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Abstract. In this paper, we discuss how Artificial Intelligence (AI) techniques 
might be brought to bear in automatically recognizing “creative reasoning” in 
student e-discussions. An AI-based graph-matching algorithm was used to find 
instances of deepening and widening, interactional categories that provide 
evidence of, respectively, explicit argumentation and creative reasoning. A 
deepening occurs when students provide further argumentation for an on-going 
perspective. A widening occurs, on the other hand, when a student (or students) 
attempts to diverge from the current perspective by either questioning it or 
presenting a new perspective or new idea. Given examples of deepening and 
widening from real e-discussions, the AI algorithm was able to successfully find 
similar events within new e-discussions and did so within realistic run-time 
expectations. Our ultimate aim is to provide a software tool for teachers that will 
support them in recognizing a range of important dialogic aspects of student e-
discussions, such as deepening and widening. 
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1. Introduction 

An emerging trend in education is for students to use collaborative computer-based 
tools to discuss, debate, and argue with one another about topics presented in a 
classroom [1], [2]. With these tools students work on separate computers but 
communicate in a shared workspace, through dragging-and-dropping different types of 
discussion objects (e.g., “claim”, “question”), filling those objects with text (e.g., “I 
disagree with that claim because …”) and linking the objects to other objects using 
meaningful links (e.g., “supports”, “opposes”) (cf. [3]). On the ARGUNAUT project 
[4], we are using the tools Digalo [5] and FreeStyler [6] 
(http://www.collide.info/index.php/FreeStyler/) to allow students to engage in such 
graphical e-discussions. In order to allow a teacher to moderate the discussions, we 
have developed a Moderator’s Interface (See Figure 1) that contains alerts (e.g., 
whether students are swearing) and a variety of awareness indicators (e.g., the relative 
amount of participation by each student in a discussion).  

One type of alert is a so-called “deep” alert, which indicates complex interactions 
between students in e-discussions (called “clusters”), such as a sequence of back-and-
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forth argumentation. An AI-based graph-matching algorithm, DOCE (Detection of 
Clusters by Example), has been developed to support such alerts [7]. For instance, in 
Figure 1, the Moderator’s Interface shows the top five “Chain of Opposition” clusters 
(indicated by the small circles shown in the geometric center of the clusters) in a 
particular e-discussion. The Chain of Opposition cluster is three or more shapes in 
length and involves, typically, two students arguing back and forth, each opposing the 
other’s argument. In Figure 1, the teacher has highlighted one of the specific Chain of 
Opposition clusters for closer inspection. 

 
Figure 1: ARGUNAUT’s Moderator’s Interface showing one of its deep alerts, ‘Chain of Opposition’, in a 

selected e-discussion, which is selected from the current active e-discussions shown on the left 

Two of the cluster types that are searched for by DOCE, deepening and widening, 
are interactional categories that we were particularly interested in identifying in 
classroom discussions as evidence of, respectively, explicit argumentation and creative 
reasoning [8]. A deepening occurs when students provide further argumentation for an 
on-going perspective [9], similar in concept to the “Chain of Opposition” clusters. A 
widening occurs, on the other hand, when a student (or students) attempts to diverge 
from the current perspective by either questioning it or presenting a new perspective [8]. 
In this paper, we report on some success we had in having our algorithm find such 
clusters in new e-discussions. 

2. A Research Challenge: How Do We Find and Code Creative Reasoning? 

In a recent review of the literature, Andriessen [10] presents developments in 
argumentation theory as moving from abstract and formal studies towards an analysis 
of actual human dialogues. Most schemes applied to analyzing online argumentation 
(e.g. those developed originally by Toulmin, Van Eemeren and Walton, see [10] for 
details) focus on explicit reasoning in the form of claims, challenges to claims and 
reasons in support of claims. This approach is good at picking up critical reasoning but 
ignores more creative reasoning and interaction. In dialogues voices interact in 
unpredictable ways to produce new perspectives that can enable participants to see the 
topic of the dialogue in a new way. Such dialogic shared thinking, as a dance of voices 
and perspectives, is clearly an act of creative reasoning.  



So how are we to find such creative reasoning in real discussions? If by widening 
we mean bringing in new perspectives that enables the participants in a dialogue to see 
things in a new way and thus expand their understanding, then any widening move in a 
debate is also a creative move2. Deepening, on the other hand, is about unpacking 
assumptions and following chains of entailment and so broadly coincides with the 
traditional focus on explicit reasoning. With this in mind, we developed a coding 
scheme both for research purposes and to provide a basis (and data) for the AI 
techniques discussed later. The scheme included the more traditional focus on explicit 
reasoning but also looked for the taking of perspectives and the listening to different 
perspectives in a way that allows for the emergence of creative new perspectives (i.e., 
insights) that expand the dialogue without necessarily resolving a given problem [11]. 

To help us code the rather complex online discussions produced in the course of 
the ARGUNAUT project (called “e-discussions” or “discussion maps” henceforth) we 
generated sequence diagrams, visual representations of e-discussions that serve the 
purpose of providing an abstracted overview of: (1) the number and length of 
contribution sequences and (2) the branching of sequences at different points in the 
discussion. By “zooming in” on the branch points (i.e., by inspecting the cluster of 
contributions around and including a branching step), we found that the branches often 
mapped to new perspectives (but not always creative contributions, as per footnote 2) 
in the e-discussions.  

For instance, see Figure 2. In this small cluster of contributions from a discussion 
map, found using the technique described above, an instance of a creative, new 
perspective was found. A group of three students is discussing the question: ‘Will the 
Internet bring the world together or deepen its divisions?’ The “new perspective” 
emerges when one student (see the shape in the upper left, the branch point found in a 
sequence diagram) suggests that the “internet, in a way, is an extension of ourselves” 
and reflects “our own personalities and self concept.” This is a new and unexpected 
perspective and prompts two other related contributions (upper right and bottom) that 
continue and expand on this line of discussion. 

 

 
 

Figure 2: The emergence of a new perspective (upper left) by a student and responses to it by other students 
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Inspection of the abstract sequence diagrams, followed by “zooming in” on 
branches, such as what is shown in Figure 2, allowed us to somewhat rapidly find and 
code instances of widening in a variety of maps, more specifically, in a set of 14 e-
discussions created by undergraduates and post-graduate students in the UK. In the 
following sections we describe the DOCE algorithm and the results we obtained in 
applying the algorithm to these annotated maps. 

3. DOCE: Automatically Finding Instances of Deepening and Widening 

To search for clusters of interesting student interactions, such as the widening 
cluster illustrated in Figure 2, we developed an algorithm called DOCE (Detection of 
Clusters by Example) [7]. DOCE is based on the idea of using cluster examples to find 
similar clusters in new discussions, similar to the ideas from case-based reasoning [12], 
[13]. DOCE operates either by a teacher or researcher selecting an example cluster in a 
current e-discussion  (e.g. connected individual contributions that provide a good 
example of a particular interaction of interest) or by selecting a pre-defined cluster type 
(e.g., “widening”, “deepening”), which, in turn, loads relevant pre-saved cluster 
examples from a database. The example cluster(s) (also called a “model graph” in the 
following text) is then used as a search query for similar clusters across other 
discussion maps (called “input graphs”). The algorithm uses both structural features 
(e.g., the types of contributions made by students – for instance, “claim” or “question” 
– and types of links between contributions – for instance, “supporting” or “opposing”) 
and textual features (i.e., the text provided by the students, unigrams, bigrams, and 
syntactic structures from that text, extracted by TagHelper [14]) of the discussion map 
to find similar clusters. The output of the algorithm is a list of matching clusters in the 
discussion map(s), sorted according to a similarity rating. Due to space limitations, we 
refer the reader to a more comprehensive description of the DOCE algorithm in [7].  

4. Experiment: Finding Deepening and Widening Clusters with DOCE 

But how well does DOCE work in finding instances of deepening and widening? To 
find the answer to this question we conducted an experiment in which we took hand-
annotated examples of deepening and widening (annotated by the members of the 
Exeter team on the co-author list) from actual classroom discussion maps, and tested 
whether DOCE was able to use those examples to find the other examples of deepening 
and widening in our data set. More specifically, we took 30 annotated examples of 
deepening and 30 examples of widening from 14 distinct discussion maps, and did the 
following: 

• For each annotated example, we ran DOCE with that annotation as the model 
graph against all of the other 13 discussion maps with at least 2 annotations 

• We considered a relevant match to be 70% overlap, e.g., the following 
annotated example and found cluster would constitute a relevant match, since 
there is a 75% node overlap (bold-faced nodes overlap): 
o Annotated example:  (Node1, Node3, Node4, Node5)  
o Found Cluster:  (Node3, Node4, Node5, Node6) 

• We varied parameters, such as the number (N) of clusters that were returned 
by DOCE and the relative impact of structural and textual properties on the 



similarity score of cluster pairs (e.g., is it more important that texts or shape 
types are similar?).  

• We evaluated recall, precision, and recall+precision on each run of DOCE, 
metrics typically used in information retrieval: 
o Recall represents the number of annotations of type x covered by DOCE 

within its Top N, divided by the count of annotations of type x in the 
searched map (value between 0 and 1.0). 

o Precision is the number of relevant matches of type x found by DOCE in 
the Top N divided by N (value between 0 and 1.0). 

Unfortunately, since there is no “gold standard” for performing the type of 
retrieval task done by DOCE, there was no other computational model to compare to 
DOCE in our experiment. However, in an earlier experiment, reported in [7], we 
compared DOCE to a simple program that returned random clusters and found that 
DOCE performed significantly better. While the random algorithm is, admittedly, a 
low bar to exceed, doing significantly better than random demonstrated that DOCE is 
clearly finding (at least some) clusters of interest. We considered recall to be the most 
important metric in our experiment, as it was most important to us to maximize the 
number of interesting returned clusters in a given discussion. The number of relevant 
matches (i.e. precision) has somewhat lower importance since we as researchers, and 
humans in general, are typically clever enough to filter out irrelevant matches. 

4.1. Results on the Effectiveness of DOCE 

The results of the experiment are summarized in figures 3 and 4. Note, first of all, that 
the best results for deepening and widening are quite reasonable (the middle bar for 
recall, precision, and recall+precision in each of the figures), especially for recall, the 
metric we consider most important. By “best” result, we mean the human-annotated 
cluster that led to the highest recall and precision values when used as a model graph to 
DOCE. For instance, notice that the best deepening model graph (the middle bar in 
each of the first two sets of three metrics in Figure 3) led to a recall of 0.80 and 
precision of 0.52. The average results, calculated across all of the annotated clusters 
(the leftmost recall, precision, and recall+precision bar in each of the figures), are not 
good (e.g., the 0.42 recall and 0.27 precision in Figure 3 are very poor). However, 
focusing on the best results is more important because, by the nature of the DOCE 
algorithm, only the best examples of deepening and widening will subsequently be 
used as model graphs to DOCE. That is, once one finds the best model for a particular 
cluster type – or the best set of models – that model (or models) will then be used as a 
“search probe” for all subsequent searches. 

We also tested whether combining the results of multiple runs of DOCE might 
further improve the results. That is, we wanted to answer the question: Can multiple, 
high-quality clusters lead to even better results than single best clusters in retrieving 
relevant clusters? (Note that we did not do such an evaluation in our original paper on 
DOCE, i.e., [7]) We implemented this combination by ranking the results according to 
the average relevance scores of the three single-best models (We tried combinations 
greater than three, but this did not improve the results). The third bar in each set of 
three bars in Figures 3 and 4 depicts these results. Notice that for the deepening cluster 
results shown in Figure 3 the combination approach did marginally worse (i.e., 
recall+precision = 1.30 for the combination approach vs. 1.33 for the single best 
model), but for the widening clusters shown in Figure 4, the combination approach did 



a bit better (i.e., recall+precision = 1.49 for the combination approach vs. 1.42 for the 
single best model). 

 
Figure 3: Results of Applying DOCE to the Deepening Clusters 

 
Figure 4: Results of Applying DOCE to the Widening Clusters 

It is also important to note that DOCE performed better in identifying widening 
clusters, the cluster type of most interest to us with respect to this paper, than in 
identifying deepening clusters. In particular, note that the best widening recall (0.93), 
precision (0.59), and recall+precision (1.49) in Figure 4 improves upon the best 
deepening recall (0.83), precision (0.52), and recall+precision (1.33) from Figure 3. 

Interestingly, the results we achieved with this data improved upon most of the 
results reported on a different data set, with different annotated cluster types [7]. More 
specifically, the DOCE algorithm generally performed better in finding snippets of 
“creative reasoning” than it did in finding more standard argumentation structures, such 
as “Chain of Opposition,” discussed earlier. 



4.2. Results on the Usability of DOCE 

The run-time of graph-matching algorithms such as DOCE are known to be NP-
Complete [15]. In computational theoretic terms, this means that in the worst case, the 
run-time of the algorithm grows exponentially with the input size, resulting in non-
acceptable run-time behavior even for moderately sized input. However, such 
algorithms, when applied in practical contexts in limited ways, are often usable without 
ever bumping into theoretical limits. To explore this, we analyzed the run-time 
characteristics of DOCE run against the data from our 14 discussion maps. 

Not surprisingly, the empirical runtime analysis showed a linear relationship 
between the text length of the input graph and the pre-processing time (the time needed 
to extract features from the input and model graph). On average, pre-processing took 
about 10 seconds per map and peaked at roughly 21 seconds for very large maps (> 60 
contributions) with plenty of text. The search time (finding the most similar matches) 
was highly influenced by the size of the used models: Models of size three were in all 
cases unproblematic with search times always below five seconds. For models of size 
four the maximum search times rose to 34 seconds. For models of size five we saw in 
single cases run-times above one hour, confirming the theoretical assumption of an 
exponential run-time growth, although in the vast number of cases the run-times were 
still at an acceptable level. 

In summary, it is clear that very large discussion maps can be a problem for DOCE, 
especially when a teacher uses the algorithm in real-time fashion. On the other hand, 
the Exeter discussion maps were quite large, created during classroom use over several 
days, and are almost certainly at (or above) the upper limit of practical map size. Input 
models (i.e., annotated clusters) did not lead to any excessive search times, as long as 
the models did not exceed 4 nodes in size. Model graphs that reached five nodes in size 
led to some extreme cases, but it should be noted that these cases only occurred when a 
five-node model graph was used to search very large discussion maps. Generally 
speaking, as long as model graphs do not exceed five nodes they are practically usable, 
especially when discussion maps are reasonably sized. 

5. Discussion and Conclusions 

These results, while preliminary, are very encouraging. It appears that the DOCE 
algorithm is reasonably capable of finding examples of creative reasoning, at least with 
respect to widening of a discussion, given prior, annotated examples of such reasoning 
in other discussions. Furthermore, as long as the researcher or teacher is careful not to 
use too-large model graphs against too-large discussion maps, the DOCE algorithm 
runs in a practical amount of time. Thus, the DOCE algorithm is a tool that either a 
researcher or a teacher can use to pinpoint and evaluate creative reasoning in the 
context of real e-discussions. This technique has the potential to inform moderators 
when creative and/or critical reasoning are occurring in maps – as well as when it is not 
occurring, indicating that it might be time to intervene. Of course, we need to do more 
extensive testing of the algorithm. Thirty example clusters from 14 maps is a small N 
to experiment with, especially when one considers the size of corpuses typically used 
in information retrieval experiments.  

This work can help researchers explore dialogic theory that views creative 
reasoning as central to successful student interaction. Just as it is sometimes useful to 
‘deepen’ a dialogue by critically testing assumptions and teasing out their implications, 



so it is sometimes useful to ‘widen’ a dialogue by introducing new ideas. Effective 
thinking for most tasks requires both of these moves; the DOCE algorithm can help 
explore when and how students engage in these types of interaction in e-discussions. 

There is currently a great deal of interest around the world in teaching for 
creativity, widely seen as one of the core ‘21st century skills’ required for flourishing in 
the emerging knowledge age [16]. The research described in this paper makes a 
contribution by associating creativity with the widening that occurs when new voices 
and perspectives emerge within discussions, and by showing that creativity in this form 
can be recognized not only be expert humans but also by AI techniques. 
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