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Abstract

Kernel density estimators are established tools in non-parametric statis-
tics. Due to their flexibility and ease of use, these methods are popular in
computer vision and pattern recognition for tasks such as object tracking
in video or image segmentation. The most frequently used algorithm for
finding the modes in such densities (the mean shift) is a gradient ascent
rule, which can converge to local optima. We propose a novel, globally
optimal branch and bound algorithm for finding the modes in kernel den-
sities. We show in experiments on datasets up to dimension five that the
branch and bound method is faster than local optimization and observe
linear scaling of our method with sample size. Quantitative experiments
on simulated data show that the new method gives statistically signifi-
cantly more accurate solutions than the mean shift algorithm. The mode
localization accuracy is about 5 times more precise than that of the mean
shift for all tested parameters. Applications to color image segmenta-
tion on an established benchmark test set also show measurably improved
results when using global optimization.
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1 Introduction

This paper describes a globally optimal algorithm for finding the modes in kernel
density estimates. These modes are of interest in many pattern recognition and
computer vision applications, because they contain important information about
the underlying random processes. Such problems include tracking of objects in
color[12] or scale space[8], texture classification in feature spaces obtained from
filter banks[15], and color image segmentation in joint coordinate and color
space[9, 11].

1.1 Related Literature

A widely used algorithm for finding the local modes in kernel densities is the
mean shift algorithm, which is a gradient-based approach: Using kernel den-
sities, the mean shift is derived as the gradient of the smoothed density with
respect to features. It is a theoretically well studied and commonly used method
for the detection of maxima in kernel densities [7, 10, 11, 13]. Various modifica-
tions of this method have been proposed to avoid convergence in local optima.
E.g., an annealing scheme to guide the mean shift to the global mode of a dis-
tribution [21] or the use of priors to force the mean shift path into a certain
direction [19]. The use of the fast Gauss transform for mean shift was described
by Yang et al.[24], who achieved linear scaling of their method when using this
specialized algorithm.

The RAST (Recognition by Adaptive Subdivision of Transformation Space)
algorithms solve the following problem: Given a set of model and observation
points, find the optimal geometric transformation that best matches the two
onto one another [6, 4, 5]. For solving this optimization problem, these al-
gorithms employ a combination of interval arithmetic and branch and bound.
The space of all possible transformations is subdivided into regions, and up-
per bounds for the quality of match are computed. By comparing the bounds
of candidate regions in feature space, the method is guaranteed to converge
to the global optimum. This strategy has been successfully applied to various
computer vision problems[1, 17, 22].

An important tool for deriving and implementing RAST and the branch
and bound algorithm presented in this paper is interval arithmetic[16]. As we
will see later, it provides the means for computing bounds for the search algo-
rithms. Interval arithmetic for global optimization is also discussed by Hansen
and Walster[16], who deal with both constrained and unconstrained optimiza-
tion.

Whereas the current paper transfers branch and bound from geometric
matching problems to mode finding, Bandera et al. have recently proposed to
use mean shift clustering for line finding in images[2].
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1.2 Contribution of this Paper

This paper proposes the use of branch and bound algorithms for finding the
modes of kernel densities. The basic idea and some preliminary results had
previously been published[23]. The present paper contains a more thorough
treatment of the theory and significantly extended experimental evaluations.
Also, it is based on a completely new, more efficient C++ implementation,
which is available from the authors (http://www.iupr.org).

2 Non-Parametric Density Estimation

All material in this paper addresses the following general question: Given n > 0
samples xi ∈ Rd, i = 1, . . . , n, from an unknown probability density function
px, how can we find the modes x∗j ∈ Rd, j = 1, . . . , k. Here, k denotes the
number of modes of px.

There are many ways for answering this question. For example, one could
approximate px by a k-Gaussian mixture model. Then, the desired points x∗j will
be given by the mean vectors of the k model components. Instead of prescribing
such a fixed model, non-parametric methods try to compute a density estimate
p̂x directly from the data xi.

2.1 Kernel Densities

One such non-parametric method is kernel density estimation, where the density
at point x ∈ Rd is estimated as the outcome of a convolution of kernel K with
the sample points.

p̂(x) =
1

nhd

n∑

i=1

K

(
x− xi

h

)
, (1)

where h denotes the bandwidth parameter of the kernel. This gives a non-
parametric estimate p̂x of px. Many kernel functions Kh may be used, e.g. Gaus-
sian radial basis functions. Under the mean integrated square error (MISE)
criterion, the optimal kernel is the Epanechnikov Kernel [20], given by

Kh (x− xi) =






0 ‖x− xi‖ < h

3
4

(
1−

(
‖x−xi‖

h

)2
)

else . (2)

This kernel function has finite support, i.e., it assumes a value of 0 for
‖x − xi‖ ≥ h. A one-dimensional example of a density estimated using this
kernel function is shown in Fig. 1(a).
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(a) A 1D kernel density with Epanechnikov
kernel evaluated in conventional arithmetic.
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(b) The same kernel density as in Fig. 1(a)
with Epanechnikov kernel evaluated using in-
terval arithmetic

Figure 1: Two ways of computing a kernel density: When using interval arith-
metic, we can compute bounds for the value of p̂ in each sample space interval
(indicated by gray boxes).

2.2 Mean shift

The mean shift is a gradient ascent on the kernel density estimate given in (1).
By taking the gradient of (1), setting it to zero and solving for x, we obtain the
iteration rule

xt+1 =
∑n

i=1 xiK ′
h(xt − xi)∑n

i=1 K ′
h(xt − xi)

, (3)

in which K ′
h denotes the derivative of K with bandwidth h. The Epanechnikov

kernel in Eq. (2) is not differentiable at the boundary ‖x−xi‖ = h. To show how
it can be used in the mean shift iteration requires the introduction of “kernel
profiles”[11], which is beyond the scope of this paper. The iteration in (3) is
known to converge to the local stationary points of p̂ [11].

2.3 Interval Arithmetic

Interval arithmetic (or interval analysis) was developed to allow for numerical
computations with guaranteed results[16]. This paper uses interval arithmetic
as a tool for optimization. We will denote intervals as variables with a “[]”
in superscript, and we use half-open intervals in this paper. As an example,
consider the addition of two intervals a[] and b[], which is given by

a[] + b[] = [a, ā[+[b, b̄[= [a + b, ā + b̄[. (4)
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Not all operations in interval arithmetic are as straight forward as addition
(e.g., consider the multiplication of intervals that may contain the zero). Nev-
ertheless, any operation ◦ can be extended to intervals by the min–max–rule,

a[] ◦ b[] = [min
{
a ◦ b, ā ◦ b̄, a ◦ b̄, ā ◦ b

}
,max

{
a ◦ b, ā ◦ b̄, a ◦ b̄, ā ◦ b

}
[. (5)

We now apply this mathematical tool to kernel density estimation: Consider
the 1D example in Fig. 1(b). For each interval x[], we can compute an upper
and a lower bound for the value of the kernel density (indicated as gray boxes
in this figure). For finding the modes of the kernel density, we would focus on
intervals with large upper bounds. This idea leads to the branch and bound
algorithm that will be described in Sec. 3.

2.4 Explicit bounds for the Epanechnikov Kernel

For implementing an interval kernel density estimator, one could, in an object-
oriented language, overload the usual arithmetic operators, obtaining an imple-
mentation of (1) with vectors replaced by d-dimensional boxes. Nevertheless,
it is more efficient to explicitly compute and implement the computation of
bounds, because it allows for some simplifications of the formulas.

Let x[] = [x, x̄[ be a d-dimensional real box, and the n samples xi from above
are wrapped into intervals x[]

i := [xi,xi[ with zero volume. The interval kernel
density at x[] using Epanechnikov kernel with positive width h, and dropping
the constant factor 3

4 , can then be derived as follows.

K []
h(x[] − x[]

i ) = max




[0, 0[, [1, 1[−
(
‖x[] − x[]

i ‖
h

)2





= max




[0, 0[, [1, 1[−
d∑

j=1

([
xj − xj

i

h
,
x̄j − xj

i

h

[)2





=



max




0, 1−
d∑

j=1

max






(
xj − xj

i

h

)2

,

(
x̄j − xj

i

h

)2








 ,

max




0, 1−
d∑

j=1

min






(
xj − xj

i

h

)2

,

(
x̄j − xj

i

h

)2












 (6)

The computational overhead of computing (6) instead of its conventional
counterpart (2) consists of 2d+1 comparisons and d subtractions, divisions and
multiplications, each. In other words, evaluation of (1) is in O(dn) regardless
of whether we use interval or vector arithmetic.
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(a) The first mode (b) The top 3 modes

Figure 2: Examples of applying the adaptive subdivision to some 2D data. Data
samples are show as green points. Red points indicate samples that had a non-
zero contribution to the kernel density at the final intervals (“active samples”).

3 Branch and Bound for Mode Finding

With the tools from the previous section at hand, we can now state the central
algorithm of this paper. It is a branch and bound algorithm that uses the
upper bounds of kernel densities for adaptively subdividing the sample space
until arriving at a d-dimensional interval which is sufficiently small for being
accepted as solution (measured by a parameter ε > 0).

1. Let x[]
1 be the d–dimensional interval of all possible mode locations, i.e.,

∀i = 1, . . . , n : xi ∈ x[]
1 . Enqueue it to a priority queue with priority +∞

2. Remove the top ranking element x[]
t from the queue. If |x[]

t |∞ < ε, accept
x[]

t as solution and finish.

3. Split x[]
t into two new sub-intervals x[]

2t and x[]
2t+1 by dividing x[]

t in the
dimension where it is widest. Enqueue these new intervals using the upper
bounds of their kernel density values p̂(x[]

2t) and p̂(x[]
2t+1) (computed using

Eq. (6)).

4. Continue at step (2).

This algorithm returns an interval containing the mode of the kernel density
p̂(x), and is strongly related to a similar algorithm that has been introduced for
geometric matching, see below. Fig. 2(a) shows a 2D example of the divisions
generated by this algorithm and shows the interval x[]

∗ (in red) to which it
converged. We use the midpoint of the final interval as solution, i.e., x∗ =
1
2 (x∗ + x̄∗).
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In order to efficiently implement this algorithm, each interval x[]
t should keep

track of the samples xi that have a non–zero contribution to its kernel density.
Call these the “active” samples of an interval. Because a child interval can not
have any active samples that were inactive in its parent, this drastically reduces
the number of required kernel evaluations.

3.1 Analysis of the Algorithm

Let x[]
∗ be the final interval chosen in step (2). To guarantee that this interval

indeed contains the optimal solution, we would need to check if there exists a
point x ∈ x[]

∗ achieving the computed upper bound. This step is usually omitted
for efficiency, resulting in what has been termed a weak geometric algorithm[5].

The algorithm given above constructs a d-dimensional kd-tree, not on the
sample points xi, but rather by dividing the search space into boxes until ar-
riving at a sufficiently tight interval. Let m be the number of nodes in the final
tree. Construction of the tree structure can then be done in O(m log m · dn)
time[14], where O(dn) is the time required for evaluating (1), cf. Sec. 2.4. Be-
cause at each level l > 0 the tree consists of at most 2l nodes and because the
width of the intervals is inversely proportional to 2l/d, the worst case depth of
the search tree is in O

(
log(dε−1)

)
.

3.2 Relation to Geometric Matching

A slightly different variant of the above branch and bound algorithm is known
as RAST algorithm, which has successfully been applied to various geometric
matching problems [1, 4, 5, 17]. RAST algorithms have been developed for find-
ing an optimal geometric transformation T from transformation space T under
bounded error. Suppose we are given two sets {yj}j=1,...,p and {zk}k=1,...,q of
points in Rd. The optimal transformation T ∗ is the one that maps exactly one
y onto one z. Such a perfect match does usually not exist due to noise or be-
cause of some transformations that are not contained in the search space T . To
measure the quality of such matches, RAST algorithms use a quality measure
Q,

Q(T ) =
p∑

j=1

max
k

q (T · yj − zk) . (7)

This means that these algorithms are searching for a transformation T ∗ =
argmaxT∈T Q(T ) that locally minimizes the error of match. The algorithm from
Sec. 3 can be used to find an interval containing T ∗ when instead of evaluating
the kernel density in step (3), the upper bound of the match quality Q is com-
puted. One quality measure q that has been used for geometric matching[1, 22]
is

q (t) = max
{
0, 1− (t/h)2

}
, (8)
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which, up to scaling, is equal to the Epanechnikov kernel from Eq. (2). This
form of q is used for finding maximum likelihood solutions under a Gaussian
error model[6]. It neglects outliers, i.e., points that are farther than h from a
transformed point T · y, while points that are close to a model point z have a
large contribution to the quality of match (q(0) = 1).

3.3 Greedy Mode Seeking

Sometimes, not only the global, but also local modes of a distribution are of
interest. E.g., mean shift mode seeking is often used for image segmentation by
clustering color values in color spaces. Under the assumption that image regions
form tight clusters in color space, we are then interested in finding not one, but
many cluster.

The above procedure for finding global modes in kernel densities is easily ex-
tended to finding the k first modes as follows: Assume we have found an interval
x[]
∗ which was accepted as a solution. Remove this element from the queue and

also remove its active sample points from all elements that are currently in the
queue. Update the kernel values of all intervals, re-sort the priority queue, and
continue as above. Stop when k kernel modes have been found. Fig. 2(b) shows
a 2D example result of this extended algorithm with k = 3.

Note that the k modes of the kernel density p̂ alone do not give a clustering,
but just the locations of these modes in feature space. For the examples that
we will show in Sec. 5, we have used the nearest neighbor rule to assign feature
points to clusters.

4 Experimental Evaluation

We have claimed that branch and bound mode finding would be more accurate
and more efficient than mean shift. This section presents numerical simulations
to verify these claims. The experimental setup is similar to the one used by
Georgescu et al. for evaluating the performance of their adaptive mean shift
implementation[15].

First, to check the global mode finding performance, an unimodal distribution
was used. The test data consisted of samples from a d-dimensional isotropic
normal distribution with fixed standard deviation σ and uniformly distributed
noise points covering the same interval as the true samples. A noise fraction
quantifies the noise level: Say we set n = 100 and simulate a noise fraction of
0.5. By this we mean that we draw 0.5 · 100 = 50 samples from the normal and
add another 50 noise points, thus completing the total of 100 points. A new
uniformly distributed mean vector in [−1, 1]d was drawn in each trial.

Precision and runtime of our and the mean shift methods were evaluated
with respect to each of these three parameters (dimension, sample size, noise)
independently. The distance between a resulting vector and the true mode
measures the precision.
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(a) Branch and bound mode finding is less
sensitive to noise than mean shift.
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(b) Runtime of our method is significantly
lower.

Figure 3: Experiments with samples from a 3-dimensional isotropic Gaussian
(σ = 0.1) at different noise levels. The total number of points was fixed to 5000.

Second, for evaluating the performance of the greedy mode finding scheme
for k modes, a multimodal distribution in uniform noise was used. The model
for this k mode finding experiment was a k-Gaussian mixture with equal priors
1/k and identical standard deviation σ for each mixture component.

The performance measure here is the receiver-operator-characteristic (ROC):
We counted true and false matches in terms of a distance threshold θ specifying
the acceptable offset of a solution to a true mode. The Gaussian mixture EM
algorithm approximates the maximum likelihood solution for this test data[3],
and is therefore suitable as an additional control method.

In order to show the differences due to the algorithms themselves – rather
than due to parameter tuning – our and the mean shift method always used
equal parameters. That is, the bandwidth of the kernel always was h = σ
and the same ε determined termination of our algorithm and of the mean shift
gradient ascent, which stopped when the change in one iteration fell below ε.
All results in this section are averages over 1000 trials.

4.1 Samples from an unimodal distribution

Fig. 3, 4 and 5 show the results of the above described experiment on a unimodal
Gaussian distribution. The branch and bound mode finding algorithm shows
statistically significant improvements in mode localization accuracy over the
mean shift method, with respect to all three evaluated parameters. Additionally,
our algorithm is faster than the mean shift for feature space dimension up to
four. Linear scaling of the new branch and bound algorithm with sample size is
shown in Fig. 4(b).
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(a) Localization of our method is significantly
better and converges faster than the one of
mean shift.
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(b) In contrast to mean shift, branch and
bound mode finding scales linearly with sam-
ples size.

Figure 4: Experiments with samples from a 3-dimensional isotropic Gaussian
(σ = 0.1) at 25% noise level. The total number of points was increased from
500 to 10000.

The peak size in memory of the branch and bound priority queue during
search was 700kB for the 10000 3-dimensional samples and 20MB for 5000 5-
dimensional points.

From the results of these experiments, we conclude that branch and bound
mode finding is significantly more accurate than the mean shift algorithm, more
robust to noise, and scales linearly with the number of samples. Linear scal-
ing for the mean shift method when using a specialized implementation of a
Gaussian kernel has been reported by other authors[24].

The unfavorable behavior of the runtimes our method for increasing data
dimension compared to the mean shift can be explained by the growth of the
search tree for high dimensional data. This observation gives hints for further
optimization: Breadth-first search may sometimes be preferable to best-first
search, also for lowering the memory requirements in high dimensional applica-
tions.

4.2 Samples from a multimodal distribution

Fig. 6 presents the ROC results for experiments in detecting k = 25 modes in
a two and a three dimensional problem. Our method is the best out of these
three in both cases, but tends to miss some modes. The accuracy gain of the
proposed algorithm over the Gaussian mixture EM was smaller in the 3 than in
2-dimensional simulations.

This evaluation on samples from a multimodal density demonstrates the
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slower than the branch and bound algorithm.

Figure 5: Experiments with samples from an isotropic Gaussian and 25% noise
points in different dimensions. The total number of points was fixed to 5000.

effectiveness of the greedy mode finding scheme outlined above. By removing
active samples of detected modes from the remaining search steps, our greedy
search will by design not find any modes closer than h/2 to one another. In
the simulations presented here, the mixture components were allowed to become
arbitrarily close, an unusual situation for real data. This explains the lower true
positive rates of our method compared to the Gaussian mixture EM in Fig. 6(b).

5 Color Image Segmentation

An algorithm for segmenting images in joint coordinate and color space using
the modes of kernel densities was proposed by Comaniciu and Meer[11]. There,
the kernel definition in (2) was slightly modified by using two bandwidth pa-
rameters, hc and hs for the spatial and color component of the 5D feature space,
respectively. Image color triples are transformed to the CIELUV color space,
which was designed in such a way that measuring distances between the triples
in this space was more closely related to human perception than in other color
spaces.

This algorithm was implemented using either our branch and bound or
the mean shift algorithm for mode detection. We chose the Berkeley Segmen-
tation Dataset and Benchmark (http://www.eecs.berkeley.edu/Research/
Projects/CS/vision/) for testing these methods with respect to one another.
This dataset is an established benchmark set with human ground truth segmen-
tations and an associated software for measuring the segmentation error[18].

Example images from this database have been used by Comaniciu to demon-
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Figure 6: Experiments with samples from a 25-Gaussian mixture (σ = 0.25) and
50% noise fraction. The total number of points was fixed to 5000. To measure
these ROCs, the distance at which a true mode was counted as matching an
estimated one was varied.

Score (higher values are better)

Human[18] 0.79
Branch and bound 0.48
Mean shift 0.43

Figure 7: Performance on The Berkeley Segmentation Database and Bench-
mark, measured using the benchmarking software provided by D. Martin et
al.

strate the performance of a modified version of the algorithm we use here[9]. We
simply fix the bandwidth parameters to hc = 20 and hs = 4, as was reported
in that paper. Then, we apply both algorithms to the Berkeley test set and
evaluate the errors. The mean results of all 100 test images are given in the
table in Fig. 7.

Note that the branch and bound results tend to oversegment the images.
This is preferable to missing objects both according to the scoring system[18]
and in practice.

Theses results demonstrate a performance gain when using the identical seg-
mentation algorithm and kernel parameters, which is achieved by switching from
the local mean shift search to global branch and bound mode finding. State-of-
the-art results using both gray and color image segmentation are published on
the The Berkeley Segmentation Database and Benchmark website.

Examples of segmentations from this database, along with the scores, are
shown for both our branch and bound and the mean shift methods in Fig. 8
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and 9.

6 Conclusions

This paper introduced a globally optimal algorithm for finding the modes in
kernel density estimates, which is more accurate than the mean shift method in
terms of mode localization. When using a conventional implementation of the
mean shift, it is also more efficient and, in contrast to mean shift, scales linearly
with sample size.

Numerical experiments on simulated data and on The Berkeley Segmenta-
tion Database and Benchmark have revealed the merits of using global rather
than local optimization: Increased accuracy, especially when few samples are
available or when there exist large distortions due to noise.

We have also shown the strong relations of our algorithm to the RAST
class of algorithms known from geometric matching. This comparison revealed
that a quality function used there for robust least squares matching under a
Gaussian error model also had a rigorous interpretation in the kernel estimation
framework: It is the MISE-optimal Epanechnikov kernel.

The proposed algorithm may be used as an out-of-the-box solution for mode
finding when only some samples are available. Only two parameters are required:
A bandwidth h, related to the scale of the given problem, and a accuracy ε
governing the precision of the final solution.
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