We use a separation of the modal calculi into a
fixed underlying propositional part and a modal part; the core of our criterion
is absorption of cut by the modal rules. This concept generalises the notion
of resolution closed rule set [9, 12], dropping the assumption that the logic at
hand is rank-1, i.e. axiomatised by formulas in which the nesting depth of modal
operators is uniformly equal to 1 (such as K).

Our method is reasonably simple and intuitive, and nevertheless applies to a
wide range of modal logics. While we use normal modal logics such as K and T
as running examples to illustrate our concepts at the time of introduction, our
main example applications are conditional logics, which have a binary modal
operator read as a non-monotonic implication (unlike default logics, conditional
logics allow nested non-monotonic implications). In particular, we prove cut-
elimination (hence, since the generic systems under consideration are analytic,



the subformula property) for the conditional logics CK, CKMP, CKCEM, and
CKMPCEM using our generic procedure. An easy analysis of proof search in
the arising cut-free calculi moreover establishes that the satisfiability problem
of each of these logics is in PSPACE , but this bound is only tight for CK and
CKMP whereas the provability problem in extensions of CKCEM can be solved
in coNP . We point out that while (different) cut-free labelled sequent calculi
for CK, CKMP, CKCEM, and some further conditional logics, as well as the
ensuing upper complexity bounds, have previously been presented by Olivetti
et al., the corresponding issues for CKMPCEM have explicitly been left as open
problems [8].

Related work A set of sufficient conditions for a sequent calculus to admit cut
elimination and a subsequent analysis of the complexity of cut elimination (not
proof search) is presented in [10]. The range of application of this method is very
wide and encompasses e.g. first-order logic, the modal logic S4, linear logic, and
intuitionistic propositional logic. This generality is reflected in the fact that the
method as a whole is substantially more involved than ours. A simpler method
for a different and comparatively restrictive class of calculi, so-called canonical
calculi, is considered in [1]; this method does not apply to typical modal systems,
as it considers only so-called canonical rules, i.e., left and right introduction rules
for connectives which permit adding a common context simultaneously in the
premise and the conclusion. (In fact, it might be regarded as the essence of
modal logic that its rules fail to be canonical; e.g. the necessitation rule A/�A
does not generalise to Γ,A/Γ,�A for a sequent Γ .) Moreover, the format of the
rules in op.cit. does not allow for the introduction of more than one occurrence
of a logical connective, which is necessary even for the most basic modal logics.
The same applies to [4]. In [3], logical rules are treated on an individual basis,
which precludes the treatment of cuts between two rule conclusions. Overall,
our notion of absorption is substantially more general when compared to similar
notions in the papers discussed above, which stipulate that cuts between left
and right rules for the same connective are absorbed by structural rules. In our
own earlier work [9], we have considered a special case of the method presented
here in the restricted context of rank-1 logics; in particular, these results did not
cover logics such as K4, CKMP, or CKMPCEM.

2 Preliminaries and Notation

A modal similarity type (or modal signature) is a set Λ of modal operators with
associated arities that we keep fixed throughout the paper. Given a set V of
propositional variables, the set F(Λ) of Λ-formulas is given by the grammar

F(Λ) 3 A,B ::= ⊥ | p | ¬A | A ∧B | ♥(A1, . . . , An)

where p ∈ V and ♥ ∈ Λ is n-ary. We use standard abbreviations of the other
propositional connectives >, ∨ and →. A Λ-sequent is a finite multiset of Λ-
formulas, and the set of Λ-sequents is denoted by S(Λ). We write the multiset
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union of Γ and ∆ as Γ,∆ and identify a formula A ∈ F(Λ) with the sin-
gleton sequent containing only A. If S ⊆ F(Λ) is a set of formulas, then an
S-substitution is a mapping σ : V → S. We denote the result of uniformly sub-
stituting σ(p) for p in a formula A by Aσ. This extends pointwise to Λ-sequents
so that Γσ = A1σ, . . . , Anσ if Γ = A1, . . . , An. If S ⊆ F(Λ) is a set of Λ-formulas
and A ∈ F(Λ), we say that A is a propositional consequence of S if there exist
A1, . . . , An ∈ S such that A1 ∧ · · · ∧ An → A is a substitution instance of a
propositional tautology. We write S `PL A if A is a propositional consequence
of S and A `PL B for {A} `PL B for the case of single formulas.

3 Modal Deduction Systems

To facilitate the task of comparing the notion of provability in both Hilbert and
Gentzen type proof systems, we introduce the following notion of a proof rule
that can be used, without any modifications, in both systems.

Definition 1. A Λ-rule is of the form Γ1,...,Γn

Γ0
where n ≥ 0 and Γ0, . . . , Γn

are Λ-sequents. The sequents Γ1, . . . , Γn are the premises of the rule and Γ0 its
conclusion. A rule Γ0

without premises is called a Λ-axiom, which we denote by
just its conclusion, Γ0. A rule set is just a set of Λ-rules, and we say that a rule
set R is substitution closed, if Γ1σ . . . Γnσ/Γ0σ ∈ R whenever Γ1 . . . Γn/Γ0 ∈ R
and σ : V → F(Λ) is a substitution.

In view of the sequent calculi that we introduce later, we read sequents disjunc-
tively. Consequently, a rule Γ1, . . . , Γn/Γ0 can be used to prove the disjunction
Γ0, provided that

∨
Γi is provable, for all 1 ≤ i ≤ n. We emphasise that a rule

is an expression of the object language, i.e. it does not contain meta-linguistic
variables. As such, it represents a specific deduction step rather than a family
of possible deductions, which helps to economise on syntactic categories. In our
examples, concrete rule sets are presented as instances of rule schemas.

Example 2. For the modal logics K, K4 and T , we fix the modal signature
Λ = {�} consisting of a single modal operator � with arity one. The language
of conditional logic is given by the similarity type Λ = {⇒} where the conditional
arrow⇒ has arity 2. We use infix notation and write A⇒ B instead of⇒ (A,B)
for A,B ∈ F(Λ). Deduction over modal and conditional logics are governed by
the following rule sets:

1. The rule set K associated to the modal logic K consists of all instances of
the necessitation rule (N) and the distribution axiom (D) below.

(N)
A

�A
(D)�(A→ B)→ (�A→ �B) (4)��A→ �A (R)�A→ A

The rule sets for T and K4 arise by extending this set with the reflexivity
axiom (R) and the (4)-axiom, respectively. We reserve the name (T) for the
reflexivity rule in a cut-free system.
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2. Conditional logic, e.g. the system CK of [2] is axiomatised by the rule set
that consists of all instances of (RCEA) on the left, and (RCK) on the right
below:

A↔ A′

(A⇒ B)↔ (A′ ⇒ B)
B1 ∧ · · · ∧Bn → B

(A⇒ B1) ∧ · · · ∧ (A⇒ Bn)→ (A⇒ B)

As additional axioms, we consider

(ID)A⇒ A (MP)(A⇒ B)→ (A→ B) (CEM)(A⇒ B) ∨ (A⇒ ¬B)

that induce extensions of CK that we denote by juxtaposition of the respec-
tive axioms, e.g. CKMPCEM contains the rules for CK and the axioms (MP)
and (CEM).

Rules with more than one premise arise through saturation of a given rule set
under cut that e.g. leads to the rules (CKg) and (MPg) presented in Section 6.

The notion of deduction in modal Hilbert systems then takes the following form.

Definition 3. Suppose R is a set of rules. The set of R-derivable formulas in
the Hilbert-system given by R is the least set of formulas that

– contains Aσ whenever A is a propositional tautology and σ is a substitution
– contains B whenever it contains A and A→ B
– contains

∨
Γ0 whenever it contains

∨
Γ1, . . . ,

∨
Γn and Γ1...Γn

Γ0
∈ R.

We write HR ` A if A is R-derivable.

In other words, the set of derivable formulas is the least set that contains propo-
sitional tautologies, is closed under uniform substitution, modus ponens and
application of rules. We will later consider Hilbert systems that induce the same
provability predicate based on the following notion of admissibility.

Definition 4. A rule set R′ is admissible in HR if HR ` A ⇐⇒ H(R∪R′) ` A
for all formulas A ∈ F(Λ). Two rule sets R,R′ are equivalent if R is admissible
in HR′ and R′ is admissible in HR.

In words, R′ is admissible in HR if adding the rules R′ to those of R leaves the
set of provable formulas unchanged. We note the following trivial, but useful
consequence of admissibility.

Lemma 5. HR ` A iff HR′ ` A if R and R′ are equivalent and A ∈ F(Λ).

The next proposition is concerned with the structure of proofs in Hilbert systems
and is the key for proving equivalence of Hilbert and Gentzen-type systems.

Proposition 6. The set HT(R) = {A ∈ F(Λ) | HR ` A} is the smallest set
S of formulas that contains a formula A ∈ F(Λ) whenever there are rules
Θ1/Γ1, . . . , Θn/Γn ∈ R and substitutions σ1, . . . , σn : V → F(Λ) such that∨
∆σi ∈ S for all ∆ ∈ Θi (i = 1, . . . , n) and {

∨
Γ1σ, . . . ,

∨
Γnσ} `PL A.
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Proof. The inclusion S ⊆ HT(R) is immediate as HT(R) contains propositional
tautologies, is closed under uniform substitution and modus ponens. For the
reverse inclusion we show that S is closed under R-derivability as considered in
Definition 3.

This is clear for all cases (propositional tautologies, uniform substitutions,
rule application) except possibly modus ponens. So assume that HR ` A → B
and HR ` A. By induction hypothesis, there are

– RulesΘ1/Γ1, . . . , Θn/Γn and substitutions σ1, . . . , σn such that {
∨
Γ1σ1, . . . ,

∨
Γnσn} `PL

A→ B
– RulesΣ1/∆1, . . . , Σk/∆k and substitutions τ1, . . . , τk such that {

∨
∆1τ1, . . . ,

∨
∆kτk} `PL

A

and moreover
∨
Ξσ ∈ S whenever Ξ ∈ Θ1, . . . , Θn, Σ1, . . . , Σk. The claim fol-

lows, as {Γ1σ1, . . . , Γnσn, ∆1τ1, . . . ,∆kτk} `PL B.

In other words, in a modal Hilbert system, each provable formula is a proposi-
tional consequence of rule conclusions with provable premises. This result forms
the basis of our comparison of Hilbert and Gentzen systems, and we show that
cut elimination essentially amounts to the fact that – in the corresponding
Hilbert system – each valid formula is a consequence of a single rule conclu-
sion with provable premise.

We now set the stage for sequent systems that we are going to address in
the remainder of the paper. The notion of derivability in the sequent calculus
associated with a rule set R is formulated parametric in terms of a set X of
additional rules that will later be instantiated with relativised versions of cut,
weakening, contraction and inversion.

Definition 7. Suppose R and X are sets of Λ-rules. The set of RC+X-derivable
sequents in the Gentzen-system given by R is the least set of sequents that

– contains A,¬A,Γ for all sequents Γ ∈ S(Λ) and formulas A ∈ F(Λ)
– contains ¬⊥, Γ for all Γ ∈ S(Λ)
– is closed under instances of the rule schemas

Γ,¬A,¬B
Γ,¬(A ∧B)

Γ,A Γ,B

Γ,A ∧B
Γ,A

Γ,¬¬A

where A ∈ F(Λ) ranges over formulas and Γ ⊆ F(Λ) over multisets of
formulas. We call the above rules the propositional rules and the formula
occurring in the conclusion but not in Γ principal in the respective rule.

– is closed under the rules in R ∪ X, i.e. it contains Γ0 whenever it contains
Γ1, . . . , Γn for Γ1...Γn

Γ0
∈ R ∪ X.

We write GR + X ` Γ if Γ can be derived in this way and GR ` Γ if X = ∅.

The set X of extra rules will later be instantiated with a relativised version of
the cut rule and additional axioms that locally capture the effect of weakening,
contraction and inversion, applied to rule premises. This allows to formulate local
conditions for the admissibility of cut that can be checked on a per-rule basis.
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Remark 8. Many other formulations of sequent systems only permit axioms of
the form Γ, p,¬p where p ∈ V is a propositional atom. The reason for being more
liberal here is that this makes it easier to prove admissibility of uniform substitu-
tion. However, the price we have to pay is that inversion no longer preserves the
height of the proof tree. For example, we have that A∧B,¬(A∧B) is provable
with a proof tree of height one (being an axiom), but neither of A,¬(A∧B) and
B,¬(A ∧B) and A ∧B,¬A,¬B is are axioms, i.e provable with a proof tree of
height 1.

The following proposition is readily established by an induction on the provabil-
ity predicate RH `.

Proposition 9. Suppose Γ ∈ S(Λ) is a sequent. Then RH `
∨
Γ if RG ` Γ .

The remainder of the paper is concerned with the converse of the above propo-
sition, which relies on specific properties of the rule set R which we address
next.

4 Generic Modal Cut Elimination

In order to establish the converse of Proposition 9 we need to establish that the
cut rule is admissible in the Gentzen system GR defined by the ruleset R. Clearly,
we cannot expect that cut elimination holds in general: it is well known (and
easy to check) that the sequent system arising from the rule set consisting of all
instances of (N) and (D), presented in Example 2 does not enjoy cut elimination.
In other words, we have to look for constructions that allow us to transform a
given rule set into one for which cut elimination holds. The main result of our
analysis is that cut elimination holds if the rule set under consideration satisfies
four crucial requirements that are local in the sense that they can be checked on
a per-rule basis without the need of carrying out a fully-fledged cut-elimination
proof: absorption of weakening, contraction, inversion and cut.

The first three properties can be checked for each rule individually and
amount to the admissibility of the respective principle, and the last requirement
amounts to the possibility of eliminating cut between a pair of rule conclusions.
We emphasise that these properties can be checked locally for the modal rules,
and cut elimination will follow automatically. It is not particularly surprising
that cut elimination holds under these assumptions. However, isolating the four
conditions above provides us with means to convert a modal Hilbert system into
an equivalent cut-free sequent calculus. We now introduce relativised versions of
the structural rules that will be the main tool in the proof of cut elimination.

Definition 10. Suppose Γ is a Λ-sequent and let A(Γ ) consist of the axioms

– Γ,A for all A ∈ F(Λ)
– ∆,A if Γ = ∆,A,A for some ∆ ∈ S(Λ), A ∈ F(Λ)
– ∆,A if Γ = ∆,¬¬A for some ∆ ∈ S(Λ), A ∈ F(Λ)
– ∆,¬A1,¬A2 if Γ = ∆,¬(A1 ∧A2) for some ∆ ∈ S(Λ), A1, A2 ∈ F(Λ)
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– ∆,Ai for i = 1, 2 if Γ = ∆, (A1 ∧A2) for some ∆ ∈ S(Λ), A1, A2 ∈ F(Λ)

We say that a rule set R absorbs the structural rules if

GR + A(Γ1) ∪ · · · ∪ A(Γn) ` Γ

for all Γ1...Γn

Γ0
∈ R and all Γ ∈ A(Γ0).

In other words, a deduction step that applies weakening, contraction or inversion
to a rule conclusion can be replaced by a (possibly different) rule where the cor-
responding structural rules are applied to the premises. We discuss a number of
standard examples before stating that absorption of the structural rules implies
their admissibility.

Example 11. The rule sets containing all instances of either of the following
rule schema

(K)
¬A1, . . . ,¬An, A0

¬�A1, . . . ,¬�An,�A0, Γ
(T )
¬A,¬�A,Γ
¬�A,Γ

(K4)
¬A1,¬�A1, . . . ,¬An,¬�An, B
¬�A1, . . . ,¬�An,�B,Γ

absorbs the structural rules. We note that (K) absorbs weakening due to the
presence of Γ in the conclusion, and the absorption of contraction in (T ) and
(K4) is a consequence of the presence of the negated �-formulas in the premise.
The absorption of inversion in a consequence of the weakening context Γ in (K)
and (K4) and implied by duplicating the context Γ in (T ). On the other hand,
the rule sets defined by

¬A1, . . . ,¬An, A0

¬�A1, . . . ,¬�An,�A0

¬A,Γ
¬�A,Γ

fail to absorb the structural rules: the rule on the left fails to absorb weakening,
whereas the right-hand rule does not absorb contraction.

It should be intuitively clear that absorption of structural rules implies their
admissibility, which we establish next.

Proposition 12. Suppose R absorbs the structural rules. Then all instances of
the rule schemas of weakening, contraction and inversion

Γ

Γ,A

Γ,A,A

Γ,A

Γ,¬¬A
Γ,A

Γ,¬(A1 ∧A2)
Γ,¬A1,¬A2

Γ,A1 ∧A2

Γ,Ai
(i = 1, 2)

where Γ ∈ S(Λ) and A,A1, A2 ∈ F(Λ) are admissible in GR.

Proof. Standard induction on proofs in GR where the case of propositional rules
is standard and the inductive case for modal rules immediately follows from
absorption.

Remark 13. 1. The main purpose for introducing the notion of absorption of
structural rules (Definition 10) is to have a handy criterion that guarantees
admissibility of the structural rules (Proposition 12). Our definition offers a
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compromise between generality and simplicity. In essence, a rule set absorbs
structural rules, if an application of weakening, contraction or inversion can
be pushed up one level of the proof tree. A weaker version of Definition 10
would require that an application of weakening, contraction or inversion to
a rule conclusion can be replaced by a sequence of deduction steps where the
structural rule in question can not only be applied to the premises of the rule,
but also freely anywhere else, provided that these additional applications are
smaller in a well-founded ordering. However, we are presently not aware of
any examples where this extra generality would be necessary.

2. In many Sequent systems, the statement of Proposition 12 can be strength-
ened to say that weakening, contraction and inversion are depth-preserving
admissible, i.e. does not increase the height of the proof tree. This is in gen-
eral false for the systems considered here as axioms are of the form A,¬A,Γ
for A ∈ F(Λ) and, for instance, (A∧B),¬(A∧B) is derivable with a proof of
height one (being an axiom), but e.g. A ∧ B,¬A,¬B cannot be established
by a proof of depth one (not being an axiom). It is easy to see that weaken-
ing, inversion and contraction are in fact depth-preserving admissible if only
atomic axioms of the form p,¬p, Γ are allowed, for p ∈ V a propositional
variable. The more general form of axioms adopted in this paper allows us to
simplify many constructions as we do not have to consider a congruence rule
explicitly which would allow us to prove (rather than to assume as axioms)
sequents of the form �A,¬�A,Γ .

Having dealt with the structural rules, we now address our main concern: the
admissibility of the cut rule. In contrast to the absorption of structural rules,
we need one additional degree of freedom in that we need to allow ourselves to
apply cut to a structurally smaller formula.

Definition 14. The size of a formula A ∈ F(Λ) is given inductively by size(p) =
size(⊥) = 1, size(A∧B) = size(A∨B) = 1+size(A)+size(B) and size(♥(A1, . . . , An)) =
1 + size(A1) + · · ·+ size(An).

A ruleset R absorbs cut, if for all rules (r1)Γ1,...,Γn

A,Γ0
, (r2)∆1,...,∆k

¬A,∆0
∈ R

GR + Cut(A, r1, r2) ` Γ0, ∆0

where Cut(A, r1, r2) consists of all instances of the rule schemas

Γ,C ∆,¬C
Γ,∆

Γ

Γ,A

Γ,A,A

Γ,A

Γ,¬¬A
Γ,A

Γ,¬(A1 ∧A2)
Γ,¬A1,¬A2

Γ,A1 ∧A2

Γ,Ai

where size(C) < size(A) in the leftmost rule and i = 1, 2 in the rightmost schema,
together with the axioms Γ1, . . . , Γn, ∆1, . . . ,∆k and all sequents of the form Γ,∆
where Γ,∆ ∈ S(Λ) and, for some B ∈ F(Λ),

– Γ,B and ∆,¬B ∈ {Γ1, . . . , Γn, ∆1, . . . ,∆k}, or
– Γ,B = Γ0, A and ∆,¬B ∈ {∆1, . . . ,∆k}, or
– Γ,B = ∆0,¬A and ∆,¬B ∈ {Γ1, . . . , Γn}.
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A rule set that absorbs structural rules and the cut rule is called absorbing.

The intuition behind the above definition is similar to that of weakening, but we
have two additional degrees of freedom: we can not only apply the cut rule to rule
premises, but we can moreover freely use cut on structurally smaller formulas as
well as structural rules. This allows us to use the standard argument, a double
induction on the structure of the cut formula and the size (or height) of the
proof tree, to establish cut elimination. This is carried out in the proof of the
next theorem.

Theorem 15. Suppose R is absorbing. Then the cut rule

Γ,A ∆,¬A
Γ,∆

is admissible in GR.

We illustrate the preceding theorem by using it to derive the well-known fact
that cut-elimination holds for the modal logics K,K4 and T and use it to derive
cut-elimination for various conditional logics in Section 6.

Example 16. The rule sets K,K4 and T are absorbing. We have already seen
that they absorb weakening, contraction and inversion in Example 11 so every-
thing that remains to be seen is that they also absorb cut. For (K), we need to
apply cut to a formula of smaller size. For the two instances

(r1)
¬A1, . . . ,¬An, A0

¬�A1, . . . ,¬�An,�A0, Γ
(r2)

¬B1, . . . ,¬Bk, B0

¬�B1, . . . ,¬�Bk,�B0, ∆

we need to consider, up to symmetry, the cases Ai = B0, �Ai ∈ ∆ and ¬�A0 ∈
∆, for i = 1, . . . , n. Here, we only treat the first case for i = 1 where we have
to show that ¬�A2, . . . ,¬�An,�A0,¬�B1, . . . ,¬�Bk, Γ,∆ is derivable from
GR + Cut(�A1, r1, r2), which follows as the latter system allows us to apply cut
on A1 = B0. The case �Ai ∈ ∆ and ¬�A0 ∈ ∆ are straight forward.

The argument to show that (K4) is absorbing is similar, and uses an addi-
tional (admissible) instance of cut on a formula of smaller size and contraction.
For (T) we only consider instances of cut between two conclusions of

(r1)
¬A,¬�A,Γ
¬�A,Γ

(r2)
¬B,¬�B,∆
¬�B,∆

of the T-rule. We only demonstrate the case �A ∈ ∆. In this case, ∆ = ∆′,�A
and we have to show that ¬�B,Γ,∆′ can be derived in Cut(�A, r1, r2). The
latter system allows us to cut ¬�A between the conclusion of (T) on the left
and the premise of the right hand rule, i.e., we have that Cut(�A, r1, r2) `
¬B,¬�B,Γ,∆′) and an application of (T) now gives derivability of ¬�B,Γ,∆′.
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5 Equivalence of Hilbert and Gentzen Systems

We now investigate the relationship between provability in a Hilbert-system and
provability in the associated Gentzen system. We note the following standard
lemmas that we will use later on.

Lemma 17. Suppose A ∈ F(Λ) is a propositional tautology. Then GR ` A. If
moreover R is closed under substitution, then GR ` Γσ whenever GR ` Γ for all
Γ ∈ S(Λ).

Remark 18. Being able to prove the previous lemma is the main reason for
formulating axioms as A,¬A,Γ where A ∈ F(Λ) rather than p,¬p, Γ . Both
formulations are equivalent if the modal congruence rule

A1 ↔ A′1 . . . An ↔ A′n
♥(A1, . . . , An)→ ♥(A′1, . . . , A′n)

is admissible. However, Lemma 17 can be proved without the assumption that
congruence is admissible using axioms of the form A,¬A,Γ .

Theorem 19. Suppose R is absorbing and substitution closed. Then GR ` Γ ⇐⇒
HR `

∨
Γ for all Γ ∈ S(Λ).

Proof (Sketch). We only need to show the direction from right to left. Inductively
assume that HR `

∨
Γ for Γ ∈ S(Λ). By Proposition 9 we have that there are

rules Θi/Γi and substitutions σi, i = 1, . . . , n such that

– HR ` ∆σi whenever ∆ ∈ Θi (i = 1, . . . , n)
– {

∨
Γ1σ1, . . . ,

∨
Γnσn} `PL

∨
Γ .

By induction hypothesis, GR ` ∆σi for all i = 1, . . . , n and ∆ ∈ Θi. By Lemma
17 we have

GR `
∨
Γ1σ1 ∧ · · · ∧

∨
Γnσn →

∨
Γ.

The claim follows by applying cut, contraction and inversion.

The construction of an absorbing rule set from a given set of axioms and rules
essentially boils down to adding the missing instances of cut, weakening, contrac-
tion and inversion to a given rule set. The soundness of this process is witnessed
by the following two simple lemmas, which we use in this section to derive an
absorbing rule set for K and to establish cut-elimination for a large range of
conditional logics in the next section.

Lemma 20. Suppose Γ1, . . . , Γn/¬A,Γ0 and ∆1, . . . ,∆k/A,∆0 ∈ R. Then the
rule Γ1, . . . , Γn, ∆1, . . . ,∆k/Γ0, ∆0 is admissible in HR.

The same applies to instances of the structural rules of weakening, contraction
and inversion. As we are extending the rule set while leaving the provability pred-
icate in the Hilbert calculus unchanged, the following formulation is handy for
our purposes – in particular it implies the fact that we can freely use structural
rules both in the premise and conclusion.
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Lemma 21. Suppose that Γ1, . . . , Γn/Γ0 ∈ R. If ∆0, . . . ,∆1 ∈ S(Λ) and both

{
∨
∆1, . . . ,

∨
∆k} `PL

∨
Γi(1 ≤ i ≤ n) and

∨
Γ0 `PL

∨
∆0

then the rule Γ1, . . . , Γk/Γ0 is admissible in HR.

This gives us a recipe for constructing rule sets that absorb contraction and cut:
simply add more rules according to the lemmas above. This will not change the
notion of provability in the Hilbert system, but when this process terminates, the
ensuing rule set will be absorbing and gives rise to a cut free sequent calculus.

Example 22 (Modal Logic K). In a Hilbert-style calculus, the axiomatisation
of K is usually described in terms of the distribution axiom (which we view as
a rule with empty premise) and the necessitation rule:

(D) �(A→ B)→ �A→ �B (N)
A

�A

We first apply Lemma 20 to break the propositional connectives in the dis-
tribution axiom. We have that the axiom ¬�(A → B),¬�A,�B is admis-
sible by Lemma 21, and applying Lemma 20 to this axiom and the instance
A → B/�(A → B) of the necessitation rule gives admissibility of the rule set
consisting of all instances of

¬A,B
¬�A,�B

with the help of (admissible) propositional reasoning in the premise. The same
procedure, applied to the instances

¬A,B → C

¬�A,�(B → C)
¬�(B → C),¬�B,�C

gives admissibility of
¬A,¬B,C

¬�A,¬�B,�C
.

Continuing in this way and absorbing weakening, we obtain admissibility of

¬A1, . . . ,¬An, A0

¬�A1, . . . ,¬�An,�A0, Γ

where Γ ∈ S(Λ) is an arbitrary context. We have shown previously that this
rule set is absorbing, and it is easy to see that it is equivalent to the rule set
consisting of all instances of N and D.

6 Applications: Sequent Calculi for Conditional Logics

After having seen how the construction of absorbing rule sets gives rise to stan-
dard cut-elimination results for a number of well-studied normal modal logics, in

11



this section we construct a cut-free sequent calculus for a number of conditional
logics.

Conditional logics [2] are extensions of propositional logic by a non-monotonic
conditional A ⇒ B, read as “B holds under the condition that A”. The con-
ditional implication is non-monotonic in general, that is the validity of A ⇒ B
does not imply that also (A ∧ C)⇒ B is a valid statement.

Axiomatically, the first argument A of the conditional operation A ⇒ B
behaves like the � in neighbourhood frames and only supports replacement of
equivalents, whereas the second argument B obeys the rules of K. Standard
conditional logic CK is axiomatised by the following two rules

A↔ A′

A⇒ B ↔ A′ ⇒ B

∧
1≤i≤nBi → B0∧

1≤i≤nA⇒ Bi → (A→ B0)

in [2]. We write CK for the rule set that comprises both of the above rules. Other
axioms of interest include

(ID)A⇒ A (MP) (A⇒ B)→ A→ B (CEM) (A→ B) ∨ (A⇒ ¬B)

The first axiom embodies a form of identity in the sense that A holds under
condition A and (MP) is a conditional form of modus ponens. The axiom (CEM)
is the conditional excluded middle. We denote combination of rule sets by jux-
taposition so that CKID comprises all instances of CK and ID.

6.1 Cut Elimination for Extensions of CK without CEM

We first treat extensions of the basic conditional logic CK with axioms ID and
MP, but not including CEM and discuss CEM later, as the effect of adding CEM
leads to a more general form of the CK rule. We start by introducing some
notation that provides a shorthand for expressing the bi-implications in the
premise of CK.

Notation 23. If A0, . . . , An ∈ F(Λ) are conditional formulas, we write A0 =
· · · = An for the sequence of sequents consisting of ¬A0, Ai and ¬Ai, A0 for all
1 ≤ i ≤ n.

If we absorb cuts using Lemmas 20 and 21 we see that all instances of

(CKg)
A0 = · · · = An ¬B1, . . . ,¬Bn, B0

¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0), Γ

are admissible in HCK. It is easy to see that the rule set CKg is actually absorbing:

Theorem 24. The rule set CKg is absorbing and equivalent to CK. As a con-
sequence, GCKg has cut-elimination and GCKg ` A iff HCK ` A whenever
A ∈ F(Λ).

Proof. Using Lemmas 20 and Lemma 21 it is immediate that the rule set CKg is
admissible in HCK. The argument that show that CKg is absorbing is analogous
to that for the modal logic K (Example 16), and the result follows from Theorem
19.
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The logic CKID arises form CK by adding the identity axiom A⇒ A to the rule
set CKH that axiomatises standard conditional logic. Applying Lemma 20 to the
two rule instances on the left

¬A,B ¬B,A
¬(A⇒ A), (A⇒ B)

A⇒ A (IDg)
A = B

A⇒ B,Γ

gives rise to the rule schema (ID) on the right where we have used Lemma 21
to absorb weakening. If we denote the rule set consisting of all instances of CKg
and IDg by CKIDg, we obtain:

Proposition 25. The rule set CKIDg is absorbing and equivalent to CKID.

Proof. It is easy to see that CKIDg absorbs the structural rules, and that CKID
is equivalent to CKIDg. Cuts between conclusions of (IDg) are readily seen to be
absorbed, and absorption of cuts between an instance of CKg and an instance of
ID follows by construction.

The logic CKMP arises by augmenting the logic CK with the additional axiom
(A⇒ B)→ (A→ B). The effect of adding (MP) is similar to that of enriching
the modal logic K with the (T)-axiom. Adding the missing cuts to CK augmented
with (MP) and absorbing the structural rules leads to the rule schema

(MPg)
A,¬(A⇒ B), Γ ¬B,¬(A⇒ B), Γ

¬(A⇒ B), Γ

and we denote the rule set consisting of all instances of CKg and MPg by CKMPg.
Our cut elimination theorem then takes the following form:

Proposition 26. The rule set CKMPg is absorbing and equivalent to CKMP.

Proof. Again, it is easy to see that CKMPg is admissible in HCKMP and the
converse follows by construction. All we have to show is that CKMPg is absorbing,
where the absorption of structural rules is easy and left to the reader. For the
absorption of cut, the argument is similar to cut elimination in the modal logic
T, and can be found in the appendix.

6.2 Cut Elimination for Extensions of CKCEM

To construct an absorbing rule set for conditional logic plus the axiom

(CEM)(A⇒ B) ∨ (A⇒ ¬B)

we start from the admissible rule set for CK and close under cuts that arise with
(CEM). Repeated applications of Lemma 20 and Lemma 21 lead to the rule set

(CEMg)
A0 = · · · = An B0, . . . , Bj ,¬Bj+1,¬Bn

(A0 ⇒ B0), . . . , (Aj ⇒ Bj),¬(Aj+1 ⇒ Bj+1), . . . ,¬(An ⇒ Bn), Γ

for 1 ≤ j ≤ n.

13



Proposition 27. The rule set CKCEMg is absorbing and equivalent to CKCEM.

As a consequence, cut elimination holds in CKCEMg. We can apply essentially the
same argument to an extension of CK with both conditional modus ponens and
conditional excluded middle, but have to take care of the cuts arising between
MPg and CEMg, which leads to the new rule

(MPEMg)
A, (A⇒ B), Γ B, (A⇒ B), Γ

(A⇒ B), Γ
.

If we denote the extension of CKCEMg with MPg and MPEMg by CKCEMMPg,
we obtain:

Proposition 28. The rule set CKCEMMPg is absorbing and equivalent to CKCEMMP.

We note that the latter theorem was left as an open problem for the sequent
system presented in [8]. In summary, we obtain the following results about ex-
tensions of the conditional logic CK.

Theorem 29. Suppose that L is one of CK, CKID, CKMP, CKCEM or CKCEMMP.
Then GLg ` A whenever HL ` A for all A ∈ F(Λ). Moreover, cut elimination
holds in GL.

The theorem follows, in each of the cases, from Theorem 15 and Theorem 19
together with the fact that the rule set  L and  Lg are equivalent and the latter
is absorbing.

7 Complexity of Proof Search

It is comparatively straightforward to extract complexity bounds for provability
of the logics considered above by analysing the complexity of proof search under
suitable strategies in the cut-free sequent systems obtained. Clearly, in those
cases where all modal rules peel off exactly one layer of modal operators, the
depth of proofs is polynomial in the nesting depth of modal operators in the
target formula, and therefore, proof search is in PSPACE under mild assumptions
on the branching width of proofs [12, 9]. Besides reproving Ladner’s classical
result for K [7], we thus have

Theorem 30. Provability in CK and CKID is in PSPACE.

This reproves known complexity bounds originally shown in [8] (alternative short
proofs using coalgebraic semantics are given in [11]). For CKCEM, the bound can
be improved using dynamic programming in the same style as in [13]:

Theorem 31. Provability in CKCEM is in coNP.

More interesting are those cases where some of the modal operators from the
conclusion remain in the premise, such as T, K4, CKMP, and CKCEM (where the
difference between non-iterative logics, i.e. ones whose Hilbert-axiomatisation
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does not use nested modalities, such as T, CKMP, and CKMPCEM, and itera-
tive logics such as K4 is surprisingly hard to spot in the sequent presentation).
For K4, the standard approach is to consider proofs of minimal depth, which
therefore never attempt to prove a sequent repeatedly, and analyse the maximal
depth that a branch of a proof can have without repeating a sequent. For T, a
different strategy is used, where the (T ) rule is limited to be applied at most
once to every formula of the form ¬�A in between two applications of (K) [6]. A
similar strategy works for the conditional logics CKMP and CKMPCEM, which
we explain in some additional detail for CKMP.

We let CKMP0
g and CKMP1

g denote restricted sequent systems where in
CKMP0

g, a formula ¬(A⇒ B) is marked on a branch as soon as the rule (MPg)
has been applied to it (backwards) and unmarked only at the next applica-
tion of rule (CKg). Rule (MPg) applies only to unmarked formulas. In CKMP1

g,
we instead impose a similar restriction where rule (MPg) applies to a sequent
¬(A ⇒ B), Γ only in case Γ does not contain a propositional descendant of ei-
ther A or ¬B. Here, a sequent ∆ is called a propositional descendant of a formula
A if it can be generated from A by applying propositional sequent rules back-
wards (e.g. the propositional descendants of (¬(A∧B)∧C) are ¬(A∧B); C; and
¬A,¬B). It is easy to check that CKMP1

g-proofs can be converted into CKMP0
g-

proofs, i.e. CKMP1
g is the most restrictive system. One shows that CKMP1

g admits
contraction and inversion by verifying that the corresponding proof transforma-
tions in CKMPg preserve CKMP1

g-proofs. It is then clear that every application of
the rule (MPg) that violates the CKMP1

g-restriction can be replaced by inversion
and contraction, so that CKMP1

g, and hence also CKMP0
g, proves the same for-

mulas as CKMPg. Proofs in CKMP0
g are easily seen to have at most polynomial

depth. Essentially the same reasoning applies to CKMPCEM. Therefore, we have

Theorem 32. Provability in CKMP is in PSPACE; provability in CKMPCEM
is in coNP.

We note that the complexity of CKMPCEM was explicitly left open in [8].

8 Conclusions

We have established a generic method of cut elimination in modal sequent sys-
tem based on absorption of cut and structural rules by sets of modal rules. We
have applied this method in particular to various conditional logics, thus ob-
taining cut-free unlabelled sequent calculi that complement recently introduced
labelled calculi [8]. In at least one case, the conditional logic CKMPCEM with
modus ponens and conditional excluded middle, our calculus seems to be the
first cut-free calculus in the literature, as cut elimination for the corresponding
calculus in [8] was explicitly left open. We have applied these calculi to obtain
complexity bounds on proof search in conditional logics; in particular we have re-
proved known upper complexity bounds for CK, CKID, CKMP [8] and improved
the bound for CKCEM from PSPACE to coNP using dynamic programming
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techniques following [13]. Moreover, we have obtained an upper bound coNP
for CKMPCEM, for which no bound has previously been published. We con-
jecture that our general method can also be applied to other base logics, e.g.
intuitionistic propositional logic or first-order logic, which is subject to further
investigations.
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Appendix: Omitted Proofs

Proof of Theorem 15

Proof. We use Gentzen’s classical method and proceed by a double induction on
the size of the cut formula and the height of the proof tree. That is, we prove
the statement

∀A ∈ F(Λ)∀n ∈ ω(n = n1 + n2& `n1 Γ,A,`n2 ∆,¬A =⇒ ` Γ,∆)

by induction on size(A) where, in the inductive step, we use a side induction the
size of proof trees, as indicated by the subscript of the entailment sign. Formally,
the relation `n is defined inductively by `1 Γ,A,¬A and

`n A
`n+1 ¬¬A

`n Γ,¬A,¬B
`n+1 Γ,¬(A ∧B)

`n Γ,A `k Γ,B
`n+k+1 Γ,A ∧B

`n1 F1 . . . `nk
Fk

`n1+···+nk+1 F0

where, in the last rule, F1...Fk

F0
∈ R. We may inductively assume that the state-

ment holds for all cut formulas C < A and to prove the statement for A we have
to consider the following cases:

1. cuts that arise between two rule conclusions
2. cuts that arise between a rule conclusion and the conclusion of a propositional

rule or axiom
3. cuts that arise between two propositional rules.

We start with item (1), which follows directly from the fact that R absorbs cut.
In more detail, suppose that F1,...,Fk

F0,A
and G1...Gk

G0,¬A ∈ R and `ni Fi (i = 1, . . . , k)
and `mj

Gj for j = 1, . . . , l. As R absorbs cut, we have that F0, G0 is derivable
using cuts on formulas < A from the additional assumptions Γ,∆ provided
that for some D ∈ F(Λ) we have that both Γ,D and ∆,¬D are among the
F1, . . . , Fk, G1, . . . , Gl. In case Γ,D = ∆,¬D we have that Γ ⊆ Γ,∆ and ` Γ,∆
as weakening is admissible in GR. Assuming that `x Γ,D and `y ∆,¬D for
Γ,D 6= ∆,¬D we have that x + y < 2 +

∑
i ni +

∑
jmj and hence ` Γ,∆

by (inner) induction hypothesis. The fact that – in the deduction of F0, G0

– we may also have to use cuts on formulas < A is discharged by the outer
induction hypothesis and possible uses of weakening, contraction and inversion
are admissible by Proposition 12.

As regards item (2) we only discuss a subset of the cases that showcase the
need for contraction, weakening and inversion to be admissible. For the whole
discussion, suppose that F1...Fk

F0
∈ R and `ni Fi for i = 1, . . . , k.

– Suppose that F0 = F ′0, A and G0,¬A is an axiom. In case A ∈ G0 we have
that F0 = F ′0, A ⊆ F ′0, G0 and ` F ′0, G0 follows from ` F ′0, A as GR admits
weakening. In case ¬A /∈ G0 we have that G0 is an axiom, and hence so is
G0, F

′
0.
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– Suppose that F0 = F ′0, A and ¬A,G0 has been derived using (¬
∧

). We have
to discuss two cases, depending on whether or not ¬A is principal in the
application of (¬∧).
Case A = A′ ∧B′ and `m ¬A′,¬B′, G0 so that `m+1 ¬A,G0. As R absorbs
structural rules, we have that GR ` F ′0, A and GR ` F ′0, B. As cuts on A′

and B′ can be eliminated by induction hypothesis, we have GR ` F ′0, F ′0, G0

and therefore GR ` F ′0, G0 as GR admits contraction.
Case `m ¬C,¬D,¬A,G0 so that `m+1 ¬(C ∧ D),¬A,G0. As m + 1 +∑k
i=1 ni < m+1+1+

∑k
i=1 ni we may apply the inner induction hypothesis

to conclude ` ¬C,¬D,G0, F
′
0 and applying (¬∧) gives ` F ′0,¬(C ∧D), G0.

All the other cases follow exactly the same pattern. We now focus on item (3),
that is, we show how cuts between the conclusions of propositional rules and
axioms can be eliminated. This is mostly standard and again we only discuss a
subset of the cases. Suppose that `n F0, A and `m G0,¬A.

– If both F0, A and G0,¬A are axioms, then so is F0, G0.
– Suppose that F0, A has been derived using (∧) and G0,¬A has been derived

using (¬∧). We distinguish four cases depending on whether or not A is
principal in the application of ∧ or (¬∧).
Case A = A′ ∧ B′ and `n0 F0, A, `n1 F0, B

′ so that n = n0 + n1 + 1 and
`n A ∧ B,F0. If A is principal in the application of (¬∧), we have that
`m−1 G0,¬A′,¬B′. By (outer) induction hypothesis, cuts on A′ and B′ can
be eliminated so that we have ` F0, F0, G0 and it follows from closure under
contraction that ` F0, G0.
IfA is not principal in the application of (¬∧) we have that `m−1 ¬C,¬D,¬(A′∧
B′), G′0 so that G0 = ¬(C ∧D), G′0 and `m ¬(A ∧ B), G′0. As `n F0, A and
`m−1 ¬C,¬D,¬A,G′0 and n + (m − 1) < n + m we can apply the inner
induction hypothesis to eliminate the cut on A so that ` F0,¬C,¬D,G′0
and applying (¬∧) gives ` F0,¬(C ∧D), G′0 = F0, G0 as required.
The two cases where A is not principal in the application of (¬∧) follow
exactly the same pattern.

The remaining cases of cuts between propositional rules and axioms are entirely
analogous, and therefore omitted.

Proof of Proposition 26

Proof. It is clear that both (CKg) and (MPg) absorb the structural rules. For
cut, we first consider cuts between two instances of (MPg), say

(r1)
A,¬(A⇒ B), Γ ¬B,¬(A⇒ B), Γ

¬(A⇒ B), Γ
(r2)

C,¬(C ⇒ D), ∆ ¬D,¬(C ⇒ D), ∆
¬(C ⇒ D), ∆

where the cut happens on F ∈ F(Λ). We distinguish several cases:
Case F = (A⇒ B) and F ∈ ∆. Then ∆ = (A⇒ B), ∆′ for some ∆′ ∈ S(Λ).

To eliminate the cut on C, we note that the following two derivations
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A,¬(A⇒ B), Γ ¬B,¬(A⇒ B), Γ
(MP)

¬(A⇒ B), Γ C,¬(C ⇒ D), (A⇒ B), ∆′
(cut (F ))

C,¬(C ⇒ D), Γ,∆′

and

A,¬(A⇒ B), Γ ¬B,¬(A⇒ B), Γ
(MP))

¬(A⇒ B), Γ ¬D,¬(C ⇒ D), (A⇒ B), ∆′
(cut (F ))

¬D,¬(C ⇒ D), Γ,∆′

witness that we can use both C,¬(C ⇒ D), Γ,∆′ and ¬D,¬(C ⇒ D), Γ,∆′

as axioms in CKMPg + Cut(F, r1, r2) as the cuts occur between the premises of
(r2) and conclusions of (r1). Applying (MPg) to these axioms, we obtain that
CKMPg + Cut(F, r1, r2) ` ¬(C ⇒ D), Γ,∆′.

Case F = (C ⇒ D) and F ∈ Γ . This is symmetric to the case above.
Case F ∈ Γ and ¬F ∈ ∆. Then Γ = Γ ′, F and ∆ = ∆′,¬F . We have to

show that
¬(A⇒ B),¬(C ⇒ D), Γ ′, ∆′

is derivable in Cut(F, r1, r2). We note that the deduction

A,¬(A⇒ B), F, Γ ′ C,¬(C ⇒ D),¬F,∆′

A,¬(A⇒ B), C,¬(C ⇒ D), Γ ′, ∆′

witnesses that we may use A,¬(A⇒ B), C,¬(C ⇒ D), Γ ′, ∆′ as an axiom in the
system CKMPg + Cut(F, r1, r2) as the cut on F has occurred between premises
of r1 and r2. The same deduction, with C replaced by ¬D throughout, witnesses
that this is also the case for A,¬(A⇒ B),¬D,¬(C ⇒ D), Γ ′, ∆′. An application
of (MPg) now yields CKMPg + Cut(F, r1, r2) ` ¬(C ⇒ D), A,¬(A⇒ B), Γ ′, ∆′.

By the symmetric argument (replace A by ¬B) we obtain that also CKMPg+
Cut(F, r1, r2) ` ¬(C ⇒ D),¬B,¬(A ⇒ B), Γ ′, ∆′ and an application of (MPg)
now yields CKMPg + Cut(F, r1, r2) ` ¬(C ⇒ D),¬(A⇒ B), Γ ′, ∆′ as required.

What is left is to consider cuts, say on F ∈ F(Λ), between the conclusions
of the rules

(r1)
A0 = · · · = An ¬B1, . . . ,¬Bn, B0

¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0), Γ

(r2)
C,¬(C ⇒ D), ∆ ¬D,¬(C ⇒ D), ∆

¬(C ⇒ D), ∆

As before, we need to discuss several cases.
Case F ∈ Γ or ¬F ∈ Γ . Trivial, as the conclusion of the cut can be derived

using a different weakening context Γ .
Case F = (Ai ⇒ Bi) for 1 ≤ i ≤ n. We assume without loss of generality

that i = 1 and have that F = (A1 ⇒ B1) ∈ ∆ so that ∆ = ∆′, F . To replace the
cut on F , we consider the deduction
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A0 = · · · = An ¬B1, . . . ,¬Bn, B0
(CK)

¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0, Γ ) C,¬(C ⇒ D), (A1 ⇒ B1),∆′
(cut (F ))

¬(A2 ⇒ B2), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0), C,¬(C ⇒ D), Γ,∆′

which witnesses that we may use

Σ1 = ¬(A2 ⇒ B2), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0), C,¬(C ⇒ D), Γ,∆′

as an axiom in GCKMPg + Cut(F, r1, r2). The above deduction, with C replaced
by ¬D throughout, witnesses that the same is true for

Σ2 = ¬(A2 ⇒ B2), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0),¬D,¬(C ⇒ D), Γ,∆′

and applying (MPg) with premises Σ1 and Σ2 yields GCKMPg + Cut(F, r1, r2) `
¬(A2 ⇒ B2), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0),¬(C ⇒ D), Γ,∆′ as required.

Case F = (A0 ⇒ B0) = (C ⇒ D). We have to give a derivation of ¬(A1 ⇒
B1), . . . ,¬(An ⇒ Bn), Γ,∆ in Cut(F, r1, r2). The deduction

A0 = · · · = An ¬B1, . . . ,¬Bn, B0 (CK)
¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0), Γ ¬B0,¬(A0 ⇒ B0), ∆

(Cut (F ))
¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn),¬B0, Γ,∆

witnesses that we may use

Σ1 = ¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn),¬B0, Γ,∆

as an axiom in GCKMPg + Cut(F, r1, r2) as the cut on F occurs between a
conclusion of (r1) and a premise of (r2). The same derivation, with ¬B0 replaced
by A0 shows that the same is true for

Σ2 = ¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), A0, Γ,∆.

We therefore have the two derivations
Σ1 ¬B1, . . . ,¬Bn, B0 (Cut (B0))

¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn),¬B1, . . . ,¬Bn, Γ,∆
and

Σ2

¬A0, A1 (w)¬A0, A1, B2, . . . , Bn (Cut (A0))
¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), A1, B2, . . . , Bn, Γ,∆

in GCKMPg + Cut(F, r1, r2). Applying (MPg) to the conclusions of both yields
that

GCKMPg + Cut(F, r1, r2) ` ¬(A1,⇒ B1), . . . ,¬(An ⇒ Bn),¬B2, . . . ,¬Bn, Γ,∆.

Iterating the same scheme, where we use weakening on a successively smaller
subset of B2, . . . , Bn finaly yields the claim GCKMPg + Cut(F, r1, r2) ` ¬(A1 ⇒
B1), . . . ,¬(An ⇒ Bn), Γ,∆. Note that weakening and cuts on formulas of size
< size(F ) is admissible in GCKMPg + Cut(F, r1, r2).

Case F = (A0 ⇒ B0) and ¬F ∈ ∆. We have that ∆ = ¬(A0 ⇒ B0), ∆′ and
the deduction
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A0 = · · · = An ¬B1, . . . ,¬Bn, B0
(CK)

¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0), Γ C,¬(C ⇒ D),¬(A0 ⇒ B0),∆′
(Cut (F )

¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), C,¬(C ⇒ D), Γ,∆′

witnesses that we may use

Σ2 = ¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), C,¬(C ⇒ D), Γ,∆′

as an axiom in GCKMPg + Cut(F, r1, r2). The same derivation, with C replaced
by ¬D, shows that the same is true for

Σ2 = ¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn),¬D,¬(C ⇒ D), Γ,∆′

and applying (MPg) with premises Σ1 and Σ2 yields the claim GCKMPg +
Cut(F, r1, r2) ` ¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), Γ,∆′. This finishes our anal-
ysis of cuts that may arise between conclusions of the (CKg) and the (MPg)-rule,
and hence the proof.

Proof of Proposition 27

Proof. Again, it suffices to check that the rule set CKCEMg is absorbing, where
the absorption of structural rules is clear. It therefore suffices to treat instances of
cuts between conclusions of rules of CKCEM. Owing to the form of the CKCEMg-
rule, our argument is very similar to that used for CKg. We consider the following
two instances

(r1)
A0 = · · · = An B0, . . . , Bi,¬Bi+1, . . . ,¬Bn

(A0 ⇒ B0), . . . , (Ai ⇒ Bi),¬(Ai+1 ⇒ Bi+1), . . . ,¬(An ⇒ Bn), Γ

(r2)
C0 = · · · = Cm D0, . . . , Dj ,¬Dj+1, . . . ,¬Dm

(C0 ⇒ D0), . . . , (Cj ⇒ Dj),¬(Cj+1 ⇒ Dj+1), . . . ,¬(Cm ⇒ Dm), ∆

and assume that the conclusions permit an instance of cut on F ∈ F(Λ). As
usual, we distinguish several cases, where the cases F ∈ Γ, F ∈ ∆,¬F ∈ Γ and
¬F ∈ ∆ are trivial.

Case F = (Ak ⇒ Bk) = (Cl ⇒ Dl) for k > i and 0 ≤ l ≤ j. Without loss
of generality we assume that k = n and l = 0 and get An = C0 and Bn = D0.
Denote the sequent that arises from applying cut on F to the conclusions of r1
and r2 by Σ0 and notice that, using cuts on An ≡ C0, we have that

Σ = A0 = A1 = · · · = An−1 = C1 = · · · = Cm

is derivable in GCKCEMg + Cut(F, r1, r2). This feeds into the derivation

B0, . . . , Bi,¬Bi+1, . . . ,¬Bn D0, . . . , Dj ,¬Dj+1, . . . ,¬Dm
(Cut (Bn))

B0, . . . , Bi, D1, . . . , Dj ,¬Bi+1, . . . ,¬Bn−1,¬Dj+1, . . . ,¬Dm Σ
(CKCEM)

Σ0

which establishes that
The case F = (Ak ⇒ Bk) ≡ (Bl ⇒ Dl) for k > i and 1 ≤ l ≤ j is symmetric,

which finishes the proof.
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Proof of Proposition 28

Proof. It is clear that the rule set CKCEMMPg absorbs the structural rules and
it is easy to see that it is equivalent to CKCEMMP. We have to show that it
absorbs cut.

Cuts between the conclusions of two instances of MPg have already been
treated in the proof of Theorem 26, and the proof translates verbatim to cuts
between instances of MPEMg. We consider cuts between two instances

(r1)
A, (A⇒ B), Γ B, (A⇒ B), Γ

(A⇒ B), Γ
(r2)

C,¬(C ⇒ D), ∆ ¬D,¬(C ⇒ D), ∆
¬(C ⇒ D), ∆

where the cut is performed on F ∈ F(Λ), say. The cases where either F ∈ Γ
and ¬F in ∆ or F ∈ ∆ and ¬F ∈ Γ are straightforward.

Case F = (A⇒ B) = (C ⇒ D). The derivation

A, (A⇒ B), Γ B, (A⇒ B), Γ
(MPEM)

(A⇒ B), Γ ¬B,¬(A⇒ B), ∆
(Cut (A⇒ B))¬B,Γ,∆

witnesses that we may use Σ1 = ¬B,Γ,∆ as an axiom in GCKCEMMP +
Cut(F, r1, r2). Similarly, the derivation

A,¬(A⇒ B), ∆ ¬B,¬(A⇒ B), ∆
(MP)

¬(A⇒ B), ∆ B, (A⇒ B), Γ
(Cut (A⇒ B))

B,Γ,∆

shows that the same is true for Σ2 = B,Γ,∆: note that in both cases, the cut
was performed between an axiom and a conclusion of both rules. As size(B) <
size(A ⇒ B) we may now use cut on B to establish that GCKCEMMPg +
Cut(F, r1, r2) ` Γ,∆.

Case F = (A ⇒ B) and ¬F ∈ ∆. We have that ∆ = ¬(A ⇒ B), ∆′. The
derivation

A, (A⇒ B), Γ B, (A⇒ B), Γ
(MPEM)

(A⇒ B), Γ C,¬(C ⇒ D),¬(A⇒ B), ∆′
(Cut (F ))

C,¬(C ⇒ D), Γ,∆′

witnesses that we may use

Σ1 = C,¬(C ⇒ D), Γ,∆′

as an axiom in GCKCEMMP + Cut(F, r1, r2). The same derivation, with C re-
placed by ¬D shows that the same is true for

Σ2 = ¬D,¬(C ⇒ D), Γ,∆′
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and an application of MPg yields derivability of ¬(C ⇒ D), Γ,∆′.
Case F = (C ⇒ D) and ¬F ∈ Γ . Analogous by interchaning the role of MPg

and MPEMg.
This leaves to consider cuts between two instances of CKCEMg and MPg and

between CKCEMg and MPEMg. We first consider the rules

(r1)
A, (A⇒ B), Γ B, (A⇒ B), Γ

(A⇒ B), Γ

(r2)
A0 = · · · = An B0, . . . , Bj ,¬Bj+1, . . . ,¬Bn

A0 ⇒ B0, . . . , (Aj ⇒ Bj),¬(Aj+1 ⇒ Bj+1), . . . ,¬(An ⇒ Bn), ∆

In this setting, all cases except the case F = (A ⇒ B) = (Ai ⇒ Bi) with
i > j are entirely analogous to those considered in the proof of Theorem 26
where applications of CKg need to be replaced by applications of CKCEMg. For
the case F = (A ⇒ B) = (Ai ⇒ Bi) with i > j we assume without loss of
generality that i = n and argue that, as in the proof of Theorem 26, that both

Σ1 = (A0 ⇒ B0), . . . , (Aj ⇒ Bj),¬(Aj+1 ⇒ Bj+1), . . . ,¬(An−1 ⇒ Bn−1), Bn, Γ,∆

and

Σ2 = (A0 ⇒ B0), . . . , (Aj ⇒ Bj),¬(Aj+1 ⇒ Bj+1), . . . ,¬(An−1 ⇒ Bn−1), An, Γ,∆

are axioms of GCKCEMMPg + Cut(F, r1, r2), leading to deductions ending in
Σ1, B0, . . . , Bj ,¬Bj+1, . . . ,¬Bn−1 andΣ2,¬A0, B1, . . . , Bj ,¬Bj+1, . . .¬Bn−1, re-
spectively. An application of MPg now yields derivability of (A0 ⇒ B0), . . . , (Aj ⇒
Bj),¬(Aj+1 ⇒ Bj+1), . . . ,¬(An−1 ⇒ Bn−1), B1, . . . , Bj ,¬Bj+1, . . . ,¬Bn−1. It-
erating the same schema, where MPEMg is used instead of MPg to eliminate oc-
currences of ¬Bi for i > j finally yields that (A0 ⇒ B0), . . . , (Aj ⇒ Bj),¬(Aj+1 ⇒
Bj+1), . . . ,¬(An−1 ⇒ Bn−1), Γ,∆ is derivable in GCKCEMMPg + Cut(F, r1, r2).

To see that cuts between conclusions of CKCEMg and MPEMg can be elim-
inated, one uses the same reasoning as above, with MPEMg and MPg inter-
changed.

Proof of Theorem 31

Proof. We use dynamic programming as in [13]: we proceed in stages; at stage
i, we compute provability of all sequents of length at most 2 and nesting depth
of conditionals at most i consisting of subformulas of the target formula or their
negations. As there are at most linearly many stages, it suffices to show that
each stage can be performed in coNP. To this end, observe that proofs may
be normalised to proceed as follows: first apply the propositional rules as long
as possible, thus decomposing all formulas into literals of the form A ⇒ B or
¬(A ⇒ B) in the various branches of the proof. Then in each branch, the rule
(CEMg) is deterministically applied to maximal groups of conditionals or negated
conditionals with equivalent left arguments; equivalence of the latter has been
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computed and memoised in the previous stages. This leads to proofs where all
branching is universal, namely on rules with several premises (actually, only on
the conjunction rule, as universal branching on (CEMg) is immediately caught
by memoising); there is no existential branching on selection of instances of rules
to be applied. Thus, the search process is performed in coNP.

Proof of Theorem 32

Proof. Analogous to Theorem 31, with a slightly adapted proof strategy in be-
tween two applications of (CEMg). To begin, we recall that, as laid out in the
arguments leading up to the theorem, the rules (MPg) and (MPEMg) can be re-
stricted to be applied at most once to every conditional or negated conditional in
between two applications of (CEMg). Thus, in the beginning of the (backwards)
proof and after every application of (CEMg), we apply the propositional rules
and the rules (MPg) and (MPEMg) as long as possible, but obeying the men-
tioned restriction. The remaining argument is as before, noting that the proof
depth remains polynomial.
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