
Background Variability Modeling for Statistical Layout Analysis

Faisal Shafait1, Joost van Beusekom2, Daniel Keysers1, Thomas M. Breuel1,2

Image Understanding and Pattern Recognition (IUPR) Research Group
1German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany

2Technical University of Kaiserslautern, Germany
{faisal.shafait, daniel.keysers}@dfki.de, {joost, tmb}@iupr.net

Abstract

Geometric layout analysis plays an important role in
document image understanding. Many algorithms known in
literature work well on standard document images, achiev-
ing high text line segmentation accuracy on the UW-III
dataset. These algorithms rely on certain assumptions
about document layouts, and fail when their underlying as-
sumptions are not met. Also, they do not provide confidence
scores for their output. These two problems limit the use-
fulness of general purpose layout analysis methods in large
scale applications. In this contribution, we propose a sta-
tistically motivated model-based trainable layout analysis
system that allows assumption-free adaptation to different
layout types and produces likelihood estimates of the cor-
rectness of the computed page segmentation. The perfor-
mance of our approach is tested on a subset of the Google
1000 books dataset where it achieved a text line segmen-
tation accuracy of 98.4% on layouts where other general-
purpose algorithms failed to do a correct segmentation.

1 Introduction

Many methods have been proposed for geometric layout
analysis of scanned documents. A recent evaluation [8] of
some widely used layout analysis algorithms has shown that
these methods work quite well on standard datasets.

However, these methods have a major drawback: they
use implicit or explicit assumptions. One common assump-
tion e.g. is that the inter word spacing is smaller than the
inter column spacing. If one of the assumptions made by an
algorithm is not fulfilled on a particular page, the method
is not able to segment that page correctly. Moreover, the
methods do not return any confidence of the obtained seg-
mentation, which limits their use in practical high volume
applications, as human operators have to check the results.

In this work1 we present a model-based trainable ap-
proach for high volume page segmentation applications.
Our method is able to train given models on a small training
set without the need for manually labeled page segmenta-
tion. The probabilistic framework allows automatic detec-
tion of likely wrongly segmented pages.

Many researchers have focused on the use of probabilis-
tic grammars to develop a trainable layout analysis sys-
tem [4,9,11]. A common limitation of stochastic grammars
is that optimal geometric parsing is exponential in the num-
ber of terminal symbols. Furthermore, parsing a page with
stochastic grammars might result in page layouts that do not
appear in practice. Other attempts for statistical modeling
of page layout include the Markov Random Field (MRF)
approach by Liang et al. [6], and the generative zone model
approach of Gao et al. [3]. Both these approaches are capa-
ble of learning layout information from training data. How-
ever, they require large amounts of labeled training data just
to capture coarse document layout structure.

Instead of trying to model generic page layouts, as done
in [3,6], we take the approach of style-directed layout analy-
sis [4,10]. An advantage of style-directed layout analysis is
that it closely resembles the document generation process,
hence it can obtain better performance on a specific class
of documents. We model page layout as a mixture of layout
structures (Section 2.1). Then, we use a probabilistic match-
ing algorithm to find the most likely layout of a page, given
its layout model (Section 2.2). Finally, we present an EM-
like training algorithm (Section 2.3) that learns geometric
variability of model components from training data without
the need for page segmentation ground-truth. Experimental
results demonstrate the effectiveness of our method (Sec-
tion 3). Section 4 concludes the paper.

1This work was partially funded by the BMBF (German Federal Min-
istry of Education and Research), project IPeT (01 IW D03).

M
1

M
2

M
3

Figure 1. Representation of page layouts
modeled as a mixture of layout components.
The geometric variability of the components
is visualized by the arrows.

2 Statistical Layout Analysis

2.1 Statistical Layout Model

In contrast to previous rule-based systems used to model
document style, this work represents page layout as a statis-
tical mixture model of layouts. Each layout is represented
as a hierarchical X-Y tree of whitespace rectangles. A vi-
sualization of the model is shown in Figure 1. The focus of
this work are document images with a Manhattan layout that
can be represented as an X-Y tree. However, the algorithms
presented here can be readily applied to non-Manhattan lay-
outs if a suitable representation is available for them.

Background rectangles in one document type may vary
from page to page. Column separators e.g. may have dif-
ferent height according to the content of the page, although
their position and width is quite fixed. To model these vari-
ances, we represent each background rectangle by 4 param-
eters that are assumed to have independent Gaussian distri-
butions. We model a layout component as a sequence of
rectangles M = {m1, . . . ,mN}. For each rectangle 8 val-
ues are needed to define the parameters: four for the mean
center position (x, y), width ∆x, and height ∆y of the cor-
responding rectangle and four for the deviations of position
and size. Using an automatic training of the parameter val-
ues allows robust adaption of the model to the layout type.

2.2 Statistical Model Matching

The goal of statistical model matching is to find a set
of whitespace rectangles in a target document that corre-
spond to the layout model with the highest probability.
First a whitespace cover of the page background is ex-
tracted [2]. Then, each layout component in the structural
mixture model is considered as a candidate that explains
the layout of the target document. We are interested in find-
ing the layout model that explains best the target document.

Last, the whitespaces corresponding to the best matching
model are extracted.

Given a layout modelM = {m1, . . . ,mN} consisting of
N model rectangles, and a set S ofK whitespace rectangles
{w1, . . . , wK}, where N < K, that constitute a whitespace
cover of page background. We are interested in p(W |M),
i.e. the likelihood of observing W given M where

• W = (w1, . . . , wN) is an n-tuple with wi ∈ S and
wi 6= wj ∀i, j : i 6= j

• each element of W corresponds to an element of M

Overall, we want to find the most likely subset of whites-
paces:

Ŵ = arg max
W

p(W |M) (1)

The likelihood of observing whitespace rectangles W =
(w1, . . . , wN) given a layout model M = {m1, . . . ,mN}
can be written as

p(W |M) = p(w1|mN
1)p(w2|w1,m

N
1) · · ·

p(wN |w1, · · · , wN−1,m
N
1) (2)

wherewi is the whitespace cover rectangle thatmi has been
matched on. Due to the hierarchical structure of models, the
likelihood of observing whitespace wi does not depend on
model cuts that are lower in the hierarchy, i.e. model cuts
with indices i + 1 to N . Hence, the first term on the right
hand side of Equation 2 - p(w1|mN

1) - is computed as

p(w1|mN
1) = p(w1|m1)

= N (x1;µx1 , σx1)N (y1;µy1 , σy1)
N (∆x1;µ∆x1 , σ∆x1)
N (∆y1;µ∆h1 , σ∆h1) (3)

where N (a;µa, σa) stands for the value of the normal dis-
tribution at point a with mean µa and variance σa. Simi-
larly, other terms in Equation 2 can be written as:

p(wj |wj−1
1 ,mN

1) = p(wj |wj−1
1 ,mj

1) (4)

We model the dependency between whitespace cut wj

and its ancestors by the hierarchy of the tree. The ances-
tors of wj define the page segment to which the cut wj is
to be applied. The coordinates of whitespace cuts are com-
puted relative to the page segment to which they are applied.
These need to be recomputed based on the current page
segment. This is done by first intersecting the whitespace
wj with the current page segment to trim its part extending
beyond that segment, and then normalizing its coordinates
with the page segment’s width or height (x-center and width
are divided by the page segment width, whereas y-center
and height are divided by page segment height). The likeli-
hood of the updated whitespace can then be computed using
Equation 3.

Using Equations 3 and 4 in Equation 2 gives the likeli-
hood of matching a particular combination of whitespaces
to the layout model. The main challenge then is to find
the global maximum in Equation 1. This is a combina-
torial optimization problem and brute-force search to find
the globally optimal solution is not practically possible. A*
search is employed to find the globally optimal combina-
tion of whitespaces that best matches the layout model. Us-
ing A* search, mean running time of matching one layout
model to an image is less than one second on a 2GHz PC.

Note that the likelihood of match defined by: q =
log p(Ŵ |M) will usually have lower values for complex
models due to additional Gaussians involved for each model
cut (see Equation 2). To avoid this problem, first the quality
per cut is computed by simply dividing the log-likelihood of
match by the number of model cuts. Then, the per-cut qual-
ity is normalized by the complexity of the model to give
complex models a better score as compared to their sub-
models when both have a good matching score.

The model matching so far contains only background in-
formation. This may lead to matching, where e.g. only
whitespace is separated. In order to incorporate fore-
ground information and to avoid the segmentation of white
background, the following foreground constraint has been
added: a solution is regarded as valid, if at least two con-
nected components are on each side of a vertical separator.
If this is not the case, the solution is discarded.

2.3 Learning Model Parameters

Learning layout models from training images is done in
two steps. In the first step, the goal is to find the structure
of layout model components. This step is done by grouping
documents of the same layout together and defining a struc-
tural layout model for each layout. In this preliminary work,
this task is done manually. First, the user selects documents
with the same layout. Then, a layout model is built for one
document of that layout with the help of an interactive GUI.

In the second step, the goal is to learn geometric variabil-
ity of the structural layout models built in the first step. An
EM-like training algorithm is used. Consider training im-
ages {1, 2, · · · , T}. The total quality of matching a layout
model on the training set is computed as:

q = −
T∑

i=1

log pi(Ŵ |M) (5)

The training algorithm tries to minimize this quantity iter-
atively. Starting with initial parameters, the model match-
ing and parameter updating is done iteratively, until no im-
provement of quality can be made, i.e. the training algo-
rithm terminates when q(t) ≥ q(t−1).

Figure 2. Structural layout components of the
mixture model in our experiment.

3 Experiments and Results

To demonstrate the effectiveness of our approach, we
chose a subset of the Google 1000 Books dataset [12] for
our experiments. The dataset was released by Google Inc.
in Sep. 2007 and contains scans of old books for which
copyrights have expired. We chose volume 328 for our
tests since the gap between column separators was very low
for pages of this book, making it a good candidate for a
non-stereotypical layout. We chose the Voronoi [5] and the
Docstrum [7] algorithms as representative state-of-the-art
generic layout analysis algorithms.

We used text line segmentation accuracy [8] as the er-
ror measure. Since the Google 1000 books dataset does not
provide page segmentation ground-truth, we manually cre-
ated zone-level ground-truth for 200 images (image index
100 to 299) from volume 328 using techniques described
in [8]. Individual text lines were then automatically ex-
tracted from the zone-level ground-truth using the uncon-
strained text line extraction algorithm [1]. Unconstrained
text line finding finds lines that stretch across the zone,
avoiding oversegmentation of lines. The results of text line
finding for generating the ground truth text lines were in-
spected manually and showed to be accurate enough for a
meaningful evaluation. The same text line finding method
was then used to obtain text lines from the blocks return
by the Docstrum algorithm, the Voronoi algorithm, and our
statistical layout matching algorithm. Differences in the ob-
tained set of lines thus result from differing segmentations.

For our method, we picked two layout structures as com-
ponents of our mixture model. Examples of these two
model components are shown in Figure 2. Each of these
components was trained on 10 images of the same layout
structure. The results are shown in Table 1. The measures
in the table are: GT gives the number of lines found in the
ground truth; FN gives the number of lines found by the
page segmentation in combination with the text line extrac-
tor (this is the total number of found text lines and not the

Table 1. Results for Voronoi, Docstrum and
our approach on text line accuracy. The left
columns give the total absolute number, the
right ones the mean per page.

Docstrum Voronoi Stat. Layout
GT 12200 61.1 12200 61.1 12200 61.1
FN 10622 53.1 10033 50.2 12146 60.7
To 788 3.9 660 3.3 11 0.1
Tu 2370 11.8 2840 14.2 78 0.4
Cm 16 0.1 2 0.0 7 0.0
Cf 5 0.0 10 0.1 2 0.0
Tc 59.0% 51.0% 98.4%

number of correctly found text lines); To gives the num-
ber of resulting line segments obtained by over-segmenting
ground truth lines, e.g. a ground truth line being split into
three parts will count for three oversegmentations; Tu is the
number of ground truth lines being undersegmented to one
line, e.g. three ground truth lines being merged into one
line will be counted as three undersegmentations; Cm is
the number of missed lines; Cf gives the number of falsely
detected lines that are not represented in the ground truth
(false alarms); Tc gives the percentage of lines that were
found correctly (without over- or undersegmentation).

The results show that the segmentation results achieve
a text line accuracy of 98.4%. The few errors that occur
are mainly due to outliers of the layout model which our
method was not trained on. The few oversegmentations re-
sult from word gaps being at exactly the same position and
of the same width as the column separator tends to be. This
may happen when two column footnotes are followed by the
title of a new chapter. In some rare cases the wrong model
was matched, or, the model was matched wrongly, resulting
mainly in too long column separators. In one case, noise
prevented from finding the whitespace needed to correctly
match the model. This error lead to half of the underseg-
mentation errors. Example images can be found in Figure 3

Interestingly, Voronoi and Docstrum algorithms fail to
segment the two column illustrations using their default pa-
rameters. Automatic paramter tuning of these algorithms
for this layout is part of on going work and will be reported
in a future publication.

4 Conclusion

In this work we presented a novel approach to document
image segmentation. Our method uses trainable models and
a probabilistic matching, allowing on the one hand adapt-
ability to variations in the layout model and plausibility
check of the obtained segmentation on the other hand. We

Figure 3. Examples of segmentation results
obtained by Voronoi (left), Docstrum (mid-
dle), and the presented approach (right).

demonstrated its usability on a book of the Google 1000
books dataset, with a line segmentation accuracy of 98.4%.

References

[1] T. M. Breuel. Robust least square baseline finding using a
branch and bound algorithm. In Proc. SPIE DRR IX, pages
20–27, San Jose, CA, Jan. 2002.

[2] T. M. Breuel. Two geometric algorithms for layout analysis.
In Proc. DAS, pages 188–199, Princeton, NY, Aug. 2002.

[3] D. Gao, Y. Wang, H. Hindi, and M. Do. Decompose doc-
ument image using integer linear programming. In Proc.
ICDAR, pages 397–401, Curitiba, Brazil, Sep. 2007.

[4] T. Kanungo and S. Mao. Stochastic language models for
style-directed layout analysis of document images. IEEE
Trans. on Image Processing, 12(5):583–596, 2003.

[5] K. Kise, A. Sato, and M. Iwata. Segmentation of page im-
ages using the area Voronoi diagram. Computer Vision and
Image Understanding, 70(3):370–382, 1998.

[6] J. Liang, R. M. Haralick, and I. T. Phillips. A statistically
based, highly accurate text-line segmentation method. In
Proc. ICDAR, pages 551–555, Bangelore, India, Sep. 1999.

[7] L. O’Gorman. The document spectrum for page layout anal-
ysis. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, 15(11):1162–1173, 1993.

[8] F. Shafait, D. Keysers, and T. M. Breuel. Performance eval-
uation and benchmarking of six page segmentation algo-
rithms. IEEE Trans. on Pattern Analysis and Machine In-
telligence, 30(6), 2008. Accepted for publication.

[9] M. Shilman, P. Liang, and P. Viola. Learning non-generative
grammatical models for document analysis. In Proc. ICCV,
pages 962–969, Beijing, China, Oct. 2005.

[10] A. L. Spitz. Style-directed document segmentation. In Proc.
Symp. Document Image Understanding Technology, pages
195–199, Baltimore, MD, Apr. 2001.

[11] T. Tokuyasu and P. A. Chou. Turbo recognition: a statistical
approach to layout analysis. In Proc. SPIE DRR VIII, pages
123–129, San Jose, CA, Jan. 2001.

[12] L. Vincent. Google book search: Document understanding
on a massive scale. In ICDAR, pages 819–823, Curitiba,
Brazil, Sep. 2007.

	Introduction
	Statistical Layout Analysis
	Statistical Layout Model
	Statistical Model Matching
	Learning Model Parameters

	Experiments and Results
	Conclusion

