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ABSTRACT. Canonical models are of central importance in modal logi@articular as they wit-
ness strong completeness and hence compactness. Whilenthveical model construction is well
understood for Kripke semantics, non-normal modal logftsnopresent subtle difficulties — up to
the point that canonical models may fail to exist, as is tle@ag. in most probabilistic logics. Here,
we present a generic canonical model construction in thesgaframework of coalgebraic modal
logic, which pinpoints coherence conditions between syatal semantics of modal logics that guar-
antee strong completeness. We apply this method to recohst@nonical model theorems that are
either known or folklore, and moreover instantiate our rodtko obtain new strong completeness
results. In particular, we prove strong completeness afeganodal logic with finite multiplicities,
and of the modal logic of exact probabilities.

In modal logic, completeness proofs come in two flavomwsakcompleteness, i.e. derivability of
all universally valid formulas, is often proved usifigite modelconstructions, andtrong com-
pleteness, which additionally allows for a possibly infiniet of assumptions. The latter entails
recursive enumerability of the set of consequences of asiely enumerable set of assumptions,
and is usually established using (infinitgnonical modelsThe appeal of the first method is that it
typically entails decidability. The second method yieldgranger result and has some advantages
of its own. First, it applies in some cases where finite mofddlito exist, which often means that the
logic at hand is undecidable. In such cases, a completenestvia canonical models will at least
salvage recursive enumerability. Second, it allows foestétic axiomatisations, e.g. pertaining to
the infinite evolution of a system or to observational egeinee, i.e. statements to the effect that
certain states cannot be distinguished by any formula.

In the realm of Kripke semantics, canonical models exis&ftarge variety of logics and are
well understood, see e.g. [2]. But there is more to modakltigan Kripke semantics, and indeed
the natural semantic structures used to interpret a laags @df modal logics go beyond pure re-
lations. This includes e.g. the selection function sencardf conditional logics [4], the semantics
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of probabilistic logics in terms of probability distribotis, and the game frame semantics of coali-
tion logic [16]. To date, there is very little research thabyides systematic criteria, or at least
a methodology, for establishing strong completeness fjic$onot amenable to Kripke semantics.
This is made worse as the question of strong completenesisltyulepends on the chosen semantic
domain, which as illustrated above may differ widely. It regisely this variety in semantics that
makes it hard to employ the strong-completeness-via-gaipmpproach, as in many cases there
is no readily available notion of canonical model. The pnéseork improves on this situation by
providing a widely applicable generic canonical model ¢artdion. More precisely, we establish
the existence of quasi-canonical models, that is, modededan the set of maximally consistent
sets of formulas that satisfy the truth lemma, as there mayhmique, or canonical, such model in
our more general case. In order to cover the large span ofréenséructures, we avoid a commit-
ment to a particular class of models, and instead work wittnframework of coalgebraic modal
logic [15] which precisely provides us with a semantic unilarfor all of the examples above. This
is achieved by using coalgebras for an endofunZtas the semantic domain for modal languages.
As we illustrate in examples, the semantics of particulgideis then obtained by particular choices
of T'. Coalgebraic modal logic serves in particular as a generabstic framework for non-normal
modal logics. As such, it improves on neighbourhood serogiiti that it retains the full semantic
structure of the original models (neighbourhood semarntffers only very little actual semantic
structure, and in fact may be regarded as constructed fratacyc material [18]).

In this setting, our criterion can be formulated as a set ¢fecence conditions that relate
the syntactic component of a logic to its coalgebraic seivsntogether with a purely semantic
condition stating that the endofunctérthat defines the semantics needs to preserve inverse limits
weakly, and thus allows for a passage from the finite to thaitefi We are initially concerned with
the existence of quasi-canonical models relative to thesadéall T-coalgebras, that is, whith logics
that are axiomatisable by formulas of modal depth uniforadyal to one [17]. As in the classical
theory, the corresponding result for logics with extra feanonditions requires that the logic is
canonical, i.e. the frame that underlies a quasi-canonicalel satisfies the frame conditions, which
holds in most cases, but for the time being needs to be edtellindividually for each logic.

Our new criterion is then used to obtain both previously kn@md novel strong completeness
results. In addition to positive results, we dissect a nurob#gics for which strong completeness
fails and show which assumption of our criterion is violatéa particular, this provides a handle
on adjusting either the syntax or the semantics of the loghaad to achieve strong completeness.
For example, we demonstrate that the failure of strong cetapess for probabilistic modal logic
(witnessed e.qg. by the set of formulas assigning probgbilit — 1/n to an event for alk but ex-
cluding probabilityl) disappears in the logic of exact probabilities. Moreower,show that graded
modal logic, and more generally any description logic [1jwqualified humber restrictions, role
hierarchies, and reflexive, transitive, and symmetrics,dkestrongly complete over the multigraph
model of [5], which admits infinite multiplicities. While ing completeness fails for the naive
restriction of this model to multigraphs allowing only fiaimultiplicities, we show how to salvage
strong completeness using additive (finite-)integer-@dlmeasures. Finally, we prove strong com-
pleteness of several conditional logics w.r.t. conditidnames (also known as selection function
models); for at least one of these logics, strong complstenas previously unknown.

1. Preliminaries and Notation

Our treatment of strong completeness is parametric in b&lsyntax and the semantics of a wide
range of modal logics. On the syntactic side, we fixadal similarity typeA consisting of modal



operators with associated arities. Given a similarity typ@nd a countable sdt of atomic propo-
sitions, the sef(A) of A-formulasis inductively defined by the grammar

FA)> ¢ u=p|L]=¢[dNY]|L(1,. .., én)
wherep € P andL € A is n-ary; further boolean operators (—, <, T) are defined as usual.
Given any setX (e.g. of formulas, atomic propositions, or sets (1)), wetaFrop(X) for the set
of propositional formulas ovek andA(X) = {L(x1,...,2z,) | L € Aisn-ary,zy,...,z, € X}
for the set of formulas arising by applying exactly one opmréo elements ofX. We instantiate
our results to a variety of settings later with the followsignilarity types:

Examples 1.1. 1. The similarity typeAg of standard modal logic consists of a single unary
operatord.

2. Conditional logic [4] is defined over the similarity typer, = {=} where the binary operator
= is read as a non-monotonic conditional (default, relevém},aisually written in infix notation.

3. Graded modal operators [8] appear in expressive destriloigics [1] in the guise of so-called
qualified number restrictions; although we discuss only ahedpects, we use mostly description
logic notation and terminology below. The operators of gcadhodal logic (GML) aré\gumr, =
{(>k) | k € N} with (> k) unary. We write> k. ¢ instead of(> k)¢. A formula> k. ¢ is read as
‘at leastk successor states satighy and we abreviat€lgp = - > 1.-¢.

4. The similarity typeApy, of probabilistic modal logic (PML) [14] contains the unanodal
operatorsL, for p € Q N [0, 1], read as ‘with probability at leagt .. .".

We split axiomatisations of modal logics into two parts: fingt group of axioms is responsible for
axiomatising the logic w.r.t. the class all (coalgebraic) models, whereas the second consists of
frame conditions that impose additional conditions on nigd&s the class of all coalgebraic mod-
els, introduced below, can always be axiomatised by formofaank 1, i.e. containing exactly one
level of modal operators [17] (and conversely, every ctitbecof such axioms admits a complete
coalgebraic semantics [18]), we restrict the axioms in st group accordingly. More formally:

Definition 1.2. A (modal) logicis a triple £ = (A,.A,0) whereA is a similarity type, 4 C
Prop(A(Prop(P))) is a set ofrank-1 axiomsand©® C F(A) is a set offrame conditions We
say thatl is arank-1 logicif © = 0. If ¢ € F(A), we writet-, ¢ if ¢ can be derived from
AU O with the help of propositional reasoning, uniform subsiito, and the congruence rule: from
G1 = P1,...,0p — Uy infer L(gq,...,én) < L(11,...,1%,) wheneverL € A is n-ary. For
a setd C F(A) of assumptions, we writ® -, ¢ if -, &1 A -+ A ¢, — ¢ for (finitely many)
01, ...,0n € D. Asetd is L-inconsistenif & -, 1, and otherwise-consistent

Examples 1.3. 1. The modal logid< comes about as the rank-1 loditx, Ak, ) where A, =
{OT,0(p — ¢q) — (Op — Oq)}. The logicsK4, 54, KB, ... arise asAx, Ax,0) where®
contains the additional axioms that define the respectge 2], e.9.0 = {Op — OOp} in the
case ofK4.

2. For conditional logic, we take the similarity type-, together with rank-1 axioms = T,

r= (p — q) — ((r = p) — (r = q)) stating that the binary conditional is normal in its second
argument. Typical additional rank-1 axioms are

(ID) a=a (identity)
(DIS) (a=c)AN(b=c)— ((aVd)=c) (disjunction)
(CM) (a=c)N(a=b)— ((aAb)=c) (cautious monotony)

which together form the so-calle®ystem C a modal version of the well-known KLM
(Krauss/Lehmannn/Magidor) axioms of default reasoning uBurgess [3].



3. The axiomatisation of GML given in [8] consists of the rahkxioms
O(p—¢) — (Op — Bg)
>k.p—>l.pforl <k
>kpeVig k20N AZ(k—19).(pA—q)
O —q) — (Zk.p—>k.q)
Frame conditions of interest include e.g. reflexivity-& > 1. p), symmetry f — O >1.p), and
transitivity > 1. >n.p — >n.p).

To keep our results parametric also in the semantics of modal, we work in the framework of
coalgebraic modal login order to achieve a uniform and coherent presentatiorhisrfiamework,
the particular shape of models is encapsulated by an entofufi : Set — Set, the signature
functor (recall that such a functor maps every 8eto a set/’ X, and everymagy : X — Y toa
mapTf : TX — TY in such a way that composition and identities are preserwetich may be
thought of as a parametrised data type. We fix the dat8, 7" etc. throughout the generic part of
the development. The role of models in then played bgoalgebras:

Definition 1.4. A T-coalgebrais a pairC = (C,~) whereC'is a set (thestate spacef C) and
~v: C'— TC'is afunction, the transition structure Gf

We think of T'C' as a type of successors, polymorphicin The transition structure associates
a structured collection of successerg) to each state: € C'. The following choices of signature
functors give rise to the semantics of the modal logics dised in Expl. 1.3.

Examples 1.5. 1. Coalgebras for the covariant powerset fun®atefined on setX by P(X) =
{A| A C X} and on mapg by P(f)(A) = f[A] are Kripke frames, as relatiod® C W x W
on a setV of worlds are in bijection with functions of typd” — P(WW). Restricting the powerset
functor tofinite subsets, i.e. puttin@,,(X) = {A C X | A finite}, one obtains the class of image
finite Kripke frames a$,,-coalgebras.

2. The semantics of conditional logic is captured coalgeblig by the endofuncto§ that maps
a setX to the set(P(X) — P(X)) of selection functions ovek (the action ofS on functions
f: X — Yisgiven byS(f)(s)(B) = f[s(f~'[B])]). The ensuingS-coalgebras are precisely the
conditional frames of [4].

3. The(infinite) multiset functor3,, maps a setX to the set5,,.X of multisets overX, i.e.
functions of typeX — N U {oo}. Accordingly, B..-coalgebras armultigraphs(graphs with edges
annotated by multiplicities). Multigraphs provide an ai&ive semantics for GML which is in
many respects more natural than the original Kripke semms(f8i, as also confirmed by new results
below.

4. Finally, if supp(n) = {x € X | pu(x) # 0} is the support of a functiom : X — [0,1]
andD(X) = {p : X — [0,1] | supp(u) finite, " . pu(x) = 1} is the set of finitely supported
probability distributions onX, thenD-coagebras are probabilistic transition systems, the stma
domain of PML.

The link between coalgebras and modal languages is prowgededicate liftings [15], which are
used to interpret modal operators. Essentially, predidtiteys convert predicates on the state space
X into predicates on the sétX of structured collections of states:

Definition 1.6. [15] An n-ary predicate lifting(n € N) for T is a family of maps\y : PX" —
PT X, whereX ranges over all sets, satisfying thaturality condition

)‘X(f_l[Al]ﬂ s 7f_1[An]) = (Tf)_l[)‘Y(Alﬂ s 7An)]



forall f: X —Y, Ay,..., A, € PY. (For the categorically minded, is a natural transformation
" — Qo TP, whereQ denotes contravariant powerset.)s#kucturefor a similarity typeA over
an endofunctofl’ is the assignment of am-ary predicate lifting]L] to everyn-ary modal operator
L eA.

Given a valuationV : P — P(C) of the propositional variables andZ-coalgebra(C, ), a
structure forA allows us to define a satisfaction relatign ., v between states @ and formulas
¢ € F(A) by stipulating that =, vy piff c € V(p) and

c ’:(C,'y,\/) L(‘bh SER) qbn) iff 7(6) € [[LHC(H¢1H7 SRR [[¢nﬂ)>

where[¢] = {c € C' | ¢ F(¢,4,v) ¢} An L-modelis now amode] i.e. a triple(C,~, V') as above,
such thate = 4,1 ¥ for all all ¢ € C and all substitution instancesof AU ©. An L-frameis
aT-coalgebra(C,~) such thatC,~, V') is anL-model for all valuationd’. The reader is invited
to check that the following predicate liftings induce thangtard semantics for the modal languages
introduced in Expl. 1.1.

Examples 1.7. 1. A structure forAx over the covariant powerset funct@® is given by
[O]x(A) ={Y € P(X) | Y C A}. The frame classes defined by the frame conditions men-
tioned in Expl. 1.3.1 are well-known; e.g. a Kripke fraif?€, R) is a K4-frame iff R is transitive.

2. Putting[=]x(A,B) = {f € S(X) | f(A) C B} reconstructs the semantics of conditional
logic in a coalgebraic setting.

3. Astructure for GML oveB is given by[(> k)] x (A) = {f : X — NU{oo} | >, ca f(z) >
k}. The frame conditions mentioned in Expl. 1.3.3 correspandanditions on multigraphs that
can be read off directly from the logical axioms. E.g. a ngnéiph satisfies the transitivity axiom
>1. >n.p — >n.p iff wheneverz has non-zero transition multiplicity tp andy has transition
multiplicity at leastn to z, thenz has transition multiplicity at least to z.

4. The structure oveDb that captures PML coalgebraically is given by the the pradidifting
[Lplx(A) = {n € D(X) | Xopean(x) = p}forp e (0,11 NQ.

From now onfix a modal logicL = (A, A, ©) and a structure forA over a functorT'. We say that
L is strongly completdéor some class of models if evel§consistent set of formulas is satisfiable
in some state of some model in that class. Restrictinfintee sets® defines the notion olveak
completenessnany coalgebraic modal logics are only weakly completg.[17

Definition 1.8. Let X be a set. If) € F(A) andr : P — P(X) is a valuation, we write)r for
the result of substituting (p) for p in ¢, with propositional subformulas evaluated according & th
boolean algebra structure B{ X). (Hencey/ 7 is a formula over the sé2(X) of atoms.) A formula
¢ € Prop(A(P(X)) is one-stepl-derivable denoted-1 ¢, if ¢ is propositonally entailed by the
set{y7 | 7: P — P(X),y € A}. Asetd C Prop(A(P(X))) is one-stepC-consistentf there do
not exist formulaspy, ..., ¢, € ® such thak% =(¢1 A -+ A ¢y,). Dually, theone-step semantics
[6]% € TX of aformulag € Prop(A(P(X)) is defined inductively by{L(A1,...,4,)]% =
[L]x(A1,...,Ay) for Ay,...; A, C X. Aset® C Prop(A(P(X))) is one-step satisfiablé
ﬂ¢€¢[[¢]]§( # (). We say thatC (or A) is separatingif t € T'X is uniquely determined by the set
{p e A(P(X)) | t € [[gzb]]&}. We call £ (or .A) one-step sound every one-step derivable formula
¢ € Prop(A(P(X))) is one-step valid, i.e]¢]} = X.

Henceforth, we assume thatis one-step soundso that everyl'-coalgebra satisfies the rank-1
axioms; in the absence of frame conditiofs (), this means in particular that everircoalgebra



is anL-frame. The above notions of one-step satisfiability andsiap consistency are the main
concepts employed in the proof of strong completeness ifotlmving section.

Given a structure fo\ overT, every sef3 of rank-1 axioms oveA defines a subfunctdfs of
Bwith Ts(X) = N{[¢7]x | ¢ € B,7: P — P(X)} C TX. This functor induces a structure for
which B is one-step sound.

Example 1.9. The additional rank-1 axioms of Expl. 1.3.2 induce subfares of the functorS
of Expl. 1.5.2. E.g. we have

SumX ={feS(X)|VAC X. f(A) C A}
Sup,pisyX ={f € S(X) |[VA,BC X. f(A) CANf(AUB) C f(A)U f(B)
Sup.pis.cm X = {f € S(X) | VA, B C X. f(A) CAA(f(B)C A= f(A)N B C f(B))}
(it is an amusing exercise to verify the last claim).

X)
X)

—

2. Strong Completeness Via Quasi-Canonical Models

We wish to establish strong completenessCdby defining a suitabld’-coalgebra structuré on
the setS of maximally £-consistent subsets Gf(A), equipped with the standard valuatidiip) =
{T" € S| p € T'}. The crucial property required is thabe coherenti.e.

CT) € [L](b1,...,0n) < L(p1,...,¢,) €T,

whereg = {A € S| ¢ € A}, for L € An-ary,T € S, and¢y,...,d, € F(A), as this allows
proving, by a simple induction over the structure of fornsula

Lemma 2.1(Truth lemma) If ¢ is coherent, then for all formulas, I |=(s ¢ vy ¢ iff ¢ € T

We define ajuasi-canonical modeb be a mode(.S, ¢, V') with ¢ coherent; the term quasi-canonical
serves to emphasise that the coherence condition does tevinitee the transition structuré
uniquely. By the truth lemma, quasi-canonical models foare £-models, i.e. satisfy all sub-
stitution instances of the frame conditions. The first goesis now under which circumstances
guasi-canonical models exist; we proceed to establish alyapplicable criterion. This criterion
has two main aspects:lacal form of strong completeness involving only finite sets, anmteser-
vation condition on the functor enabling passage from fiséts to certain infinite sets. We begin
with the latter part:

Definition 2.2. A surjective w-cochain (of finite sets)s a sequencéX,,),cn of (finite) sets
equipped with surjective functions, : X,,11 — X, calledprojections Theinverse limitlim X,

of (X,,) is the set{(z;) € [[;cn Xi | Yn.pn(2ny1) = 2} of coherentfamilies (z;). Thelimit
projectionsare the maps;((z,)nen) = i, ¢ € N; note that ther; are surjective, i.e. every € X;
can be extended to a coherent family. Since all set funct@sepve surjectiongI'X,,) is a sur-
jectivew-cochain with projection§’p,,. The functorl” weakly preserves inverse limits of surjective
w-cochains of finite setd for every surjectivew-cochain(X,,) of finite sets, the canonical map
T'(lim X,,) — lim T'X,, is surjective, i.e. every coherent familg,) in [[ 7X,, is inducedby a (not
necessarily unique) € 7'(lim X,) in the sense thdfr, (t) = ¢, for all n.

Example 2.3. Let A be a finite alphabet; then the set&, n € N, form a surjectivev-cochain of
finite sets with projectiong,, : A"*' — A", (a1,...,a,41) — (a1,...,a,). The inverse limit
@An is the setd“ of infinite sequences ovet. The covariant powerset funct® preserves this
inverse limit weakly: given a coherent family of subséts C A", i.e.p,[B,+1] = B, for all n,



we define the seB C A“ as the set of all infinite sequencgs,),>1 such thatai,...,a,) € B,

for all n; it is easy to check that inded8l induces theB,,, i.e.r,[B] = B,,. However,B is by no
means uniquely determined by this property: Observeltres just defined is a safety property. The
intersection ofB with any liveness property’, e.g. the setC of all infinite sequences containing
infinitely many occurrences of a fixed letter 4y will also satisfyr,,[B N C| = B,, for all n.

The second part of our criterion is an infinitary version ofoaal completeness property called
one-step completeness, which has been used previousigakcompleteness proofs [15, 17].

Definition 2.4. We say thatC is strongly one-step complete over finite séf®r finite X, every
one-step consistent subgebf Prop(A(P(X))) is one-step satisfiable.

The difference with plain one-step completeness is #hatbove may be infinite. Consequently,
strong and plain one-step completeness coincide in cagaddal similarity typeA is finite, since

in this caseProp(A(P(X))) is, for finite X, finite up to propositional equivalence. The announced
strong completeness criterion is now the following.

Theorem 2.5. If £ is strongly one-step complete over finite sets and sepagratinis countable,
and T weakly preserves inverse limits of surjectivecochains of finite sets, thefi has a quasi-
canonical model.

Proof sketch.The most natural argument is via the dual adjunction betwetnand boolean alge-
bras that associates to a set the boolean algebra of itstsuéisd to a boolean algebra the set of its
ultrafilters. For economy of presentation, we outline adipgoof instead: we prove that

() every maximally one-step consistebitC Prop(A(2()) is one-step satisfiable,

where2l = {¢ | ¢ € F(A)} C P(S).

The existence of the required coherent coalgebra stru¢toreS follows immediately, since the
coherence requirement fo(I'), I" € S, amounts to one-step satisfaction of a maximally one-step
consistent subset &frop(A(2L)).

Toprove &), letA = {L,, | n € N}, let P = {p,, | n € N}, let F,, denote the set of-formulas
of modal nesting depth at mostthat employ only modal operators frofy, = { Ly, ..., L,} and
only the atomic propositiong, . . . , p,, and letS,, be the set of maximally consistent subsetgpf
ThenS is (isomorphic to) the inverse Iim!ILn Sn, where the projections$;,.; — 5, and the limit
projectionsS — S,, are just intersection wittf,,. As the sets5,, are finite, we obtain by strong one-
step completenesg € 7'S,, such that,, ):gn ® N Prop(A(2,)), where2l,, = {6 N S, | ¢ € Fn}.
By separation(t,,),cn is coherent, and hence is induced by saneT'S by weak preservation of
inverse limits; thent =5 ®. n

Together with the Lindenbaum Lemma we obtain strong corapiss as a corollary.
Corollary 2.6. Under the conditions of Thm. 2.5,is strongly complete fo£-models.

Both Thm. 2.5 and Cor. 2.6 do apply to the case thatas frame conditions. Whefis of rank 1
(i.e. © = (), Cor. 2.6 implies thatZ is strongly complete for (models based afrframes. In
the presence of frame conditions, the underlying frame of-anodel need not be af-frame, so
that the question arises wheth@is also strongly complete fof-frames. In applications, positive
answers to this question, usually referred to as the caitppioblem, typically rely on a judicious
choice of quasi-canonical model to ensure that the lattanig-frame, often the largest quasi-
canonical model under some ordering’Bf. Detailed examples are given in Sec. 3.

Remark 2.7. It is shown in [13] thatI’ admits a strongly complete modal logicZif weakly pre-
serves (arbitrary) inverse limiand preserves finite setdhe essential contribution of the above



result is to remove the latter restriction, which fails inpiontant examples. Moreover, the observa-
tion that we need only considsurjectivew-cochains is relevant in some applications, see below.

Remark 2.8. A last point that needs clearing up is whether strong corapkss of coalgebraic
modal logics can be established by some more general mdtaadjuiasi-canonical models of the
quite specific shape used here. The answer is negative sairldhe case of rank-1 logias: it has
been shown in [12] that every sughadmits models which consist of the maximatigtisfiablesets
of formulas and obey the truth lemma. Under strong compéstgrsuch models are quasi-canonical.
This seems to contradict the fact that some canonical mam®tieictions in the literature,
notably the canonical Kripke models for graded modal logg;s6], employ state spaces which
have multiple copies of maximally consistent sets. The algument indicates that such logics
fail to be coalgebraic, and indeed this is the case for GMIhwitipke semantics. As mentioned
above, GML has an alternative coalgebraic semantics ovéiignaphs, and we show below that
this semantics does admit quasi-canonical models in ogesen

3. Examples

We now show how the generic results of the previous sectionbeaapplied to obtain canonical
models and associated strong completeness and compaitteessms for a large variety of struc-
turally different modal logics. We have included some niggagxamples where canonical models
necessarily fail to exist due to non-compactness, and wigseahich conditions of Thm. 2.5 fall
in each case. We emphasise that in the positive examplesetification of said conditions is
entirely stereotypical. Weak preservation of inverse thnof surjectivew-cochains usually holds
without the finiteness assumption, which is therefore gihroomitted.

Example 3.1(Strong completeness of Kripke semantics&dr. Recall from Expl. 1.5.1 that Kripke
frames are coalgebras for the powerset fun@id¢ = P(X). Strong completeness df with
respect to Kripke semantics is, of course, well known. Weflyrillustrate how this can be derived
from our coalgebraic treatment. To see tliatis strongly one-step complete over finite s&ts
let ® C Prop(Ax(P(X))) be maximally one-step consistent. It is easy to check fhat X |
O{z} € ¢} satisfiesh. To prove that the powerset functor weakly preserves ievarsts, let(X,,)
be anw-cochain, and let4,, € P(X,,)) be a coherent family. Thef,, ) is itself a cochain, and the
setA = lim A, C lim X,, induces(4,,) (w.r.t. the subset ordering dR(.X)). Separation is clear.
By Thm. 2.5, there exists a quasi-canonical Kripke mode&flbonormal modal logics. In particular,
the standard canonical model [4] is quasi-canonical; m@gses strong completeness (w.r.t. frames)
of all canonical logics such as4, S4, S5.

Example 3.2 (Failure of strong completeness af over finitely branching models)As seen in
Expl. 1.5.1, finitely branching Kripke frames are coalgsbfar the finite powerset functdp,,.

It is clear that quasi-canonical models fail to exist in thise, as compactness fails over finitely
branching frames: one can easily construct formulathat force a state to have at leastifferent
successors. The obstacle to the application of Thm. 2.5aisthie finite powerset functor fails to
preserve inverse limits weakly, as the inverse limit of.acochain of finite sets may fail to be finite.

Example 3.3(Conditional logic) Recall from Expl. 1.5.2 that the conditional logi¢K is inter-
preted over the functa$(X) = P(X) — P(X). To prove strong one-step completeness over finite
setsX, let® C Prop(AcL(P(X))) be maximally one-step consistent. Defiie P(X) — P(X)
by f(A) =N{B C X | A= B € ®&}; itis mechanical to check thgt|=! ®. To see thass weakly
preserves inverse limits, IX,) be a surjectives-cochain, let’ = lim X,,, and let(f,, € S(X,,))



be coherent. Defing : P(X) — P(X) by letting (z,,) € f(A) for a coherent familyz,,) € X

iff wheneverA = r,![B] for somen and someB C X, thenz,, € f,(B). Using surjectivity
of the projections of X,,), it is straightforward to prove that induces(f,). Finally, separation
is clear. By Thm. 2.5, it follows that the conditional logi¢X has a quasi-canonical model, and
hence thatCK is strongly complete for conditional frames. In the casehef additional rank-1
axioms mentioned in Expl. 1.3.2 and the corresponding suibus ofS described in Expl. 1.9, the
situation is as follows.

Identity: The functorSy;p, weakly preserves inverse limits of surjectivecochains. In the
notation above, putr,,) € f(A) iff the condition above holds and:,,) € A.

Identity and disjunction: The functorS;;p prg; weakly preserves inverse limits of surjective
w-cochains: pufz,,) € f(A)iff (z,) € A and wheneve(z,) € 7' B C A, thenz,, € f,.(B).

System C:lt is open whether the the functdl;p pis,cny Weakly preserves inverse limits of
surjectivew-cochains, and whether System C is strongly complete ovatittonal frames.

Indeed it appears to be an open problem to finglsemantics for which System C is strongly
complete, other than the generalised neighbourhood sema# described e.g. in [18], which is
strongly complete for very general reasons but providds lit the way of actual semantic infor-
mation. The classical preference semantics accordingwagsLie only known to be weakly com-
plete [3]. Friedman and Halpern [9] do silently prove straogpleteness of System C w.r.t. plau-
sibility measures; however, on close inspection the latter out to be essentially equivalent to the
above-mentioned generalised neighbourhood semanticsedvier, Segerberg [19] proves strong
completeness for a whole range of conditional logics @eareralconditional frames, where, in
analogy to corresponding terminology for Kripke frames.eaeyal conditional frame is equipped
with a distinguished set adidmissible propositionmiting both the range of valuations and the
domain of selection functions. In contrast, our methoddgdull conditional frames in which the
frame conditions hold foanyvaluation of the propositional variables. While in the caB€'K and
its extension by'D alone, these models differ from Segerberg’s only in thag theert default val-
ues for the selection function on non-admissible propmssti the canonical model for the extension
of CK by {ID, DIS} has non-trivial structure on non-admissible propositi@m we believe that
our strong completeness result for this logic is genuinely.n

Example 3.4(Strong completeness of GML over multigraphRecall from Expl. 1.5.3 that graded
modal logic (GML) has a coalgebraic semantics in terms ofntiudtiset functor5.,. To prove
strong one-step completeness over finite $étéet & C Prop(Aga(P(X))) be maximally one-
step consistent. We defide € B, (X) by B(A) > n <= >n. A € ®, itis easy to check thaB

is well-defined and additive. To prove weak preservatiomegise limits, lef X,,) be anv-cochain,
let X = lim X,,, and let(B,, € B (X)) be coherent. Then defing € B (X) pointwise by

noting that the sequendg3,,(z,,)) is decreasing by coherence. A straightforward computation
shows thatB induces(B,,). Separation is clear.

By the above and Thm. 2.5, all extensions of GML have quasteigal multigraph models.
While the technical core of the construction is implicit etwork of Fine [8] and de Caro [6],
these authors were yet unaware of multigraph semantichemzke our result th&ML is strongly
complete over multigraphisas not been obtained previously.

The standard frame conditions for reflexivity, symmetry,d amansitivity (Expls. 1.5.3
and 1.7. 3) and arbitrary combinations thereof are easén $& be satisfied in the quasi-canonical
model constructed above. We point out that this contradfs Kuipke semantics in the case of the



graded version of4, i.e. GML extended with the reflexivity and transitivity arins of Expl. 1.5.3:
as shown in [7], the complete axiomatisation of graded mimipd over transitive reflexive Kripke
frames includes two rather strange combinatorial artefaghich by the above disappear in the
multigraph semantics. The reason for the divergence (Wwhighegard as an argument in favour of
multigraph semantics) is that, while in many cases muligrenodels are easily transformed into
equivalent Kripke models by just making copies of statessuah translation exists in the transitive
reflexive case (transitivity alone is unproblematic).

Observe moreover that the above extends straightforwaeadtjecription logicsALCQO(R)
with qualified number restrictions and a role hierar@hyhere roles may be distinguished as, in any
combination, transitive, reflexive, or symmetric. As shawij10, 11], ALCQO(R) is undecidable
for manyR, even when only transitive roles are considered. For uddéte logics, completeness
is in some sense the ‘next best thing’, as it guarantees ifemirsiveness then at least recursive
enumerability of all valid formulas, and hence enables ratitc reasoning. Essentially, our results
show that the natural axiomatisation ALC Q(R) with transitive, symmetric and reflexive roles is
strongly complete over multigrapha result which fails for the standard Kripke semantics.

Example 3.5(Failure of strong completeness of image-finite GME)milarly to the case of image-
finite Kripke frames, one can model an image-finite versiogratled modal logic coalgebraically
by exchanging the functd8,, for the finite multiset functor3, where3(X) consists of all maps
X — N with finite support. Of course, the resulting logic is nomamact and hence fails to admit
a canonical model. This is witnessed not only by the samelyaphiformulas as in the case of
image-finite Kripke semantics, which targets finitenesshefitumber of different successors, but
also by the set of formula§>n.a | n € N}, which targets finiteness of multiplicities. Analysing
the conditions of Thm. 2.5, we detect two violations: notyotibes weak preservation of inverse
limits fail, but there is also no way to find an axiomatisatishich is strongly one-step complete
over finite sets (again, consider s¢tsn. {z} | n € N}).

Strong completeness of image-finite GML can be recoveredidgiyt djustments to the syntax and
semantics. We formulate a more general approach, as follows

Example 3.6(Strong completeness of the logic of additive measuré# fix an at most countable
commutative monoid/ (e.g. M = N). We think of the elements af/ as describing the measure
of a set of elements. To ensure compactness, we have to alioe sets to have undefined measure.
That is, we work with coalgebras for the endofunctay defined by

Ty (X) = {2, p) | A CP(X) closed under disjoint uniong : 2 — M additive}

The modal logic of additivé//-valued measures is given by the similarity typgy = {E,, | m €
M} whereE,,, ¢ expresses that has measuren, i.e.

[EnlxB = {(% n) € Tu(X) | B € A, u(B) = m}.
Ay is clearly separating. The logic is axiomatised by the feitg two axioms:
E,a— —E,a (n#m) and E,(aAb)AE,(aA—-b) — Enina.

These axioms are strongly one-step complete over finite et ® C Prop(Ay(P(X))) is
maximally one-step consistent, thel, i) =! ® whereA ¢ A iff E,,A € ® for some necessarily
uniquem, in which caseu(A) = m. Moreover,T); weakly preserves inverse limif§ = liLﬂXn’
with finite X,,: a coherent family((2(,,, i) € Tas (X)) is induced by(, 1) € Ty (X), where
2 ={n;'[B] | ne€N,Bc,}andu(r,[B]) = u.(B) is easily seen to be well-defined and
additive. Theorem 2.5 now guarantees existence of quasindeal models. A simple example is
M = Z/2Z, which induces a logic of even and odd.



For the casé/ = N, we obtain a variant of graded modal logic with finite multjiles, where
we code> k.¢ as—\/ ., Exo. However, it may still be the case that a state has a family of
successor sets of unbounded measure, so that undefinedtlessn@asure of the entire state space
just hides an occurrence of infinity. This defect is repabgihsisting that the measure of the whole
state space is finite at the expense of disallowing the mquikdorEy in the language, as follows.

Example 3.7(Strong completeness of finitely branchi@dIL ™). To force the entire state space to
have finite measure, we additionally introduceeaasurabilityoperatorE, interpreted by[E] B =
{(&, ) | B € 2}, and impose obvious axioms guaranteeing that measurés are defined on
boolean subalgebras &f(X), in particularET (i.e. u(X) is finite), andE,a — Ea. In order to
achieve compactness, we now leave a bolt hole on the syrahbstile and exclude the operats.

In other words, the syntax ¢ML™ is given by the similarity type\,,; = {E} U{E, | n > 0},
and we interpreGML™ over coalgebras for the functét,, defined by

By (X) = {(2A, ) | A boolean subalgebra (X ), 1 : A — N additive}.

Separation is clear. The axiomatisation(¥IL.~ is given by the axiomatisation of the modal logic
of additive measures, the above-mentioned axioms' osind the additional axiom

Ena NEb— Ep(aAD)V Ep(aA=b) V Vocpen(Er(aNb) A Ey_p(a A —b))

which compensates for the absencebpf Strong one-step completeness over finite sets and weak
preservation of inverse limits is shown analogously as iplE.6, so that we obtain strongly
complete finitely branching graded modal logidML~. The tradeoff is that the operator k.¢ is

no longer expressible as\/,, ;. £;¢ in GML™ which only allows to formulate the implication

Example 3.8(Failure of strong completeness for PML over finitely supedmprobability distribu-
tions). Like image-finite graded modal logic, probabilistic modadic as introduced in Expl. 1.5.4
fails to be compact, and violates the conditions of Thm. Z%veo counts, namely weak preser-
vation of inverse limits and strong one-step completengss finite sets. The first issue is related
to image-finiteness, while the second is rooted in the stracdf the real numbers: e.g. the set
{L1/2-1/na | n € N} U{~L; pa} is finitely satisfiable but not satisfiable.

Example 3.9 (Strong completeness of the logic of exact probabilitids) order to remove the
above-mentioned failure of compactness, we consider tmmfent of probabilistic modal logic
containing only operatorg), stating that a given event has probability exagtlyThis is, of course,
less expressive than the operatbgsbut still allows reasonable statements such as that radlisigy

on a die happens with probability/6.) Moreover, we require probabilities to be rational andwll
probabilities to be undefined, thus following the additiveasures approach as outlined above,
where we consider a subfunctor’t defined by the requirement that the whole set has medsure
However, we are able to impose stronger conditions on theadogh C P(X) of a probability
measureP on X: we require thatX € A andthatd, B € %A, B C Aimply A — B € FA, which is
reflected in the additional axionts; T andEpa A Ey(a A b) — E,_q(a A —b). Itis natural that we
cannot force closure under intersection, as there is inrgéne way to infer the exact probability
of AN B from the probabilities ofA and B. Along the same lines as above, we now obtain quasi-
canonical models, and hence strong completeness and coragscof the arising modal logic of
exact probabilities.



4. Conclusion

We have laid out a systematic method of proving existenceaubical models in a generic seman-
tic framework encompassing a wide range of structurallfed#int modal logics. We have shown

how this method turns the construction of canonical moddls an entirely mechanical exercise

where applicable, and points the way to obtaining compagjrfrents of non-compact logics. As

example applications, we have reproved a number of knovangtcompleteness result and estab-
lished several new results of this kind; specifically, thitelaincludes strong completeness of the
following logics.

e The modal logic of exact probabilities, with operatds ‘with probability exactlyp’.

e Graded modal logic over transitive reflexive multigraphs, the natural graded version of
S4, and more generally description logic with role hierarshiecluding transitive, reflexive, and
symmetric roles and qualified number restrictions also angimple (e.g. transitive) roles.

e The conditional logic” K + {ID, DIS}, i.e. with the standard axioms of identity and disjunc-
tion, interpreted over conditional frames.

A number of interesting open problems remain, e.g. to finth&urstrongly complete variants of
probabilistic modal logic or to establish strong complegnof the full set of standard axioms of
default logic, Burgess’ System C [3], over the correspogdilass of conditional frames.
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