Extending X3D for Distributed Multimedia Processing and Control

Alexander Loffler
Saarland University

Michael Repplinger*
DFKI Saarbriicken
Saarland University

Philipp Slusallek®
DFKI Saarbriicken
Saarland University

Benjamin Schug?
Saarland University

Figure 1: Specifying a distributed multimedia flow graph directly in X3D allows access to local and remote components for flexible media
processing and usage of live streams instead of static files. The picture shows a screen shot of our multimedia-enhanced X3D render system.
It shows a scene specified entirely in X3D, presenting the same live TV stream three times as a texture while applying different postprocessing
steps after decoding the video data: From left to right, we see the original TV stream, the same stream with adapted brightness, and the same

stream after a compositing with two static logos.

Abstract

Web-based applications of interactive 3D computer graphics are
showing a tendency to get more interconnected and visually com-
plex. Virtual communities like Second Life demand realism not
only in terms of realistic rendering, but also in terms of integrated
multimedia content. For these Web-based applications, X3D is the
[SO-standard way to specify and manipulate scene descriptions. In
terms of multimedia integration, however, X3D offers to specify
content only in the form of URLs pointing to files. Modern mid-
dleware for distributed multimedia, on the other hand, allows appli-
cations to harness the full range of multimedia processing as well
as transparent use and full control of both local and remote compo-
nents. Integrating a full multimedia processing pipeline into X3D
would enable Web authors to use, for example, streaming media,
post-processing on media streams, or routing between scene ele-
ments (e.g., sensors) and elements of multimedia processing (e.g.,
TV cards). A full integration of multimedia in X3D is yet missing.

In this paper, we propose X3D extensions for a seamless mapping
of a distributed multimedia flow graph onto an X3D scene graph,
making all the features of a distributed multimedia middleware ac-
cessible and usable within an X3D scene. We present our proposed
specification and implementation of multimedia nodes for X3D.
Using examples and implemented X3D application scenarios, we
show the simplicity and feasibility of our approach.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality; [.3.2 [Computer Graph-
ics]:  Graphics Systems—Distributed/network graphics; 1.3.8
[Computer Graphics]: Applications—;

Keywords: X3D, distributed and parallel processing, distributed
flow graph, distributed processing, multimedia middleware

*e-mail:michael.repplinger @dfki.de
Te-mail:loeffler @cs.uni-sb.de
te-mail:bschug @ graphics.cs.uni-sb.de
Se-mail:philipp.slusallek @dfki.de

1 Introduction

In the field of web-based computer graphics, X3D [Brutzman and
Daly 2007] is the established standard as file format and run-time
architecture for the definition of interactive applications. X3D
offers functionality for definition, viewing and navigation of 3D
scenes, supports hierarchical geometry, animations, lighting, script-
ing, and much more. In terms of integration of multimedia content
into a 3D scene, the X3D semantics support audio, which is spec-
ified by location and spatial distribution characteristics, and video,
which is specified as a texture for existing scene geometry. The ac-
tual media container — typically a file — is specified in the form of a
URL string.

Current and upcoming 3D applications for the Internet include vir-
tual worlds like e.g. Second Life [Rymaszewski 2008], where par-
ticipating applications are not separate entities anymore, but alto-
gether form a larger collective. For the ever-increasing realism of
those worlds, multimedia plays an important role to suit the needs
of their users. In order to realize virtual world scenarios based on
the X3D standard, its capabilities to define and manipulate mul-
timedia processing are insufficient and need to be extended. We
therefore define five requirements an integration of multimedia pro-
cessing in X3D should fulfill:

(1) Explicit Specification of Media Processing From a
high-level point of view, the drawbacks of current multimedia in-
tegration in X3D revolve around the inability to specify the actual
media processing in more detail. Actions like post-processing of a
video or audio stream, e.g. adjusting the brightness of a video, or
routing the components of a multimedia stream to dedicated places




of output in the scene, are currently impossible to realize com-
pletely within an X3D application. Applications involving multi-
ple live and synchronized audio and video streams in a 3D world,
for instance a virtual conference room, should be possible to define
inside a single X3D file.

(2) Streaming Media URL strings used to specify media items
in X3D always describe files, even though the Internet is predes-
tined for streaming media. The standard assumes that browsers
completely download audio or video files specified by URLs be-
fore they start playing them. That is, they assume a local process-
ing, even though URLs may very well specify a remote location. A
scenario like watching a live real-world TV stream inside a virtual-
world living room is thus rendered impossible, because the media
download will not ever be able to finish. Moreover, in [Brutzman
and Kolsch 2007], streaming support for media support is listed as
an essential feature for future versions of the X3D standard.

(3) Control of Components Continuing the mentioned “vir-
tual living room” scenario, the user of the virtual TV set wants to
be able to switch channels as well. Back in the real world, this en-
tails switching the channel on e.g. a TV card inside the displaying
PC. X3D does not yet include a technique to route a click inside
the virtual world to an outside event on an actual device. Even
though X3D should indeed abstract actual hardware implementa-
tions to keep scenes portable, providing an interface to multimedia
devices would be a useful extension. This would not only allow to
switch channels on a TV card, but also, for instance, to control a
video camera whose feed is again shown within the virtual world.
Admittedly, some control events could in theory be encoded within
a URL string, but this would not represent a natural way of specify-
ing functionality and would quickly lead to entirely unreadable and
unmaintainable URLs.

(4) Control of Media Transmission Multimedia devices
should be controllable regardless of where their physical location
within the network actually is. Such a feature also entails a con-
trol of the actual network connections inbetween several processing
hosts to enable, for instance, streaming via transmission protocols
that are more suitable for the transmission of live content. Having
control of the network also enables to react to changes in connec-
tion quality and e.g. adapt the bitrate of a video encoding in case of
losing too many packets during data transmission.

(5) Abstract Specification of Media Processing The last
requirement is actually a result of the flexibility introduced by the
former four. The theoretical ability to specify an entire multimedia
processing pipeline within X3D should never entail that a user is
forced to specify all the details every time she wants to include
anything related to multimedia in her scene. Instead, we envision
a principle of scalable transparency when specifying multimedia
content: While it should be possible to dig deep into lower layers of
processing, a basic multimedia usage should be intuitive and should
involve only very few X3D nodes in the scene specification.

As a result of the five presented requirements, this paper will in-
troduce extensions to the X3D specification, which enable on the
one hand full definition and control of a distributed multimedia
flow inside an X3D application, and on the other hand the possi-
bility to specify only very few necessary components. This paper is
structured as follows: First, Section 2 highlights related work in the
field. Afterwards, Section 3 presents how state-of-the-art multime-
dia software solves the integration requirements internally, before
Section 4 shows how we integrate those multimedia concepts in
X3D. Section 5 will then show how to use those X3D extensions in

practice, before Section 6 will give details on how the multimedia
integration is implemented in our reference system. Finally, Sec-
tion 7 will conclude the paper and illuminate further work.

2 Related Work

In [ISO/IEC 14496-11 2007], an extension to the MPEG-4 stan-
dard is defined, which includes a scene description format based on
VRML to specify animation and vector graphics within an MPEG-
4 file. In addition, this extension even allows streaming of the ac-
tual scene description. Similar to Flash, there exists no direct work
to combine elements of the MPEG-4 scene description with ele-
ments of an X3D scene graph. Furthermore, to our best knowledge,
there exists no implementation of the MPEG-4 scene description
that covers all aspects of the defined standard. Neither Flash nor
MPEG-4 consider control of hardware components — see require-
ments (2) and (3) — or the delivery of media data via other transport
protocols than HTTP (see requirement (4)).

Blendo [Marrin et al. 2001], Sony’s proposal for a successor of
VRML, includes synchronization constructs for media playback
and special Surface nodes containing dynamic image data from
a number of different sources, including external applications like
Flash. It also has limited support for combining and filtering video
surfaces and audio clips. Blendo’s approach provides some of the
features of a fully specified flow graph, but it lacks its flexibility
and its capabilities to seamlessly use and control remote multime-
dia devices.

The DeckLight processing engine [Miiller et al. 2006b] is a part
of the Soundium multimedia authoring and presentation frame-
work [Miiller et al. 2006a] and provides a real-time multimedia pro-
cessing engine including audio control, MIDI control and OpenGL
rendering. The utilized high-level flow graph structure of Deck-
Light can contain 3D scenes as sub-graphs. However, DeckLight
does not provide transparent access to remote resources and a fine-
grained specification of multimedia processing.

The Avalon Mixed-Reality Framework [Behr and Déhne 2003] pro-
vides numerous extensions to the X3D standard with a special focus
on virtual and augmented reality (VR/AR) applications. For exam-
ple, it integrates control devices for VR environments, multi-touch
user interfaces, or physics simulations. Within the project, Avalon
uses the concept of namespaces to separate extensions from the ac-
tual scene definition. Node types thus can belong to separate “areas
of responsibility”, while still achieving compatibility with the X3D
standard. For our extensions, a separate namespace is however out
of the question, because we need the hierarchical combination of
both scene and multimedia. Avalon does not concern itself about
advanced multimedia processing, which is why it also does not ful-
fill our explicit media specification requirements (1) and (2).

In [Seibert and Dédhne 2006], a VRML scene graph with custom
nodes is used to express the data flow and preprocessing of the dif-
ferent input and output devices used in mixed reality applications.
This work solved problems which are quite similar to multimedia
processing. In both cases, different devices have to be connected
with filtering and conversion steps in between. The data flow be-
tween devices and further processing steps of the produced media
data are expressed with routes between the nodes of a VRML scene.
In contrast to our approach, the presented work does not concern it-
self with data transmission across the Internet and does not provide
a scalable transparency to hide or explicitly specify details of pro-
cessing and transmission according to the requirements of the scene
graph developer (see requirements (4) and (5)).



3 Multimedia Processing

In contrast to previous work available multimedia frameworks are
suitable to fulfill all five requirements stated in Section 4 and pro-
vide suitable concepts to the application and application developer
for distributed media processing and control. In the rest of this
Section we discuss these concepts and how they fulfill the stated
requirements.

3.1 Explicit Specification of Media Processing
and Streaming Media

v
Interface|

Application ‘

T
! audio/MPEG Audio }x
\ ' Decoder
M Demulti-
plexer *
Q Video Display
Decoder Node

Format:

Figure 2: Distributed flow graph for watching live TV. Nodes of
a flow graph represent processing units while edges represent con-
nections between nodes. The synchronizer is responsible for syn-
chronized media playback of audio and video streams.

IMN-—ZO®IOZ<W”

Distributed multimedia middleware solutions like the Network-
Integrated Multimedia Middleware (NMM) [Lohse et al. 2008] and
NIST II [Fillinger et al. 2008] are especially designed to fulfill re-
quirements (1) and (2) as stated in Section 1. A distributed multi-
media middleware considers the network as an integral part of its
architecture and uses a distributed flow graph to explicitly specify
and distribute media processing.

As shown in Figure 2 the nodes of a flow graph represent the small-
est kind of processing units, e.g., a TV tuner card, software de-
coder, or display, and can be explicitly specified by a unique name
like TVSourceNode. In contrast to locally operating multime-
dia frameworks like Microsoft’s DirectShow [Microsoft 2009], or
Apple’s QuickTime [Apple Inc. 2009], the nodes of a distributed
flow graph can be distributed across the network while the applica-
tion still has transparent access to all local and remote nodes. Each
node can have an arbitrary number of input jacks and output jacks to
receive or send processed media data, respectively. To distinguish
between different jacks of a node, each jack is specified by a unique
string called jack tag.

Nodes are connected by connecting an output jack with the input
jack of the succeeding node and represent the edges of the dis-
tributed flow graph. Furthermore, edges hide all specific aspects of
data transmission within a transport strategy. The strict separation
of media processing and media transmission within a distributed
flow graph enables the middleware to automatically configure a
suitable transport strategy. When connecting nodes that run within
the same address space, a distributed multimedia middleware se-
lects a transport strategy that simply forwards pointers to processed
media data between nodes. Only in case of connecting distributed
nodes, the middleware establishes a network connection, e.g., using
TCP, to transmit media data between the nodes.

To ensure that only nodes are connected that can process the same
kind of media data, each jack provides a specification of supported
media data, called media formats. The most common approach
to specify media formats is to describe data with major type, e.g.,
audio, or video, followed by a minor type like mpeg. Finally,

each format includes specific parameters, e.g., resolution or
bitrate as key-value pairs. This flexible approach to describe
a media format allows to handle the huge variety of available me-
dia formats. Two nodes can only be connected if the format of the
input- and output-jack are identical. Formats are identical if and
only if their major and minor-type are identical, the same keys oc-
cur in all formats, and the corresponding values are identical.

Finally, a synchronizer is responsible for synchronized media play-
back of different streams, e.g., for audio and video. As soon as
multiple media streams are processed, it is essential for the appli-
cations to specify which streams have to be synchronized or not.
Typical multimedia applications have to synchronize at least the
sink nodes of a flow graph for synchronized audio and video play-
back. However, if multiple live sources are used, e.g., a camera and
a microphone, even the sources of a flow graph have to be synchro-
nized.

In contrast to using a URL like in X3D, a typical multimedia ap-
plication specifies the type of multimedia processing by connecting
nodes to a directed distributed flow graph. The structure of the dis-
tributed flow graph specifies the overall multimedia operation to be
performed. The most important aspect of a multimedia application
is that requirement (1) is fulfilled and media processing can be ex-
plicitly specified.

Using a distributed flow graph for integrating multimedia process-
ing into X3D, automatically integrates streaming capabilities (re-
quirement (2)), because media data from remote components can
be used transparently while still being able to explicitly specify the
media processing. Thus, a distributed multimedia middleware us-
ing the concept of a distributed flow graph is used as basis to extend
X3D by multimedia functionality.

3.2 Control of Components

To enable transparent control of local and remote components like
nodes, which is stated as requirement (3) in Section 1, a distributed
multimedia middleware performs a strict separation of method in-
vocation and method execution. Interfaces perform only method
invocation and can be used within the application. The distributed
multimedia middleware delegates a method invocation on a specific
interface to the corresponding local or remote component for exe-
cution.

Furthermore, interfaces are used as a functional description of
components, especially nodes. This description of nodes is es-
pecially important for media processing within a distributed en-
vironment where a node with a specific name cannot be assumed
to be available on all systems or has different names on differ-
ent platforms. Instead, interfaces of nodes can be used within a
distributed flow graph to specify the required functionality of the
node. In the context of our previous example of a flow graph for
watching TV, an application can specify a node as source that sup-
ports the TVInterface instead of specifying a node with name
TVSourceNode. Distributed multimedia middleware solutions
like NMM automatically find nodes — e.g., a TVSourceNode —
within the network, that support this interface [Lohse et al. 2002].

3.3 Control of Media Transmission

As already stated in requirement (4) of Section 1, a multimedia
application requires full control on media transmission. This is re-
quired to cope with two aspects of distributed media transmission,
especially within the Internet.

First of all, an application has to be able to specify the utilized net-
work protocol for media transmission. This feature is required to



consider the timing requirements of media data. Reliable transport
protocols like TCP, which is also used for HTTP streaming, are suit-
able to cover standard scenarios where a file is completely down-
loaded before being processed, which is the standard approach of
media processing in X3D. Here, lost packets are retransmitted.

However, in case of a live stream, e.g., received from a TV source,
media data have timing constraints that have to be considered to
achieve continuous playback. In general, retransmission of lost
packets disagrees with the timing constraints of live streams, where
it is acceptable to sacrifice reliability in favor of meeting continuous
playback. For this purpose, user-level protocols like the realtime
transport protocol (RTP) [Schulzrinne et al. 1996] were proposed
that meet special requirements of media transmission. Moreover,
the RTP protocol provides additional transmission statistics, e.g.,
lost packets, and transmission delay, that can be used by an ap-
plication to react to a bad network connection. Since the decision
on the most suitable transport protocol as well as how to react to
bad network connections strongly depends on the application sce-
nario. The application itself needs the possibility to specify the used
transport protocol as well as to access its underlying parameters and
transmission statistics.

Therefore a distributed multimedia middleware also represents the
edges of a distributed flow graph as first class object to the applica-
tion. This allows an application to explicitly specify the used trans-
port protocol and to access the parameters or transmission statis-
tics of the underlying network protocol. However, advanced dis-
tributed multimedia solutions like NMM offer a flexible and ex-
tendable adaptation service to the application that can be used to
automatically react on variations of data transmission [Repplinger
et al. 2009]. Since these aspects are essential for media transmis-
sion within the Internet, they should be considered when integrating
multimedia processing into web standards like X3D.

3.4 Abstract Specification of Media Processing

Volume
Control
Interface

Audio
Playback
Node

TV-
Interface

Display
Node

Figure 3: This Figure shows a user graph for watching TV. A user
graph is a high-level specification of a flow graph that only includes
the essential nodes and edges of a flow graph from the applications
point of view. Moreover, interfaces like the TVInterface can be
used to specify the abstract functionality of a node.

IPMN-—ZO®IONZ<W

The last requirement (5) stated in Section 1 is also supported by dis-
tributed multimedia middleware solutions. Due to the complexity
of distributed multimedia applications, a developer should be sup-
ported by offering an abstract specification of media processing.
Typically, most multimedia applications do not need full access to
all nodes or edges of the flow graph.

For this reason, most multimedia middleware solutions additionally
offer the concept of a user graph [Lohse and Slusallek 2005]. A
user graph is a high-level specification of a flow graph that only in-
cludes the essential nodes as can be seen in Figure 3. Here, only the
key nodes, their connections, and additional constraints are speci-
fied. The most important impact for the application developer is that

auser graph can be independent of concrete nodes that are used. In-
stead, other aspects of nodes like interfaces are used to specify the
required functionality of nodes.

In Figure 3, the abstract description of an multimedia application
for watching TV can be seen. This user graph is then automatically
mapped to the flow graph that can be seen in Figure 2 while the
specified constraints, e.g., a specified format or transport protocol
are considered. Another important aspect here is that a distributed
multimedia middleware automatically searches the entire network
or a set of specified locations to find nodes required to set-up a
complete distributed flow graph.

4 Integrating Multimedia into X3D

In the following, we will use the requirements defined in Section 1
as a guideline to illustrate our integration of multimedia processing
into the X3D language specification. Since our X3D extensions
have to fulfill the requirements stated in Section 1, we integrate all
of the concepts of multimedia processing presented in Section 3.

4.1 Explicit Specification of Media Processing

Appearance Sound

MMSynchronizer

MMTexture MMSoundSource
VideoSink AudioSink
MMNode MMNode
VideoDecoder AudioDecoder]
! MMNode
b, il
MMVideoFormat I y MMAudioFormat
1
IMMEdgel
1 L pry
MMNode S
Tvsource aXn3Dar

X3D Node Type
Flow Graph
Node Type

Multimedia
Extension

Figure 4: The general idea of integrating a multimedia flow graph
into an X3D scene graph is to specify the flow graph including all
components as a sub-tree within the X3D scene. Since the sink
nodes of a flow graph represent the connection between produced
media data and their representation within X3D, they are connected
as children of standard X3D nodes. Thus, the source nodes of a flow
graph represent leaf nodes of the full X3D scene graph.

To fulfill requirement (1), we first extend the X3D language speci-
fication by the concept of a multimedia flow graph. This approach
provides the maximum flexibility to specify media processing as
discussed in Section 3.1. The general idea of this multimedia sub-
graph in an X3D scene is depicted in Figure 4.

To integrate a flow graph into an X3D scene graph we specify the
entire flow graph including all components as sub-tree inside the
X3D scene. The sink nodes of a flow graph represent the connection



between produced media data and their representation within X3D.
Therefore, the sink nodes of a flow graph are connected as child
nodes of classic X3D nodes responsible for media specification.
The source nodes of a flow graph represent leaf nodes within an
X3D scene graph.

To clearly define multimedia processing within an X3D scene
graph, we introduce the following new X3D nodes:

e MMNode: A multimedia node represents a single node of
a multimedia flow graph within the X3D scene graph. For
explicit specification of media processing it only includes a
nodeName field to specify the name of the node within a
flow graph. In a first step, a multimedia node is specified as

follows:
MMNode {
SFString [in,out] nodeName ""
MFNode [in, out] inEdges [ [MMEdge]
MFNode [in] addEdges [MMEdge]
MFNode [in] removeEdges [MMEdge]
}

e MMEdge: A multimedia edge represents an edge of the flow
graph, connecting two multimedia nodes. Within the speci-
fication, a multimedia edge is always a child of an MMNode.
The edge models the data flow from the node in its source
field to its parent node. It includes all the required information
to describe a flow connection between two multimedia nodes.
We specify a multimedia edge as follows:

MMEdge {
SFNode [in, out] source NULL [MMNode ]
SFString [in,out] inJackTag "default"
SFString [in,out] outJackTag "default"
SFNode [in,out] format NULL [MMFormat ]
}

e MMFormat: A multimedia format describes the media for-
mat, which should be used on the connection between two
multimedia nodes. Since there is a vast number of multimedia
formats with very different properties that should be exposed
to the scene, we defined an abstract node type MMFormat
from which concrete format types inherit. To allow specify-
ing only the major type of a format, we additionally introduce
the MMVideoFormat and MMAudioFormat node types.

e MMTexture: A multimedia texture represents the video out-
put of a flow graph and includes the video stream as a texture
into the X3D scene graph. Therefore, this X3D node acts as
a link between the flow graph and the X3D scene graph. To
enable its usage as a texture within the scene, it inherits from
X3DTexture2DNode, so it can be used in the texture
field of an X3D Appearance node. Together, the specifica-
tion of this new X3D node is as follows:

MMTexture: X3DTexture2DNode {
SFNode [in, out] inEdge NULL [MMEdge]
[+inherited fields from X3DTextureZDNode]

}

e MMSoundSource: A multimedia sound source represents
the link between audio output of media processing within the
flow graph and a source of audio data within the X3D scene
graph. Therefore, it inherits from MMNode as well as from
the standard X3D type X3DSoundSource. It can thus be
seamlessly used in the source field of an X3D Sound node.
Its specification is as follows:

MMSoundSource : X3DSoundSourceNode {
SFNode [in, out] inEdge NULL [MMEdge]
[+inherited fields from X3DSoundSourceNode]

}

e MMSynchronizer: The multimedia synchronizer repre-
sents a synchronizer of the flow graph and has an arbitrary
number of multimedia nodes as children. For specification,
this node is required to define which multimedia nodes — or
the corresponding nodes of the underlying flow graph, respec-
tively — have to be synchronized by the utilized multimedia
middleware. Since all valid children are of type MMNode, the
specification of this new X3D node is as follows:

MMSynchronizer {
MFNode [in, out] children NULL [MMNode ]
MFNode [in] addChildren [MMNode]
MFNode [in] removeChildren [MMNode]

}
4.2 Streaming Media

To master requirement (2) as stated in Section 1, we extend our
previously defined MMNode to be able to specify distributed multi-
media nodes. Using a distributed multimedia middleware, the spec-
ification of remote components is limited to specify either a single
location, or a set of locations from where to request a remote com-
ponent.

The benefits of our approach, using a distributed multimedia mid-
dleware are shown here: We integrate streaming functionality just
by extending the specification of the MMNode type by a location
field:

MMNode {

SFString [] nodeName mn

MFNode [in, out] inEdges [] [MMEdge]
MFNode [in] addEdges [MMEdge]
MFNode [in] removeEdges [MMEdge]
MFString [in,out] location [1 [URI]
MFString [in] addLocations [URI]
MFString [in] removeLocations [URI]

}

The newly introduced field 1ocation stores an arbitrary number
of locations which are used to request the corresponding flow graph
node. If the field is not set, the underlying multimedia middleware
searches all reachable systems to request the node. A single specific
location can be set by adding exactly one entry to this field.

4.3 Control of Components

To meet requirement (3) as stated in Section 1, nodes of a flow
graph should be controllable from within an X3D scene graph.
As mentioned in Section 3.2, multimedia components are con-
trolled by interfaces used from within a controlling application. In
the case of X3D being the language of application definition, we
need to introduce a concept of interfaces inside of X3D: We rep-
resent an interface by an X3D node derived from the abstract type
MMInterface. A concrete implementation thereof then defines
the fields necessary to work with the interface in an X3D context.
For example, a derived TVInterface would at least define one
channel field, which is readable and writable and thus can be
used for routing within the X3D scene. Internally, the underly-
ing multimedia technology has to provide the mapping to actual
method calls to manipulate the switching of the channel on the ac-
tual hardware. How this is accomplished in our implementation
will be elaborated in Section 6.

To assign the functionality of a multimedia interface to a multi-
media node in X3D, we add the respective interface node to the
interfaces field of a multimedia node, which may contain an
arbitrary number of interfaces. Here, each interface represents a



self-contained group of functionality exposed by its parent multi-
media node. This enables multimedia nodes to be defined com-
pletely abstract, just as a collection of interfaces it supports. The
resolution towards a concrete implementation is done by the multi-
media system underneath.

Summing up, the complete specification of a multimedia node
within X3D is now defined as follows:

Appearance Sound

MMSynchronizer

MMTexture MMSoundSource

MMNode {
SFString [] nodeName mn
MFNode [in,out] inEdges [] [MMEdge]
MFNode [in] addEdges [MMEdge]
MFNode [in] removeEdges [MMEdge]
MFString [in,out] location [] [URI]
MFString [in] addLocations [URI]
MFString [in] removeLocations [URI]
MFNode [in,out] interfaces [1 [MMInterface]
MFNode [in] addInterfaces [MMInterface]
MFNode [in] removelInterfaces [MMInterface]

4.4 Control of Media Transmission

To master requirement (4) stated in Section 1, we need to be
able to specify the utilized networking protocols for media trans-
mission inside the X3D scene graph. As mentioned in Sec-
tion 3.3, transport strategies can be specified on the edge repre-
senting the connection between two nodes. To maintain type safety
within the X3D specification, we introduce a new abstract node
MMTransportStrategy.

A concrete implementation of a transport strategy node then defines
a number of fields that allow the X3D scene to interact with it. For
example, a derived RTPInterface would at least include the in-
formation provided by transmission statistics (e.g., packetLoss)
as out-values for being able to route them within the X3D scene.

To assign the functionality of a transport strategy interface to a
multimedia edge in X3D, we extend the edge by a field named
transportStrategy and add the respective interface node to
this field, which may contain an arbitrary number of multimedia
transport strategy interfaces. The specification of a multimedia
edge is thus extended as follows:

MMEdge {
SFNode [in, out] source NULL [MMNode]
SFString [in,out] inJackTag "default"
SFString [in,out] outJackTag "default"
SFNode [in,out] format NULL [MMFormat]
MFNode [in,out] transportStrategy []
[MMTransportStrategy]
}

Notable in this context is the simplicity achieved to react on net-
work variations provided to the X3D scene graph developer, be-
cause information about connection quality can be directly routed
to other X3D components and handled appropriately. In Section 5.2
we explain a scene graph that automatically adjusts the bitrate of
transmitted media streams with regard to lost packets.

4.5 Abstract Specification of Media Processing

To master the last requirement (5) as stated in Section 1, we inte-
grate the concept of a user graph as described in Section 3.4 into
X3D. A media processing subgraph in X3D is always mapped onto
the user graph of the distributed multimedia middleware because it
allows to explicitly specify either a full flow graph or only compo-
nents that are important for the application.

VideoSink AudioSink
MMNode Legend

Node Type Standard
X3D

X3D Node Type
Flow Graph
Node Type

MMTVinterface

Multimedia
Extension

Figure 5: The abstract specification within an X3D scene enables
an easy integration of distributed media processing and control.
In this example for watching TV, only those aspects relevant for the
scene graph developer are explicitly specified, the rest is configured
automatically by the multimedia middleware.

Thus, this integration of media processing and control into X3D
provides a scalable transparency for the scene graph developer
when specifying multimedia content. The most basic description
of a user graph within X3D consists of multimedia nodes that rep-
resent sources and sinks of the flow graph. Since the sink nodes
of the flow graph are either represented by X3D nodes of type
MMTexture or MMSoundSource, a scene graph developer first
adds edges as children to these multimedia nodes and then the
sources of a flow graph as leaf nodes. The sources of a flow graph
have to be specified either by setting the field nodeName or by
adding a descriptive interface. Finally, the developer has to add a
multimedia synchronizer as parent of those X3D nodes represent-
ing the multimedia sinks (MMTexture or MMSoundSource), if
their media playback should be synchronized.

An example of such an abstract description can be seen in Fig-
ure 5 which shows the abstract specification for watching TV. Here,
the multimedia node representing a TV source is specified by us-
ing a multimedia interface of type TVvInterface. Even though
the specification of this scenario is quite simple, it highlights the
benefits provided by our integration of media processing into X3D.
Firstly, live streams can be used within X3D; secondly, remote re-
sources are found automatically if no local TV tuner card is avail-
able; and thirdly, controlling the TV card is seamlessly integrated
by changing the channel field of the MMTVInterface.

5 Application Scenarios

In this Section, we will show you how to specify two exemplary
applications with the X3D extensions presented before, and how
even complex scenarios can be realized through an intuitive and
simple specification.

5.1 Virtual TV

To include a live television feed in a 3D scene and present it
three times as a texture while applying different postprocessing
steps after decoding the video data, we start at the locations in
the X3D graph where the actual media should be mapped to: three



MMNode
MMLogoOverlay-
Interface
egend

Node Type Standard
X3D

XaD Node Type
Flow Graph | Mutimedia

Extension
Node Type

Node with
X3D Node Type | with certain
atrib e |attribute

value

Figure 6: Full control over the multimedia flow graph allows scene
authors to define different postprocessing steps before presenting
video. In this case we present the same live TV stream three times
as a texture while applying different postprocessing steps after de-
coding the video data. This scene graph together with our imple-
mented renderer system was used to create the screen shot that can
be seen in Figure 1.

MMEdge

MMGammaFilter-
Interface

MMNode

MMTVinterface

Appearance nodes below the TV screen geometry to assign the
video textures to that is received from the same tv source. Be-
low those native X3D texture nodes in the graph, we then attach
MMTexture nodes. They represent the sinks of the underlying
multimedia flow graph and need to be explicitly specified as tar-
gets inside the scene. As the three nodes are supposed to be syn-
chronized, we attach them all to a common MMSynchronizer,
indicating their connection to the multimedia subsystem.

At the opposite end of the multimedia flow graph to be specified,
we need one X3D node that represents the TV card hardware to
be used as source for the live television feed. For this purpose,
we place a single MMNode at the bottom of the graph. If we
wanted to explicitly use a dedicated implementation inside the X3D
node, we could specify a concrete node of the multimedia flow
graph in nodeName field of the MMNode. But we would like to
keep the implementation generic and executable on any TV card
that is available. Therefore, we only attach a control interface of
type TVInterface (derived from the abstract MMInterface)
to our source node, and let the multimedia system decide for a con-
crete implementation supporting the given interface. In the same
way, we define postprocessing steps and add a MMNode for each
postprocessing step together with a corresponding interface, i.e.,
an MMGammaFilterInterface to adjust gamma value and an
MMLogoOverlayInterface.

Now, the only thing missing is the connection between all MMNode
nodes. We therefore connect the multimedia texture nodes as well
as all MMNodes via an instance of the MMEdge node. The final
setup of X3D nodes used to realize this scenario is again shown
in Figure 6 and used to create the screen shot that can be seen in
Figure 1.

5.2 Dynamic Bitrate Adaptation

This scenario is supposed to highlight our concept of scalable trans-
parency by realizing a complex adaptation scenario — as described
for instance in [Repplinger et al. 2009] — entirely within an X3D

Appearance Legend

Node Type Standard
| o

MMTexture X3D Node Type

VideoSink Flow Graph | Mutimedia
Extension

Node Type
output  Route input
MMNode field === === & field

MMDecode-
Interface

Scalar-
Interpolator

MMRTPStrategy
MMNode I MMFormatH264 I‘bimte
Interface *

MMNode

MMTVinterface

Figure 7: Dynamically adapting the bitrate to the connection qual-
ity can be expressed directly in the scene using only two routes and
an X3D Scalarlnterpolator node.

scene. The basic idea of the adaptation to be implemented is mon-
itoring the number of lost packets on an RTP network connection
between an encoder and a decoder node, and deciding on adjusting
the encoding bitrate if that number gets too high.

We start with the video branch of the TV graph described in Sec-
tion 5.1, i.e., an MMTexture node connected to an MMNode,
which abstractly defines a TV card though the respective child in-
terface. We extend this graph by specifying two additional nodes
inbetween, which are to encode the video stream, and decode it
again. Again we specify the used nodes abstractly by attaching
the respective EncoderInterface and DecoderInterface
nodes (which are both derived from MMInterface) to an other-
wise unspecified instance of MMNode each. In order to make this
setup unambiguous in the range of available encodings, the format
on the connecting edge must be explicitly specified in the form of
an MMFormat node attached to the connecting edge. In this case,
aMMVideoFormatH264 node is used to specify the H.264 video
format. Also, in a real-world setting, the encoder and decoder com-
ponents are usually located on different machines to legitimate the
encoding effort.

We assume the encoder and decoder — as well as the TV card and
X3D browser, respectively — to be located on separate hosts con-
nected through the Internet, using the Real-Time Transport Protocol
(RTP) on the connection inbetween. We express this fact through
our X3D extensions by attaching a node of type RTPStrategy
(derived from MMTransportStrategy) to the connecting edge
node between the encoder and decoder nodes. This already con-
cludes our basic flow setup, which enables an encoded video trans-
mission with an explicitly specified encoding format, and an ex-
plicit transport protocol to use.

However, we can push the scenario one step further by attaching
both the read-only packet_loss field of the RTP strategy node
and the exposed bitrate field of the connection format node to
a ScalarInterpolator. The interpolator uses the lost pack-
ets as input value and calculates a new bitrate for the encoding as
output value. Even though the calculation is very simple, it shows
the power of the scalable transparency approach allowing to specify
only those interfaces and fields that are actually needed for disam-
biguation or runtime manipulation. The interpolator in this example
could also be replaced by a Script node with arbitrary inputs and
outputs, allowing to specify the most complex control circuits di-



rectly inside X3D. Figure 7 shows the node setup for the described
adaptation scenario again graphically.

6 Implementation

We implemented our proposed extension of X3D for distributed
multimedia processing and control using the Network-Integrated
Multimedia Middleware (NMM) and the RTSG scene graph li-
brary [Georgiev et al. 2008]. RTSG already supports VRML and
X3D and is easily extendable by additional rendering components.

An important aspect of RTSG is its strict separation of the scene
graph and the rendering components. In contrast to the usual def-
inition, rendering in RTSG refers not only to graphical output but
instead refers to any kind of presenting the scene, also for example
in the form of sound output. This allows RTSG to combine mul-
tiple specialized rendering components, each of which supporting
only a subset of all X3D nodes. This feature enables us to easily
integrate the new multimedia extensions by adding a new rendering
component.

6.1 Implementation of Multimedia Renderer

First of all, our current implementation on top of RTSG includes
all X3D nodes we described in Section 4. Furthermore, we realized
one multimedia interface of type TVInterface as an X3D node
that enables channel switching on the used TV board and one trans-
port strategy interface of type RTP St rategy to be informed about
lost packets. The limited number of realized interfaces is motivated
by the fact that NMM describes all its interfaces in an interface def-
inition language (IDL). A corresponding IDL compiler generates
source code that can be used by all NMM applications. We plan
to add a different implementation of the IDL compiler that auto-
matically maps interfaces specified within an IDL to X3D interface
nodes. Even though the complete implementation of the new IDL
compiler is not yet finished, we could evaluate our approach with
the realized interface.

Furthermore, our implementation extends RTSG by a new multi-
media renderer that is able to handle the newly added X3D nodes.
The multimedia renderer traverses the X3D scene graph once when
it is loaded and searches for defined multimedia nodes. Then, it
maps the abstract multimedia processing defined in these nodes to
the corresponding component of an NMM user graph.

We do not yet support modification, addition or removal of mul-
timedia nodes or edges at runtime. We do, however, support the
input and output fields of the MMInterface, MMFormat and
MMTransportStrategy nodes, which allow the scene to mod-
ify the multimedia flow graph during runtime, or be informed about
changes within the flow graph. To accomplish that, the multime-
dia renderer registers itself as listener for all input values. As soon
as one input value of the newly added X3D nodes is changed, the
multimedia renderer is informed, maps this value to a method invo-
cation and invokes the method together with the changed value on
the corresponding component of the user graph.

On the other hand, to inform the X3D scene about changed out-
values of supported X3D nodes, the multimedia renderer registers
itself as listener to the corresponding NMM component. As soon as
a specific value within this component of the flow graph of NMM
is changed — e.g., packet loss occurs during network transmission
—, the renderer will therefore be informed. It will then change the
value of the corresponding field of the X3D node and inform RTSG
to route this information to all connected X3D node fields.

6.2 Implementation of NMM Nodes

Since all specified multimedia nodes of an X3D scene are di-
rectly mapped to nodes of a flow graph, we needed to implement
new NMM nodes for the special X3D nodes MMTexture and
MMSoundSource, which realize the connection between X3D
and multimedia processing.

An X3D node of type MMSoundSource is mapped to the NMM
node AL3DPlaybackNode. This NMM node enables NMM to
play 3D sound features by using the OpenAL library [Creative Labs
2007]. Using OpenAL enables advanced features like Doppler ef-
fect or delayed playback based on the distance to the sound source
in a 3D environment. Moreover, OpenAL allows to playback 3D
audio through multi-speaker environments like 7.1 speaker setups.
The multimedia renderer sets the current viewer position and the
position of the sound sources in the AL3DPlaybackNode, in-
cluding all transformations. For this, it keeps an internal rep-
resentation of the relevant parts of the transformation hierarchy
of the scene graph and uses listeners to be notified about any
changes in the X3D scene. These changes are propagated to the
AL3DPlaybackNode which in turns forward this information to
OpenAL.

An X3D node of type MMTexture is mapped to the NMM node
TextureSinkNode. This node uses a texture buffer of the ren-
dering engine that is currently responsible for rendering textures.
The TextureSinkNode requests at least two memory blocks for
a specific texture to enable double buffering. As soon as a new
video frame arrives at the TextureSinkNode, it copies the video
frame to a free memory block for the corresponding texture and in-
forms the texture renderer to use the texture buffer including the
latest video frame. This approach automatically prevents any syn-
chronization issues with the texture renderer because the renderer
simply uses the latest texture buffer available. If the texture ren-
derer achieves a higher frame rate as the assigned instance of the
NMM TextureSinkNode delivers new frames, the same video
frame is presented multiple times. If the texture renderer renders
textures with a lower frame rate, some video frames can not be ren-
dered, but the texture renderer always renders the latest video frame
as texture.

We used our entire implementation of X3D extensions for dis-
tributed multimedia processing and control to realize the two ap-
plication scenarios described in Section 5. Moreover, we realized
an X3D scene that presents the the image of a TV source as can
be seen in Figure 1. Here, different postprocessing steps are added
after decoding the video data: adaptation of brightness, and pixel-
based compositing for mapping logo graphics on top of the video
stream. For postprocessing we used available NMM nodes that in-
ternally use the ImageMagick library [Still 2005]. In all application
scenarios, there was no noticable performance hit by integrating the
multimedia flowgraph into the X3D scene, neither on the rendering,
nor on the multimedia processing part.

7 Conclusion and Future Work

This paper dedicated itself to a full inclusion of multimedia pro-
cessing components inside an X3D scene specification. We iden-
tified five requirements of multimedia processing an X3D applica-
tion definition should be able to include: explicit specification of
a multimedia flow graph inside X3D, the ability to handle stream-
ing media, the possibility to control single processing elements via
dedicated interfaces, the ability to fine-tune network connections
and specify transport protocols, and the possibility to reduce the
specification to only those parts that are absolutely necessary for
disambiguation or runtime reconfiguration of the multimedia flow.



We showed how the concept of a distributed multimedia flow graph
is applied in modern multimedia software to realize all of the de-
fined requirements, and introduced a minimal set of X3D nodes to
map a generic multimedia flow graph to an X3D scene graph. We
introduced further X3D extensions for defining control interfaces,
formats and strategies for network transport inside the scene. We
incorporated a policy of scalable transparency in our extensions,
such that scene authors only have to specify a minimal multime-
dia flow to make it umambiguous, and include only those detailed
fields of an X3D node they need to realize a desired functionality. In
two application examples we showed how to build up a multimedia
flow from within X3D, and how to realize even seemingly complex
adaptation functionality by employing simple X3D routing. We
then detailed on our implementation of the presented concepts using
the Real-Time Scene Graph (RTSG) and the Network-Integrated
Multimedia Middleware (NMM). In summary, we showed that our
concept and implementation fulfills the five requirements of a full
multimedia integration into X3D.

At the moment, the entire X3D description including the multime-
dia flow is purely textual and not integrated into a higher-level ed-
itor. For the future, we envision a combined graphical editor for
both X3D scene geometry and logic as well as the additional multi-
media flow, allowing for instance to visually attach video and audio
sinks to scene surfaces, or visually specify the directional character-
istics of a sound source more intuitively by drawing the respective
ellipsoids directly into the 3D scene.

Last, there is more future work necessary in terms of standardiza-
tion of interfaces: Currently, we use our own definition of what
functionality, for example, a TV interface should offer. By gener-
ating the respective X3D interfaces directly out of the IDL descrip-
tions of NMM, we do offer the full functionality of NMM inside
X3D, but might miss important other views onto the same problem.
A final goal should be to define a standard set of multimedia nodes,
which covers the full functionality needed for multimedia integra-
tion, but stays extendable for special purpose hardware or tasks. A
first step into that direction would be having a different multimedia
back-end provide its implementation to our X3D node concept, and
evaluate the suitability for the entire range of applications again.

Acknowledgements

We would like to thank Wolfgang Burgard for his valuable work on
sound rendering for RTSG, which constituted the first step towards
a full integration of NMM-based multimedia processing into our
X3D implementation.

References

APPLE  INC., 20009. QuickTime
http://www.apple.com/quicktime/technologies.

Technologies.

BEHR, J., AND DAHNE, P. 2003. AVALON: Ein komponentenori-
entiertes Rahmensystem fiir dynamische Mixed-Reality Anwen-
dungen. In Thema Forschung, 66-73.

BRUTZMAN, D., AND DALY, L. 2007. X3D: Extensible 3D Graph-
ics for Web Authors. Morgan Kaufmann.

BRUTZMAN, D., AND KOLSCH, M. 2007. Video
Requirements for Web-based Virtual Environ-
ments using Extensible 3D (X3D) Graphics.
http://www.w3.0rg/2007/08/video/positions/Web3D.pdf.

CREATIVE LABS, 2007. OpenAL. http://openal.org.

FILLINGER, A., DIDUCH, L., HAMCHI, 1., HOARAU, M., DEGR,
S., AND STANFORD, V. 2008. The NIST Data Flow System II:
A Standardized Interface for Distributed Multimedia Applica-
tions. In IEEE International Symposium on a World of Wireless;
Mobile and MultiMedia Networks (WoWMoM), IEEE.

GEORGIEV, 1., RUBINSTEIN, D., HOFFMANN, H., AND
SLUSALLEK, P. 2008. Real Time Ray Tracing on Many-Core-
Hardware. In Proceedings of the 5th INTUITION Conference on
Virtual Reality.

ISO/IEC 14496-11, 2007. Scene description and Application en-
gine(BIFS).

LOHSE, M., AND SLUSALLEK, P. 2005. Towards Automatic Setup
of Distributed Multimedia Applications. In Proceedings of The
9th IASTED International Conference on Internet and Multime-
dia Systems and Applications (IMSA), ACTA Press, 359-364.

LOHSE, M., REPPLINGER, M., AND SLUSALLEK, P. 2002. An
Open Middleware Architecture for Network-Integrated Multi-
media. In Protocols and Systems for Interactive Distributed Mul-
timedia Systems, Joint International Workshops on Interactive
Distributed Multimedia Systems and Protocols for Multimedia
Systems, IDMS/PROMS 2002, Proceedings, Springer, vol. 2515,
327-338.

LOHSE, M., WINTER, F., REPPLINGER, M., AND SLUSALLEK,
P. 2008. Network-Integrated Multimedia Middleware (NMM).
In MM °08: Proceedings of the 16th ACM international confer-
ence on Multimedia, 1081-1084.

MARRIN, C., MYERS, R., KENT, J., AND BROADWELL, P. 2001.
Steerable media: Interactive television via video synthesis. In
Web3D ’01: Proceedings of the Sixth International Conference
on 3D Web Technology, ACM, New York, NY, USA, 7-14.

MICROSOFT, 2009. DirectShow Architecture.

http://msdn.microsoft.com/.

MULLER, P., SCHUBIGER-BANZ, S., MULLER ARISONA, S.,
AND SPECHT, M. 2006. Interactive media and design editing for
live visuals applications. In International Conference on Com-
puter Graphics Theory and Applications (GRAPP), 232-241.

MULLER, S., SCHUBIGER-BANZ, S., AND SPECHT, M. 2006. A
real-time multimedia composition layer. In AMCMM °06: Pro-
ceedings of the 1st ACM workshop on Audio and music comput-
ing multimedia, ACM, New York, NY, USA, 97-106.

REPPLINGER, M., LOFFLER, A., THIELEN, M., AND
SLUSALLEK, P. 2009. A Flexible Adaptation Service for Dis-
tributed Rendering. In Proceedings of Eurographics Parallel
Graphics and Visualization Symposium (EGPGV 2009) (to ap-
pear).

RYMASZEWSKI, M. 2008. Second Life: The Official Guide. Sybex.
SCHULZRINNE, H., CASNER, S., FREDERICK, R., AND JACOB-

SON, V., 1996. RFC 1889: RTP: A Transport Protocol for Real-
Time Applications. http://www.ietf.org/rfc/rfc1889.txt.

SEIBERT, H., AND DAHNE, P. 2006. System Architecture of a
Mixed Reality Framework. Journal of Virtual Reality and Broad-
casting 3, 7 (May). urn:nbn:de:0009-6-7774, ISSN
1860-2037.

STILL, M. 2005. The Definitive Guide to ImageMagick. Apress.



